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Preface

My goal for these lectures is to convince you that string theory
may be useful for condensed matter physics.

The systems about which we can hope to say something using
string theory have in common strong coupling.
This makes our usual techniques basically useless.

goal for first lecture:

AdS/CFT solves certain strongly-coupled quantum field theories
in terms of simple (gravity) variables.



Real systems with strong coupling

We’ve developed enough confidence in these techniques to try to apply them to

questions about real strongly-coupled systems.

Like what?
• quark-gluon plasma at RHIC (Yaron Oz’ lectures?)

• fermions at unitarity (e.g. cold atoms with Feshbach-tuned interactions)

• non-Fermi liquid metals (e.g. high Tc , heavy fermion phase transitions)

What about standard techniques?
perturbation theory (requires one to perturb about the right description)

even cond-mat is ‘particle physics’: reliance on quasiparticles.

monte carlo simulation (obstructed by sign problem here)



A word about string theory

String theory is a (poorly-understood) quantum theory of gravity
which has a ‘landscape’ of many groundstates

V

geometry of spacetime

some of which look like our universe
(3 + 1 dimensions, particle physics...)

most of which don’t.

A difficulty for particle physics, a virtue for many-body physics:
by AdS/CFT, each groundstate (with Λ < 0) describes a universality
class of critical behavior and its deformations
This abundance mirrors ‘landscape’ of many-body phenomena.

An opportunity to connect string theory and experiment.
We are learning about string theory and about the duality.



Outline

1. Holographic duality with a view toward condensed matter
[review: JM, 0909.0518]

2. Gravity duals of non-relativistic QFTs
[Son, 0803.3972
Koushik Balasubramanian, JM, 0803.4053
Allan Adams, KB, JM, 0807.1111
KB, JM, 1007.2184 ]

3. Non-Fermi liquids from non-holography
[D. Mross, JM, H. Liu, T. Senthil, 1003.0894]

4. Non-Fermi liquids from holography
[Hong Liu, JM, David Vegh, 0903.2477
Tom Faulkner, HL, JM, DV, 0907.2694
TF, Gary Horowitz, JM, Matt Roberts, DV, 0911.3402
TF, Nabil Iqbal, HL, JM, DV, 1003.1728 and to appear]

5. (If time allows:) Strongly correlated topological insulators
[J. Maciejko, X. Qi, A. Karch, and S.-C. Zhang, 1004.3628

B. Swingle, M. Barkeshli, JM, T. Senthil, 1005.1076]



Holographic duality with a view
toward condensed matter



Bold assertions

[Horowitz-Polchinski, gr-qc/0602037]

a) Some ordinary quantum many-body systems are actually
quantum theories of gravity in extra dimensions
(≡ quantum systems with dynamical spacetime metric).
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Bold assertions

[Horowitz-Polchinski, gr-qc/0602037]

a) Some ordinary quantum many-body systems are actually
quantum theories of gravity in extra dimensions
(≡ quantum systems with dynamical spacetime metric).
b) Some are even classical theories of gravity.

What can this mean??

Two hints:
1. The Renormalization Group (RG) is local in scale
2. Holographic Principle



Old-school universality

experimental universality (late 60s):
same critical exponents from very different systems.
Near a (continuous) phase transition (at T = Tc), scaling laws:
observables depend like power laws on the distance from the critical point.

e.g. ferromagnet near the Curie transition (let t ≡ Tc−T
Tc

)

specific heat: cv ∼ t−α

magnetic susceptibility: χ ∼ t−γ



Old-school universality

experimental universality (late 60s):
same critical exponents from very different systems.
Near a (continuous) phase transition (at T = Tc), scaling laws:
observables depend like power laws on the distance from the critical point.

e.g. ferromagnet near the Curie transition (let t ≡ Tc−T
Tc

)

specific heat: cv ∼ t−α

magnetic susceptibility: χ ∼ t−γ

water near its liquid-gas critical point:

specific heat: cv ∼ t−α

compressibility: χ ∼ t−γ

with the same α, γ!



Renormalization group idea
This phenomenon is explained by the Kadanoff-Wilson idea:

IR UV
u

e.g . : H =
∑

ij

JijSiSj

Idea: measure the system with coarser and coarser rulers.

Let ‘block spin’ = average value of spins in block.



Renormalization group idea
This phenomenon is explained by the Kadanoff-Wilson idea:

IR UV
u

e.g . : H =
∑

ij

JijSiSj

Idea: measure the system with coarser and coarser rulers.

Let ‘block spin’ = average value of spins in block.
Define a Hamiltonian H(u) for block spins so long-wavelength
observables are the same.
−→ a flow on the space of hamiltonians: H(u)



Fixed points of the RG are scale-invariant

This procedure (the sums) is hard to do in practice.

H(water molecules)

H(IR fixed point)
UV

IR
z

H(electron spins in a ferromagnet)

J
13

12

J

Many microscopic theories will flow to the same fixed-point
−→ same critical scaling exponents.

The fixed point theory is scale-invariant:
if you change your resolution you get the same picture back.



Hint 1: RG is local in scale
QFT = family of trajectories on the space of hamiltonians: H(u)
at each scale u, expand in symmetry-preserving local operators {OA}

H(u) =

∫

dd−1x
∑

A

gA(u)OA(u, x)

[e.g. suppose the dof is a scalar field. then {OA} = {(∂φ)2, φ2, φ4, ...} ]

since H(u) is determined by a step-by-step procedure,

u∂ug = βg (g(u)) .

for each coupling g

locality in scale: βg depends only on g(u).

H(water molecules)

H(IR fixed point)
UV

IR
z

H(electron spins in a ferromagnet)

J
13

12

JDef: near a fixed point,
βg is determined by the scaling dimension ∆ of O:

Oa(x , u1) ∼
(

u1

u2

)∆

O(x , u2)

ops of large ∆ (> d , “irrelevant”)

become small in IR (as u → 0).



Hint 2: Holographic principle

holographic principle: in a gravitating system, max entropy in region V

∝ area of ∂V in planck units. [’t Hooft, Susskind 1992]

recall: max entropy SMAX ∼ ln dimH ∝ #dof .

in an ordinary system with local dofs SMAX ∝ V
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to see that gravitating systems are different, we combine two facts:

fact 1: BH has an entropy ∝ area of horizon in planck units.

SBH =
A

4GN

in d + 1 spacetime dimensions, GN ∼ #d−1
p −→ SBH dimless.



Hint 2: Holographic principle

holographic principle: in a gravitating system, max entropy in region V

∝ area of ∂V in planck units. [’t Hooft, Susskind 1992]

recall: max entropy SMAX ∼ ln dimH ∝ #dof .

in an ordinary system with local dofs SMAX ∝ V

to see that gravitating systems are different, we combine two facts:

fact 1: BH has an entropy ∝ area of horizon in planck units.

SBH =
A

4GN

in d + 1 spacetime dimensions, GN ∼ #d−1
p −→ SBH dimless.

Whence fact 1?

Black holes have a temperature [Hawking] e.g. TH = 1
8πGNM

for schwarzchild

Consistent thermodynamics requires us to assign them an entropy:

dEBH = THdSBH for schwarzchild, EBH = M, A = 4π(4M2G 2) gives (%)

‘Generalized 2d Law’: Stotal = Sordinary stuff + SBH



Hint 2: Holographic principle, cont’d

fact 2: dense enough matter collapses into a BH



Hint 2: Holographic principle, cont’d

fact 2: dense enough matter collapses into a BH
1 + 2 −→ in a gravitating system,
max entropy in a region of space =
entropy of the biggest black hole that fits.

Smax = SBH =
1

4πGN
× horizon area

Idea [Bekenstein, 1976]: consider a volume V with area A in a flat region
of space.
suppose the contrary: given a configuration with
S > SBH = A

4GN
but E < EBH (biggest BH fittable in V )

then: throw in junk (increases S and E ) until you make a BH.
S decreased, violating 2d law.
punchline: gravity in d + 2 dimensions has the same number of degrees of

freedom as a QFT in fewer (d + 1) dimensions.



1+2

combining these hints, we conjecture:

gravity
in a space with an extra dim

whose coord is the energy scale

?
= QFT

to make this more precise, we consider a simple case
(AdS/CFT) [Maldacena, 1997]

in more detail.



AdS/CFT
a relativistic field theory, scale invariant (βg = 0 for all nonzero g)

xµ → λxµ µ = 0...d − 1, u → λ−1u

u is the energy scale, RG coordinate

with d-dim’l Poincaré symmetry: Minkowski ds2 = −dt2 + d(x2



AdS/CFT
a relativistic field theory, scale invariant (βg = 0 for all nonzero g)

xµ → λxµ µ = 0...d − 1, u → λ−1u

u is the energy scale, RG coordinate

with d-dim’l Poincaré symmetry: Minkowski ds2 = −dt2 + d(x2

Most gen’l d + 1 dim’l metric w/ Poincaré plus scale inv.

AdSd+1 : ds2 =
u2

L2

(

−dt2 + d(x2
)

+ L2 du2

u2
L ≡ ‘AdS radius′

If we rescale space and time and move in the radial dir,

the geometry looks the same (isometry).

copies of minkowski space of varying ‘size’.
(Note: this metric also has conformal symmetry SO(d , 2)

∃ gravity dual =⇒ “Polchinski’s Theorem” for any d .)

another useful coordinate:

z ≡ L2

u
ds2 = L2−dt2 + d(x2 + dz2

z2

[u] = energy, [z] = length (c = ! = 1 units).



Geometry of AdS continued

IR UV
u uIR

R
AdSd+1

d−1,1

minkowski

UV

...

BOUNDARY

The extra (‘radial’) dimension is the resolution scale.
(The bulk picture is a hologram.)

preliminary conjecture:

CFTd
?
= gravity on AdSd+1 space



Geometry of AdS continued

IR UV
u uIR

R
AdSd+1

d−1,1

minkowski

UV

...

BOUNDARY

The extra (‘radial’) dimension is the resolution scale.
(The bulk picture is a hologram.)

preliminary conjecture:

CFTd
?
= gravity on AdSd+1 space

crucial refinement:
in a gravity theory the metric fluctuates.
−→ what does ‘gravity in AdS’ mean ?!?



Geometry of AdS continued

AdS has a boundary (where u → ∞, z → 0, ‘size’ of Mink blows up).

massless particles reach it in finite time.

=⇒ must specify boundary conditions there.
the fact that the geometry is AdS near there is one of these
boundary conditions.
different from Minkowski space or (worse) de Sitter:

AdS dSMink

(asymptotic boundary)

time

rescaled
space

so: some CFTd
?
= gravity on asymptotically AdSd+1 space

(we will discuss the meaning of this ‘=’ much more)



Preview of dictionary

“bulk” ! “boundary”

fields in AdSd+1 ! operators in CFT

(Note: operators in CFT don’t make particles.)

mass ! scaling dimension

m2L2 = ∆(∆ − d)

a simple bulk theory
with a small # of light fields

!

CFT with
a small # of ops of small ∆

(like rational CFT)



What to calculate

some observables of a QFT (Euclidean for now):
vacuum correlation functions of local operators:

〈O1(x1)O2(x2) · · · On(xn)〉

standard trick: make a generating functional Z [J] for these correlators by

perturbing the action of the QFT:

L(x) → L(x) +
∑

A

JA(x)OA(x) ≡ L(x) + LJ(x)

Z [J] = 〈e−
R

LJ 〉CFT

JA(x): arbitrary functions (sources)

〈
∏

n

On(xn)〉 =
∏

n

δ

δJn(xn)
lnZ

∣

∣

∣

J=0

Hint: LJ is a UV perturbation – near the boundary, z → 0



Holographic duality made quantitative

[Witten; Gubser-Klebanov-Polyakov (GKPW)]

ZQFT [sources] = Zquantum gravity[boundary conditions at u → ∞]
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Holographic duality made quantitative

[Witten; Gubser-Klebanov-Polyakov (GKPW)]

ZQFT [sources] = Zquantum gravity[boundary conditions at u → ∞]

≈ e−Sbulk[boundary conditions at u→∞]|saddle of Sbulk

J = φ0 ”φ
u→∞→ φ0”

What’s Sbulk? AdS solves the EOM for

Sbulk =
1

#GN

∫

d4x
√

g (R− 2Λ + ...)

(... = fields which vanish in groundstate, more irrelevant couplings.)

expansion organized by decreasing relevance

Λ = −d(d−1)
2L2 note tuning!

R ∼ ∂2g =⇒ GN ∼ +d−1
p

gravity is classical if L ) #p.

This is what comes from string theory (when we can tell)

at low E and for 1
L - 1√

α′ ≡ 1
#s

( 1√
α′

= string tension)

(One basic role of string theory here: fill in the dots.)



Conservation of evil

large AdS radius L ! strong coupling of QFT

(avoids an immediate disproof – obviously a perturbative QFT isn’t usefully an

extra-dimensional theory of gravity.)

a special case of a

Useful principle (Conservation of evil):
different weakly-coupled descriptions
have non-overlapping regimes of validity.

strong/weak duality: hard to check, very powerful
Info goes both ways: once we believe the duality, this is our best definition of

string theory.



Holographic counting of degrees of freedom

[Susskind-Witten]

Smax =
area of boundary

4GN

?
= # of dofs of QFT



Holographic counting of degrees of freedom

[Susskind-Witten]

Smax =
area of boundary

4GN

?
= # of dofs of QFT

yes : ∞ = ∞

need to regulate two divergences: dofs at every point in space
(UV) (# dofs ≡ N2) ,
spread over Rd−1 (IR).

2

R

ε

N

counting in QFTd :

Smax ∼
(

R

ε

)d−1

N2



counting in AdSd+1: at fixed time: ds2
AdS = L2 dz2+d$x2

z2

A =

∫

bdy , z fixed

√
gdd−1x =

∫

Rd−1

√
gdd−1x

(

L

z

)d−1

|z→0

R

IR

AdSd+1

u

UV

d−1,1

minkowski

...

ε

RBOUNDARY

CUTOFF

A =

∫ R

0
dd−1x

Ld−1

zd−1
|z=ε =

(

RL

ε

)d−1

The holographic principle

then says that the maximum entropy in the bulk is

A

4GN
∼ Ld−1

4GN

(

R

ε

)d−1

.

Ld−1

GN
= N2

lessons:
1. parametric dependence on R checks out.
2. gravity is classical if QFT has lots of dofs/pt: N2 . 1

ZQFT [sources] ≈ e−N2Ibulk[boundary conditions at r→∞]|extremum of Ibulk

classical gravity (sharp saddle) ! many dofs per point, N2 . 1



Confidence-building measures

Why do we believe this enough to try to use it to do physics?

! 1. Many detailed checks in special examples
examples: relativistic gauge theories (fields are N × N matrices), with

extra symmetries (conformal invariance, supersymmetry)

checks: ‘BPS quantities,’ integrable techniques, some numerics

! 2. sensible answers for physics questions
rediscoveries of known physical phenomena: e.g. color confinement, chiral

symmetry breaking, thermo, hydro, thermal screening, entanglement

entropy, chiral anomalies, superconductivity, ...
Gravity limit, when valid, says who are the correct variables.
Answers questions about thermodynamics, transport, RG flow, ...

in terms of geometric objects.

! 3. applications to quark-gluon plasma (QGP)
benchmark for viscosity, hard probes of medium, approach to equilibrium



Simple pictures for hard problems, an example

Bulk geometry is a spectrograph separating the theory by energy scales.

ds2 = w(z)2
(

−dt2 + d(x2
)

+
dz2

z2

CFT: bulk geometry goes on forever, warp factor w(z) = L
z
→ 0:

IR UV
u uIR

R
AdSd+1

d−1,1

minkowski

UV

...

BOUNDARY



Simple pictures for hard problems, an example

Bulk geometry is a spectrograph separating the theory by energy scales.

ds2 = w(z)2
(

−dt2 + d(x2
)

+
dz2

z2

CFT: bulk geometry goes on forever, warp factor w(z) = L
z
→ 0:

IR UV
u uIR

R
AdSd+1

d−1,1

minkowski

UV

...

BOUNDARY

z
z z z3 2 1

x,y

x
z

y

z1 2

3
z

t,(x are the field theory
time and space coordinates.

(size)FT =
1

w(z)
(proper size)

EFT ∼ i∂t = w(z)Eproper



The role of the warp factor, cont’d

IR

d−1,1

minkowski

UV

confining geometry

z
MIN z

R

Model with a gap:
geometry ends smoothly, warp factor w(z) has a min.

if IR region is missing,

no low-energy excitations, energy gap.



A word about large N2

most prominent example: ’t Hooft limit of N × N matrix fields X .
physical operators are Ok = tr X k

this accomplishes several related things:

• 〈OO〉 ∼ 〈O〉〈O〉 + o
(

N−2
)

is the statement that something (the excitations created by O) behaves
classically.
• provides notion of single-particle states in bulk.
• makes saddle well-peaked Z ∼ e−N2I

important comment:
this is just the best-understood class of examples.
in other examples, the # of dofs goes like Nb , b += 2.

I’ll always write N2 as a proxy for this large number.



More dictionary
really a φa for every Oa in CFT. how to match?

1. organize into reps of conformal group
2. single-trace operators correspond to ‘elementary fields’ in the bulk.

states from multitrace ops (tr X k )2|0〉 — 2-particle states of φ.

3. simple egs fixed by symmetry:
• gauge fields in bulk Aµ – global currents Jµ in bdy

SQFT /
∫

AµJµ (massless A ! conserved J)

• def of QFT stress tensor: response to change in metric on
boundary SQFT /

∫

δgµνTµν

energy momentum tensor: Tµν

global current: Jµ

scalar operator: OB

fermionic operator: OF

!

graviton: gab

Maxwell field: Aa

scalar field: φ
fermionic field: ψ .

boundary conditions on bulk fields ! couplings in field theory
e.g.: boundary value of bulk metric limr→∞ gµν

= source for stress-energy tensor Tµν

different couplings in bulk action ! different field theories



Next: a few technical slides from which we can confirm our
interpretation

u = RG scale

and see the machinery at work.



How to calculate

ZQFT [sources] ≈ e−N2Ibulk[boundary conditions at z→0]|extremum of Ibulk

more explicitly:

ZQFT [sources,φ0] ≡ 〈e−
R

φ0O〉CFT

≈ e−N2Ibulk[φ|φ(z=ε)
?
=φ0]|φ solves EOM of Ibulk

As when counting dofs, we anticipate UV divergences
at the boundary z → 0,
cut off the bulk at z = ε
and set bc’s there. R

IR

AdSd+1

u

UV

d−1,1

minkowski

...

ε

R
ACTUAL

BOUNDARYBOUNDARY

CUTOFF



Example: scalar probe

Simple example: scalar field in the bulk. Natural (covariant) action:

∆S [φ] = −K

2

∫

dd+1x
√

g
[

gAB∂Aφ∂Bφ+ m2φ2 + bφ3 + . . .
]

K, a normalization constant: assume the theory of φ is weakly coupled, K ∝ N2.

(
√

g =
p

| det g | =
`

L
z

´d+1
, gAB = δABz2 )

We will study fluctuations around the solution φ = 0, AdS .

(Recall: 〈OO〉 =
“

δ
δφ0

”2
lnZ |φ0 = 0

| {z }

)

−→ ignore interactions of φ for now.
Integrate by parts

S = −K

2

∫

∂AdS

ddx
√

g g zBφ∂Bφ−
K

2

∫ √
g φ

(

−" + m2
)

φ+o(φ3)



From this expression we learn:

! the EOM for small fluctuations of φ is (−" + m2)φ = 0
(An underline will indicate fields which solve the equations of motion.)

! If φ solves the equation of motion, the on-shell action

S [φ], Z ≡ e−S[φ]

is just given by the boundary term.
next: relate bulk masses and operator dimensions

∆(∆ − d) = m2L2

by studying the AdS wave equation near the boundary.



Wave equation in AdS

translational invariance in d dimensions, xµ → xµ + aµ,

Fourier : φ(z , xµ) = e ikµxµ
fk(z), kµxµ ≡ −ωt + (k · (x

0 = (gµνkµkν − 1
√

g
∂z(

√
gg zz∂z) + m2)fk(z)

=
1

L2
[z2k2 − zd+1∂z(z

−d+1∂z) + m2L2]fk(z), (1)

we used gAB = (z/L)2δAB ,
√

g =
p

| det g | =
`

L
z

´d+1
.



Wave equation in AdS

translational invariance in d dimensions, xµ → xµ + aµ,

Fourier : φ(z , xµ) = e ikµxµ
fk(z), kµxµ ≡ −ωt + (k · (x

0 = (gµνkµkν − 1
√

g
∂z(

√
gg zz∂z) + m2)fk(z)

=
1

L2
[z2k2 − zd+1∂z(z

−d+1∂z) + m2L2]fk(z), (1)

we used gAB = (z/L)2δAB ,
√

g =
p

| det g | =
`

L
z

´d+1
.

Near boundary (z → 0), power law solns, (spoiled by the z2k2 term).
Try fk = z∆ in (1):

0 = k2z2+∆ − zd+1∂z(∆z−d+∆) + m2L2z∆

= (k2z2 − ∆(∆ − d) + m2L2)z∆,

and for z → 0 we get:

∆(∆ − d) = m2L2 (2)

The two roots of (2) are ∆± = d
2 ±

√

(

d
2

)2
+ m2L2.



Comments

∆± = d
2 ±

√

(

d
2

)2
+ m2L2.

!2.0 !1.5 !1.0 !0.5 0.5 1.0 m2

0.5

1.0

1.5

2.0

2.5

3.0

"

! The solution proportional
to z∆− is bigger near z → 0. →
usually the source (‘non-normalizable’)

! ∆+ > 0 ∀ m: z∆+ always decays near
the boundary

! ∆+ + ∆− = d .

We want to impose boundary conditions that allow solutions.
Leading z → 0 behavior of generic solution: φ ∼ z∆− , we impose

φ(x , z)|z=ε
!
= φ0(x , ε) = ε∆−φRen

0 (x),

where φRen
0 is a renormalized source field.



Wavefunction renormalization of O (Heuristic but useful)

Suppose: (gµν
z≈ε
= dz2

z2 + γµνdxµdxν defines the boundary metric γ .)

Sbdy /
∫

z=ε
ddx

√
γ φ0(x , ε)O(x , ε)

=

∫

ddx

(

L

ε

)d

(ε∆−φRen
0 (x))O(x , ε),

where we have used
√

γ = (L/ε)d .

Demanding that this be finite as ε→ 0:

O(x , ε) ∼ εd−∆−ORen(x)

= ε∆+ORen(x),

(we used ∆+ + ∆− = d)

The scaling dimension of ORen is ∆+ ≡ ∆.
To confirm: 〈O(x)O(0)〉 ∼ 1

|x|2∆



Relevantness

∆± =
d

2
±

√

(

d

2

)2

+ m2L2

• If m2 > 0: ∆ ≡ ∆+ > d , so O∆ is an irrelevant operator.

∆S =

∫

ddx (mass)d−∆O∆,

the effects of such an operator go away in the IR, at energies E < mass.

φ ∼ z∆−φ0 is this coupling.
It grows in the UV (small z). If φ0 is a finite perturbation, it will back-react on

the metric and destroy the asymptotic AdS-ness of the geometry: extra data

about the UV will be required.

• m2 = 0 :↔ ∆ = d means that O is marginal.
• If m2 < 0: ∆ < d , so O is a relevant operator. Note that in
AdS , m2 < 0 is ok (i.e. not unstable) if m2 is not too negative.
(Note: ∆(m) depends on the spin of the bulk field.)



So far: setting up machinery.

Next: make contact with physics (linear response, finite temperature).



Some big picture questions

1. What physics is contained in classical gravity duals?
dissipation, entanglement, RG, what else?

2. What is the scope of this kind of relationship?
Which systems have simple duals?
(we’ll address: deformations of CFT, non-relativistic CFT (NRCFT)

open problem: lattice models?)

3. how close can we get to a lab system?



Recap



gravity in spacetimesd+1

with timelike asymptotic boundaries
! QFTd

important special case:

gravity in AdSd+1 = d-dimensional conformal field theory (CFT)
isometries of AdSd+1 ! conformal symmetry

AdS : ds2 =
r2

R2

(

−dt2 + d(x2
)

+ R2dr2

r2

IR UV
u

R

d+1

d−1,1

Minkowski

UV
IR r

AdS

...

BOUNDARY

The extra (‘radial’) dimension r = 1/z is the resolution scale.

fields in bulk ! (possibly-) running couplings

ZQFT [sources, φ0] ≈ e−Sbulk[boundary conditions at r→∞]|saddle of Sbulk



Vacuum of CFT, euclidean case

Return to the scalar wave equation in momentum space:

0 = [zd+1∂z(z
−d+1∂z) − m2L2 − z2k2]fk(z)

If k2 > 0 (spacelike or Euclidean) the general solution is
(aK , aI , integration consts):

fk(z) = aKzd/2Kν(kz)+aI z
d/2Iν(kz), ν = ∆−d

2
=

√

(d/2)2 + m2L2.

In the interior of AdS (z → ∞), the Bessel functions behave as

Kν(kz)
z→∞≈ e−kz Iν(kz)

z→∞≈ ekz .

regularity in the interior uniquely fixes f k ∝ Kν .
Plugging this into the action S gives 〈O(x)O(0)〉 ∼ 1

|x|2∆

note: ∃ nonlinear uniqueness statement, ‘Graham-Lee theorem’



Real-time

In Lorentzian signature with timelike k2 (ω2 > +k2),
∃ many solutions with the same UV behavior (z → 0), different IR
behavior:

zd/2K±ν(iqz)
z→∞≈ e±iqz q ≡

√

ω2 − (k2

these modes oscillate near the Poincaré horizon.
this ambiguity reflects the multiplicity of real-time Green’s f’ns.

Important example: retarded Green’s function, describes causal
response of the system to a perturbation.



Linear response: nothing fancy, just QM

The retarded Green’s function for two observables OA and OB is

GR
OAOB

(ω, k) = −i

∫

dd−1xdt e iωt−ik·xθ(t)〈[OA(t, x),OB (0, 0)]〉

θ(t) = 1 for t > 0, else zero.

(We care about this because it determines what 〈OA〉 does if we kick the

system via OB .)

the source is a time dependent perturbation to the Hamiltonian:

δH(t) =

∫

dd−1xφB(0)(t, x)OB(x) .

〈OA〉(t, x) ≡ Tr ρ(t)OA(x)

= Tr ρ0 U−1(t)OA(t, x)U(t)

in interaction picture: U(t) = Te−i
R t δH(t′)dt′ (e.g. ρ0 = e−βH0)



Linear response, cont’d

linearize in small perturbation:

δ〈OA〉(t, x) = −iTr ρ0

∫ t

dt ′[OA(t, x), δH(t ′)]

= −i

∫ t

dd−1x ′dt ′〈[OA(t, x),OB (t ′, x ′)]〉φB(0)(t
′, x ′)

=

∫

dx ′GR(x , x ′)φB(x ′)

fourier transform:

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k)



Linear response, an example

perturbation: an external electric field, Ex = iωAx

couples via δH = AxJ
x where J is the electric current (OB = Jx)

response: the electric current (OA = Jx)

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k)

it’s safe to assume 〈J〉E=0 = 0:

〈OJ 〉(ω, k) = GR
JJ(ω, k)Ax = GR

JJ(ω, k)
Ex

iω

Ohm’s law: J = σE

=⇒ Kubo formula : σ(ω, k) =
GR

JJ(ω, k)

iω



Holographic real-time prescription is easy
Claim [Son-Starinets 2002]: corresponds to the solution which at z → ∞
describes stuff falling into the horizon

! Both the retarded response and stuff falling through the
horizon describe things that happen, rather than unhappen.

! You can check that this prescription gives the correct analytic
structure of GR(ω) ([Son-Starinets] and all the hundreds of papers that

have used this prescription).

! It has been derived from a holographic version of the
Schwinger-Keldysh prescription [Herzog-Son, Maldacena, Skenderis-van Rees].

The fact that stuff goes past the horizon and doesn’t come out is what breaks

time-reversal invariance in the holographic computation of GR .

Here, the ingoing choice is φ(t, z) ∼ e−iωt+iqz :
as t grows, the wavefront moves to larger z .

(the solution which computes causal response is zd/2K+ν(iqz).)

The same prescription, adapted to the black hole horizon, works in
the finite temperature case.



What to do with the solution

determining 〈OO〉 is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc,
behaves near the boundary as

φ(z , x) ≈
(z

L

)∆−
φ0(x)

(

1 + O(z2)
)

+
(z

L

)∆+

φ1(x)
(

1 + O(z2)
)

;

this formula defines the coefficient φ1 of the subleading behavior of the solution.

All the information about G is in φ0, φ1.

recall: Z [φ0] ≡ e−W [φ0] 3 e−Sbulk[φ]|
φ

z→0→ z∆−φ0
confession: this is a euclidean eqn. next: a nice general trick. [Iqbal-Liu]



classical mechanics interlude: consider a particle in 1d with
action S [x ] =

∫ tf
ti

dtL. The variation of the action with respect to
the initial value of the coordinate is the initial momentum:

Π(ti ) =
δS

δx(ti )
, Π(t) ≡ ∂L

∂ẋ
. (3)

f

x(t)

t i

x(t  )i
t

t

Thinking of the radial direction of AdS as time, a
mild generalization of (3): [Iqbal-Liu]

〈O(x)〉 =
δW [φ0]

δφ0(x)
= lim

z→0

(z

L

)∆−
Π(z , x)|finite,

where Π ≡ ∂L
∂(∂zφ) is the bulk field-momentum with z treated as time.

two minor subtleties:
(1) the factor of z∆

− arises because of our renormalization of φ: φ ∼ z∆−φ0, so
∂

∂φ0
= z−∆− ∂

∂φ(z=ε) .

(2) Π itself in general has a term proportional to the source φ0



Linear response from holography

With these caveats, away from the support of the source:

〈O(x)〉 = K
2∆ − d

L
φ1(x).

linearize in the size of the perturbing source:

〈O(x)〉 = GR · δφ0

summary: The leading behavior of the solution encodes the
source i.e. the perturbation of the action of the QFT.
The coefficient of the subleading falloff encodes the response
[Balasubramanian et al, 1996].

G ∝ δφ1

δφ0

[figure: Hartnoll, 0909.3553]



(Quasi)normal modes

determining 〈OO〉 is like a scattering problem in QM

The solution of the equations of motion, satisfying the the desired IR

bc, behaves near the boundary as

φ(z , x)
z→0≈

(z

L

)∆−
φ0(x)

(

1 + O(z2)
)

+
(z

L

)∆+

φ1(x)
(

1 + O(z2)
)

;

summary: the leading behavior of the solution encodes the
source i.e. the perturbation of the action of the QFT.
the coefficient of the subleading falloff encodes the response

G ∝ φ1

φ0

[figure: Hartnoll, 0909.3553]

G has poles when φ1 4= 0,φ0 = 0: response without source.
this means that the system has an actual mode at that energy
(if ω ∈ C, ‘quasinormal mode’)



A useful visualization: ‘Witten diagrams’
e.g. consider 3-point function, 〈OOO〉 =

(

δ
δφ0

)3
lnZ |φ0=0 .

cubic coupling matters:

(" − m2
i )φi (z , x) = bφjφkε

ijk

Solve perturbatively in φ0: (K , G are Green’s f’ns for " − m2
i )

φi (z , x) =

∫

ddx1K
∆i (z , x ; x1)φ

i
0(x1)

+ bεijk
∫

ddx ′dz ′
√

gG∆i (z , x ; z ′, x ′)

×
∫

ddx1

∫

ddx2K
∆j (z ′, x ′; x1)φ

j
0(x1)K

∆k (z ′, x ′; x2)φ
k
0(x2) + o(b2φ3

0

(x )iφ 0 1

K

(z,x)

i

φ 0

φ 0(x )2
k

(z’,x’)

K

K

G i

k

j

(x )1

(z,x)

j

external legs ↔ sources φ0, vertices ↔ bulk interactions



Finite temperature

AdS was scale invariant. sol’n dual to vacuum of CFT.
saddle point for CFT in an ensemble with a scale (some relevant

perturbation) is a geometry which approaches AdS near the bdy:

ds2 =
L2

z2

(

−f dt2 + d(x2 +
dz2

f

)

When the emblackening factor f
z→0→ 1 this is the Poincaré AdS metric.



Finite temperature

AdS was scale invariant. sol’n dual to vacuum of CFT.
saddle point for CFT in an ensemble with a scale (some relevant

perturbation) is a geometry which approaches AdS near the bdy:

ds2 =
L2

z2

(

−f dt2 + d(x2 +
dz2

f

)

f = 1 − zd

zd
H

When the emblackening factor f
z→0→ 1 this is the Poincaré AdS metric.

[exercise: check that this solves the same EOM as AdS.]

It has a horizon at z = zH , where the emblackening factor
f ∝ z − zH

Events at z > zH can’t influence the boundary near z = 0:

z=0

t

null
geodesics

z

z=z
H



Physics of horizons
Claim: geometries with horizons describe thermally mixed states.
Why: Near the horizon (z ∼ zH),

ds2 ∼ −κ2ρ2dt2 + dρ2 +
L2

z2
H

d(x2 ρ2 ≡ 2

κz2
H

(z − zH) + o(z − zH)2

κ ≡ 4
|f ′(zH )| = d/2zH is called the ‘surface gravity’

Ccontinue this geometry to euclidean time, t → iτ :

ds2 ∼ κ2ρ2dτ2 + dρ2 +
L2

z2
H

d(x2 (4)

which looks like IRd−1 × IR2
ρ,κτ with polar coordinates ρ,κτ .

There is a deficit angle in this plane unless we identify

κτ 3 κτ + 2π.

A deficit angle would mean nonzero Ricci scalar curvature, which would mean

that the geometry is not a saddle point of our bulk path integral.

So: T = κ/(2π) = 1/(πzH).
(Note: this is the temperature of the Hawking radiation.)



Static BH describes thermal equilibrium
This identification on τ also applies at the boundary. If

ds2
bulk

z→0≈ dz2

z2
+

L2

z2
g (0)

µν dxµdxν

then, up to a factor, the boundary metric is g
(0)
µν .

This includes making the euclidean time periodic.

A =

∫

z=zH ,fixed t

√
gdd−1x =

(

L

zH

)d−1

V

The Bekenstein-Hawking entropy is

S =
A

4GN
=

Ld−1

4GN

V

zd−1
H

=
N2

2π
(πT )d−1V =

π2

2
N2VT d−1 . (5)

The Bekenstein-Hawking entropy density is

sBH =
SBH

V
=

aBH

4GN
.

where aBH ≡ A
V is the ‘area density’ of the black hole.



QFT thermo from black holes cont’d
how to think about this:

ZCFT (T ) ≈ e−Seucl
bulk

[g ]

g is the saddle with the correct periodicity of eucl time at the bdy.

(warning: boundary terms in action are important)

ZCFT (T ) = e−βF

−F

V
=

L2

16πGN

1

z4
H

=
π2

8
N2T 4.



QFT thermo from black holes cont’d
how to think about this:

ZCFT (T ) ≈ e−Seucl
bulk

[g ]

g is the saddle with the correct periodicity of eucl time at the bdy.

(warning: boundary terms in action are important)

ZCFT (T ) = e−βF

−F

V
=

L2

16πGN

1

z4
H

=
π2

8
N2T 4.

with N = 4 values of parameters, F (λ = ∞) = 3
4F (λ = 0).

g2N

1

1

4

3T 3V

checks:

• SBH

horizon

= − ∂F
∂T

integral over all spacetime

(relatedly: first law of thermo holds)

• cV > 0 for AdS BH. (unlike schwarzchild in asymptotically flat space!)

• uniqueness of stationary BH
(‘no hair’)

!
few state variables

in eq thermo



Sample application 1: quantum critical transport

Quantum critical points provide one situation
where short-distance physics is unimportant.
And they present a challenge for ordinary QFT techniques:

The usual theory of transport (Boltzman eqn)

depends on a description in terms of particles.
For T > m(g) = 1

ξ(g) ∝ (g − gc)ν , CFT at finite T :
excitations are not particles.

Also, many examples where one can argue for relevance of QCP

may involve strongly coupling:

cuprates, heavy fermions, quantum Hall plateau transitions, graphene



Quantum critical transport from holography
Fluctuations of Maxwell field in AdS BH
→ Density-density response function (or longitudinal conductivity)

in some thermal CFT

0 =
δS

δAν(ω, q, r)
∝ ∂µ

(√
ggµαgνβFαβ

)

A = e−iωt+iqx (dtAt(r) + dxAx(

=⇒ 0 = A′′′
t +

f ′

f
A′′

t +
1

f 2

(

ω2 − fq2
)

A′
t



Quantum critical transport from holography
Fluctuations of Maxwell field in AdS BH
→ Density-density response function (or longitudinal conductivity)

in some thermal CFT

0 =
δS

δAν(ω, q, r)
∝ ∂µ

(√
ggµαgνβFαβ

)

A = e−iωt+iqx (dtAt(r) + dxAx(

=⇒ 0 = A′′′
t +

f ′

f
A′′

t +
1

f 2

(

ω2 − fq2
)

A′
t

[Herzog-Kovtun-Sachdev-Son] ImGR
JtJt (ω, q;T )/q2 −→

Up to a factor of T−1 depends only on ω
T

, q
T

.

As T → 0, CFT behavior = const√
q2−ω2

, ω > q (else zero).

T += 0: nonzero outside lightcone ω < q.

peak becomes diffusion peak for ω 0 q.

Redo in presence of Bext and µ 4= 0
• ‘cyclotron resonance’: pole at ωc = ρB

ε+P
[Hartnoll-Kovtun-Mueller-Sachdev-Son, Hartnoll-Herzog]

new hydro result, predicted by AdS/CFT.
• in d = 3 + 1: new hydro term from parity anomaly.



Sample application 2: approach to equilibrium
Important question for interpreting RHIC data: how long does it
take before hydro sets in?
initially in gold-gold collision: anisotropic momentum-space distribution

pre-equilibrium stage
QGP
mixed phase
hadronic gas

described
by hydrodynamics

[Heller-Janik-Peschanski]

after time τth: locally thermal distribution and hydrodynamics.

At RHIC: τth much smaller than perturbation theory answer.
(τth affects measurement of viscosity:

good elliptic flow requires both low η and early applicability of hydro)

Thermal equilibrium of CFT stuff ! AdS black hole
T ! location of horizon r = rH

Local thermal equilbrium (hydro) ! slowly-varying deformations
of AdS BH: r = rH(+x , t). [Janik-Peschanski, Bhattacharyya et al]



Approach to equilibrium
bulk picture: dynamics of gravitational collapse.
dissipation: energy falls into BH [Horowitz-Hubeny, 99]

• quasinormal modes of a small BH [Freiss et al, 06] τth ∼ 1
8Tpeak

.

• far-from equilibrium processes: [Chesler-Yaffe, 08, 09] (PDEs!)

input: !3 !2 !1 1 2 3
Τ

1.0

1.2

1.4

gxx!Τ"

output:

black hole forms from vacuum initial conditions.

brutally brief summary: all relaxation timescales τth ∼ T−1.
• Lesson: In these models, breakdown of hydro in this model is not
set by higher-derivative terms, but from non-hydrodynamic modes.



Approach to equilibrium
bulk picture: dynamics of gravitational collapse.
dissipation: energy falls into BH [Horowitz-Hubeny, 99]

• quasinormal modes of a small BH [Freiss et al, 06] τth ∼ 1
8Tpeak

.

• far-from equilibrium processes: [Chesler-Yaffe, 08, 09] (PDEs!)

input: !3 !2 !1 1 2 3
Τ

1.0

1.2

1.4

gxx!Τ"

output:

black hole forms from vacuum initial conditions.

brutally brief summary: all relaxation timescales τth ∼ T−1.
• Lesson: In these models, breakdown of hydro in this model is not
set by higher-derivative terms, but from non-hydrodynamic modes.
far-reaching consequence: gravity as an entropic force. [E. Verlinde, 1001....]



Here we should pause.



Towards
Physical Applications of Holographic Duality

Parts 3 and 4

John McGreevy, MIT



What to do with the solution

determining 〈OO〉 is like a scattering problem in QM

The solution of the equations of motion, satisfying the desired IR bc,
behaves near the boundary as

φ(z , x) ≈
(z

L

)∆−

φ0(x)
(
1 + O(z2)

)
+
(z

L

)∆+

φ1(x)
(
1 + O(z2)

)
;

this formula defines the coefficient φ1 of the subleading behavior of the solution.

All the information about G is in φ0,φ1.

recall: Z [φ0] ≡ e−W [φ0] # e−Sbulk[φ]|
φ

z→0→ z∆−φ0
confession: this is a euclidean eqn. next: a nice general trick. [Iqbal-Liu]



classical mechanics interlude: consider a particle in 1d with
action S [x ] =

∫ tf
ti

dtL. The variation of the action with respect to
the initial value of the coordinate is the initial momentum:

Π(ti ) =
δS

δx(ti )
, Π(t) ≡ ∂L

∂ẋ
. (1)

f

x(t)

t i

x(t  )i
t

t

Thinking of the radial direction of AdS as time, a
mild generalization of (1): [Iqbal-Liu]

〈O(x)〉 =
δW [φ0]

δφ0(x)
= lim

z→0

(z

L

)∆−

Π(z , x)|finite,

where Π ≡ ∂L
∂(∂zφ) is the bulk field-momentum with z treated as time.

two minor subtleties:
(1) the factor of z∆

− arises because of our renormalization of φ: φ ∼ z∆−φ0, so
∂

∂φ0
= z−∆− ∂

∂φ(z=ε) .

(2) Π itself in general has a term proportional to the source φ0



Linear response from holography

With these caveats, away from the support of the source:

〈O(x)〉 = K
2∆ − d

L
φ1(x).

linearize in the size of the perturbing source:

〈O(x)〉 = GR · δφ0

summary: The leading behavior of the solution encodes the
source i.e. the perturbation of the action of the QFT.
The coefficient of the subleading falloff encodes the response
[Balasubramanian et al, 1996].

G ∝ δφ1

δφ0

[figure: Hartnoll, 0909.3553]



(Quasi)normal modes

determining 〈OO〉 is like a scattering problem in QM

The solution of the equations of motion, satisfying the the desired IR

bc, behaves near the boundary as

φ(z , x)
z→0≈

(z

L

)∆−

φ0(x)
(
1 + O(z2)

)
+
(z

L

)∆+

φ1(x)
(
1 + O(z2)

)
;

summary: the leading behavior of the solution encodes the
source i.e. the perturbation of the action of the QFT.
the coefficient of the subleading falloff encodes the response

G ∝ φ1

φ0

[figure: Hartnoll, 0909.3553]

G has poles when φ1 (= 0,φ0 = 0: response without source.
this means that the system has an actual mode at that energy
(if ω ∈ C, ‘quasinormal mode’)



A useful visualization: ‘Witten diagrams’
e.g. consider 3-point function, 〈OOO〉 =

(
δ

δφ0

)3
lnZ |φ0=0 .

cubic coupling matters:

(! − m2
i )φi (z , x) = bφjφkε

ijk

Solve perturbatively in φ0: (K , G are Green’s f’ns for ! − m2
i )

φi (z , x) =

∫
ddx1K

∆i (z , x ; x1)φ
i
0(x1)

+ bεijk
∫

ddx ′dz ′
√

gG∆i (z , x ; z ′, x ′)

×
∫

ddx1

∫
ddx2K

∆j (z ′, x ′; x1)φ
j
0(x1)K

∆k (z ′, x ′; x2)φ
k
0(x2) + o(b2φ3

0

(x )iφ 0 1

K

(z,x)

i

φ 0

φ 0(x )2
k

(z’,x’)

K

K

G i

k

j

(x )1

(z,x)

j

external legs ↔ sources φ0, vertices ↔ bulk interactions



Finite temperature

AdS was scale invariant. sol’n dual to vacuum of CFT.
saddle point for CFT in an ensemble with a scale (some relevant

perturbation) is a geometry which approaches AdS near the bdy:

ds2 =
L2

z2

(
−f dt2 + d%x2 +

dz2

f

)

When the emblackening factor f
z→0→ 1 this is the Poincaré AdS metric.



Finite temperature

AdS was scale invariant. sol’n dual to vacuum of CFT.
saddle point for CFT in an ensemble with a scale (some relevant

perturbation) is a geometry which approaches AdS near the bdy:

ds2 =
L2

z2

(
−f dt2 + d%x2 +

dz2

f

)
f = 1 − zd

zd
H

When the emblackening factor f
z→0→ 1 this is the Poincaré AdS metric.

[exercise: check that this solves the same EOM as AdS.]

It has a horizon at z = zH , where the emblackening factor
f ∝ z − zH

Events at z > zH can’t influence the boundary near z = 0:

z=0

t

null
geodesics

z

z=z
H



Physics of horizons
Claim: geometries with horizons describe thermally mixed states.
Why: Near the horizon (z ∼ zH),

ds2 ∼ −κ2ρ2dt2 + dρ2 +
L2

z2
H

d%x2 ρ2 ≡ 2

κz2
H

(z − zH) + o(z − zH)2

κ ≡ 4
|f ′(zH )| = d/2zH is called the ‘surface gravity’

Ccontinue this geometry to euclidean time, t → iτ :

ds2 ∼ κ2ρ2dτ2 + dρ2 +
L2

z2
H

d%x2 (2)

which looks like IRd−1 × IR2
ρ,κτ with polar coordinates ρ,κτ .

There is a deficit angle in this plane unless we identify

κτ # κτ + 2π.

A deficit angle would mean nonzero Ricci scalar curvature, which would mean

that the geometry is not a saddle point of our bulk path integral.

So: T = κ/(2π) = 1/(πzH).
(Note: this is the temperature of the Hawking radiation.)



Static BH describes thermal equilibrium
This identification on τ also applies at the boundary. If

ds2
bulk

z→0≈ dz2

z2
+

L2

z2
g (0)

µν dxµdxν

then, up to a factor, the boundary metric is g
(0)
µν .

This includes making the euclidean time periodic.

A =

∫

z=zH ,fixed t

√
gdd−1x =

(
L

zH

)d−1

V

The Bekenstein-Hawking entropy is

S =
A

4GN
=

Ld−1

4GN

V

zd−1
H

=
N2

2π
(πT )d−1V =

π2

2
N2VT d−1 . (3)

The Bekenstein-Hawking entropy density is

sBH =
SBH

V
=

aBH

4GN
.

where aBH ≡ A
V is the ‘area density’ of the black hole.



QFT thermo from black holes cont’d
how to think about this:

ZCFT (T ) ≈ e−Seucl
bulk

[g ]

g is the saddle with the correct periodicity of eucl time at the bdy.

(warning: boundary terms in action are important)

ZCFT (T ) = e−βF

−F

V
=

L2

16πGN

1

z4
H

=
π2

8
N2T 4.



QFT thermo from black holes cont’d
how to think about this:

ZCFT (T ) ≈ e−Seucl
bulk

[g ]

g is the saddle with the correct periodicity of eucl time at the bdy.

(warning: boundary terms in action are important)

ZCFT (T ) = e−βF

−F

V
=

L2

16πGN

1

z4
H

=
π2

8
N2T 4.

with N = 4 values of parameters, F (λ = ∞) = 3
4F (λ = 0).

g2N

1

1

4

3T 3V

checks:

• SBH

horizon

= − ∂F
∂T

integral over all spacetime

(relatedly: first law of thermo holds)

• cV > 0 for AdS BH. (unlike schwarzchild in asymptotically flat space!)

• uniqueness of stationary BH
(‘no hair’)

"
few state variables

in eq thermo



Sample application 1: quantum critical transport

Quantum critical points provide one situation
where short-distance physics is unimportant.
And they present a challenge for ordinary QFT techniques:

The usual theory of transport (Boltzman eqn)

depends on a description in terms of particles.
For T > m(g) = 1

ξ(g) ∝ (g − gc)ν , CFT at finite T :
excitations are not particles.

Also, many examples where one can argue for relevance of QCP

may involve strongly coupling:

cuprates, heavy fermions, quantum Hall plateau transitions, graphene



Quantum critical transport from holography
Fluctuations of Maxwell field in AdS BH
→ Density-density response function (or longitudinal conductivity)

in some thermal CFT

0 =
δS

δAν(ω, q, r)
∝ ∂µ

(√
ggµαgνβFαβ

)
A = e−iωt+iqx (dtAt(r) + dxAx(

=⇒ 0 = A′′′
t +

f ′

f
A′′

t +
1

f 2

(
ω2 − fq2

)
A′

t



Quantum critical transport from holography
Fluctuations of Maxwell field in AdS BH
→ Density-density response function (or longitudinal conductivity)

in some thermal CFT

0 =
δS

δAν(ω, q, r)
∝ ∂µ

(√
ggµαgνβFαβ

)
A = e−iωt+iqx (dtAt(r) + dxAx(

=⇒ 0 = A′′′
t +

f ′

f
A′′

t +
1

f 2

(
ω2 − fq2

)
A′

t

[Herzog-Kovtun-Sachdev-Son] ImGR
JtJt (ω, q;T )/q2 −→

Up to a factor of T−1 depends only on ω
T

, q
T

.

As T → 0, CFT behavior = const√
q2−ω2

,ω > q (else zero).

T )= 0: nonzero outside lightcone ω < q.

peak becomes diffusion peak for ω * q.

Redo in presence of Bext and µ (= 0
• ‘cyclotron resonance’: pole at ωc = ρB

ε+P
[Hartnoll-Kovtun-Mueller-Sachdev-Son, Hartnoll-Herzog]

new hydro result, predicted by AdS/CFT.
• in d = 3 + 1: new hydro term from parity anomaly.



Sample application 2: approach to equilibrium
Important question for interpreting RHIC data: how long does it
take before hydro sets in?
initially in gold-gold collision: anisotropic momentum-space distribution

pre-equilibrium stage
QGP
mixed phase
hadronic gas

described
by hydrodynamics

[Heller-Janik-Peschanski]

after time τth: locally thermal distribution and hydrodynamics.

At RHIC: τth much smaller than perturbation theory answer.
(τth affects measurement of viscosity:

good elliptic flow requires both low η and early applicability of hydro)

Thermal equilibrium of CFT stuff " AdS black hole
T " location of horizon r = rH

Local thermal equilbrium (hydro) " slowly-varying deformations
of AdS BH: r = rH(&x , t). [Janik-Peschanski, Bhattacharyya et al]



Approach to equilibrium
bulk picture: dynamics of gravitational collapse.
dissipation: energy falls into BH [Horowitz-Hubeny, 99]

• quasinormal modes of a small BH [Freiss et al, 06] τth ∼ 1
8Tpeak

.

• far-from equilibrium processes: [Chesler-Yaffe, 08, 09] (PDEs!)

input: !3 !2 !1 1 2 3
Τ

1.0

1.2

1.4

gxx!Τ"

output:

black hole forms from vacuum initial conditions.

brutally brief summary: all relaxation timescales τth ∼ T−1.
• Lesson: In these models, breakdown of hydro in this model is not
set by higher-derivative terms, but from non-hydrodynamic modes.



Approach to equilibrium
bulk picture: dynamics of gravitational collapse.
dissipation: energy falls into BH [Horowitz-Hubeny, 99]

• quasinormal modes of a small BH [Freiss et al, 06] τth ∼ 1
8Tpeak

.

• far-from equilibrium processes: [Chesler-Yaffe, 08, 09] (PDEs!)

input: !3 !2 !1 1 2 3
Τ

1.0

1.2

1.4

gxx!Τ"

output:

black hole forms from vacuum initial conditions.

brutally brief summary: all relaxation timescales τth ∼ T−1.
• Lesson: In these models, breakdown of hydro in this model is not
set by higher-derivative terms, but from non-hydrodynamic modes.
far-reaching consequence: gravity as an entropic force. [E. Verlinde, 1001....]



An example of a theory with a known gravity dual

N = 4 SYM is a CFT, (a supersymmetric, relativistic gauge theory)

each of these red words is bad from our point of view.

The N = 4 SYM action is schematically

LSYM ∼ tr
(
F 2 + (DΦ)2 + iΨ̄Γ · DΨ + g2[Φ,Φ]2 + igΨ̄[Φ,Ψ]

)
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a coupling constant λ = g2N (with βλ ≡ 0)

an integer, the number of colors N.



An example of a theory with a known gravity dual

N = 4 SYM is a CFT, (a supersymmetric, relativistic gauge theory)

each of these red words is bad from our point of view.

The N = 4 SYM action is schematically

LSYM ∼ tr
(
F 2 + (DΦ)2 + iΨ̄Γ · DΨ + g2[Φ,Φ]2 + igΨ̄[Φ,Ψ]

)

this gauge theory comes with 2 parameters:

a coupling constant λ = g2N (with βλ ≡ 0)

an integer, the number of colors N.

N = 4 SYMN,λ = IIB strings in AdS5 × S5 of size λ, ! = 1/N

[Maldacena 1997]

• large N makes gravity classical (suppresses splitting and joining of

strings)

• strong coupling (large λ) makes the geometry big.
‘IIB strings in ...’ specifies a list of bulk fields and interactions.
∃ infinitely many other examples of dual pairs [e.g. Hanany, Vegh et al...]



Remarks on the role of supersymmetry (susy)

! susy constrains the form of interactions.
fewer candidates for dual.

! in susy theories, ∃ more coupling-independent quantities,
hence ∃ more checks.

! susy allows lines of fixed points (e.g. N = 4 SYM)
coupling = dimensionless parameter

! for these applications, susy is broken by finite T , µ, anyway.
it’s not clear what influence it has on the resulting states.



Remarks on the role of string theory

1. What are consistent ways to UV complete our gravity model?

! So far, no known constraints that aren’t visible from EFT.

! Suggests interesting resummations of higher-derivative terms, protected
by stringy symmetries.

e.g. the DBI action LDBI ∼
√

1 − F 2 is ‘natural’ in string theory because

its form is protected by the T-dual Lorentz invariance.

2. What is a microscopic description of the dual QFT?

! Such a description is crucial for the detailed checks that make us believe

the duality.

! A weak coupling limit needn’t exist (isolated fixed points are generic).

! A Lagrangian description needn’t exist

(e.g. minimal models) gravity plus matter in AdS provides a much more

direct construction of CFT.

! Honesty: Any Lmicro that we would get from string theory is so far from

LHubbard anyway that it isn’t clear how it helps.



Lessons for how to use AdS/CFT to do physics

! critical exponents depend on ‘landscape issues’
(parameters in bulk action)

! thermodynamics is not so different between weak and strong
coupling
(in examples: N = 4 SYM, lattice QCD)

! transport is very different
transport by weakly-interacting quasiparticles is less effective

(η
s

)

weak
∼ 1

g4 ln g
1

(η
s

)

strong
∼ 1

4π
.



Gravity duals of non-relativistic CFTs
(towards cold atoms at unitarity)



Motivation

Some relativistic CFTs have an effective description at strong
coupling in terms of gravity (more generally strings) in AdS space.
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be created in a laboratory.
(solutions of strong-coupling problems, quantum gravity experiments)



Motivation

Some relativistic CFTs have an effective description at strong
coupling in terms of gravity (more generally strings) in AdS space.

It would be great if we had a gravity dual for a system which can
be created in a laboratory.
(solutions of strong-coupling problems, quantum gravity experiments)

Some laboratory systems have critical points described by
relativistic CFTs.

– QCD a little above Tc acts like a CFT

– some quantum-critical condensed matter systems have
emergent lightcones

Alternative approach (later): ask questions which don’t care about the

short-distance symmetries.
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(even if present, lightcone need not be shared by different degrees of freedom.)



More precisely

• It would be great if we had a gravity dual for a real system

which lives longer than a fermi/c,

and which can be created in a laboratory more
convenient than RHIC.

• Piles of atoms have a rest frame.
(even if present, lightcone need not be shared by different degrees of freedom.)

So, in searching for experiments with which string theory has some
interface, it’s worth noting that:

non-relativistic CFTs exist.



Cold atoms at unitarity

Most of the work on AdS/CFT involves relativistic CFTs.

Strongly-coupled Galilean-invariant CFTs exist, even experimentally.

[Zwierlein et al, Hulet et al, Thomas et al]

Consider nonrelativistic fermionic particles (‘atoms’) interacting via
a short-range attractive two-body potential V (r), e.g.:

0

0

0V
V

V

Case (b): σ saturates bound on scattering cross section from unitarity

Range of interactions → 0, scattering length → ∞ =⇒ no scale.

a) b)
c)

Lithium atoms

have a boundstate with a different magnetic moment.

Zeeman effect =⇒ scattering length can
be controlled using an external magnetic field:



Strongly-coupled NRCFT

The fixed-point theory (“fermions at unitarity”) is a
strongly-coupled nonrelativistic CFT (‘Schrödinger symmetry’)

[Nishida-Son].
universality: it also describes neutron-neutron scattering [Mehen-Stewart-Wise]

Two-body physics is completely solved.

Many body physics is mysterious.

Experiments: very low viscosity, η
s ∼ 5

4π [Thomas, Schafer]

−→ strongly coupled.



Strongly-coupled NRCFT

The fixed-point theory (“fermions at unitarity”) is a
strongly-coupled nonrelativistic CFT (‘Schrödinger symmetry’)

[Nishida-Son].
universality: it also describes neutron-neutron scattering [Mehen-Stewart-Wise]

Two-body physics is completely solved.

Many body physics is mysterious.

Experiments: very low viscosity, η
s ∼ 5

4π [Thomas, Schafer]

−→ strongly coupled.

AdS/CFT?
Clearly we can’t approximate it as a relativistic CFT.
Different hydro: conserved particle number.



A holographic description?

Method of the missing box

AdS : relativistic CFT
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A holographic description?

Method of the missing box

AdS : relativistic CFT

? : galilean-invariant CFT

Note restriction to Gal.-invariance ∂t − &∇2

distinct from: Lifshitz-like fixed points ∂2
t − (&∇2)2

are not relativistic, but have antiparticles.
gravity duals of those: S. Kachru, X. Liu, M. Mulligan, 0808.1725

before guessing what’s in the box, more about this symmetry and its

realizations



Galilean scale invariance
i , j = 1...d spatial dims (sorry for the notation change)

Symmetries of free schödinger equation i∂tψ = ∂2
xψ

Galilean symmetry:

translations Pi , rotations Mij , time translations H,
Galilean boosts Ki , number or mass operator N:

[Ki ,Pj ] = δij iN (in ‘non-relativistic natural units’: ! = M = 1)
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[D,H] = −izH ( z ≡ dynamical exponent: x → λx , t → λz t )

closure of algebra −→ [D,K ] = i(z − 1)K , [D,N] = i(z − 2)N.



Galilean scale invariance
i , j = 1...d spatial dims (sorry for the notation change)

Symmetries of free schödinger equation i∂tψ = ∂2
xψ

Galilean symmetry:

translations Pi , rotations Mij , time translations H,
Galilean boosts Ki , number or mass operator N:

[Ki ,Pj ] = δij iN (in ‘non-relativistic natural units’: ! = M = 1)

dilatations D: [D,P ] = −iP (D measures length dimensions)

[D,H] = −izH ( z ≡ dynamical exponent: x → λx , t → λz t )

closure of algebra −→ [D,K ] = i(z − 1)K , [D,N] = i(z − 2)N.

Schrödinger symmetry:

In the special case z = 2, there is an additional conformal
generator, C = ITI

[Mij , C ] = 0, [Ki , C ] = 0, [D, C ] = −2iC , [H, C ] = −iD.



comments

! there’s only one special conformal symmetry, not d + 1 like in
relativistic case.

! we’re using ‘non-relativistic natural units’ where ! = M = 1,
so N̂ measures particle number or mass.

! this ‘schrödinger’ algebra ⊂ SO(d + 1, 2)
(the relativistic conformal group)

! [Nishida-Son] irreps of Schrod (z = 2) labelled by ∆0,N0 ≡ ..

! [Tachikawa] unitarity bound: ∆ ≥ d
2 (independent of spin.)



QFT realization

free fermions (or free bosons): S0 =

∫
dtddx

(
ψ†i∂tψ + %∇ψ† · %∇ψ

)

n(%x) ≡ ψ†ψ, %j(%x) ≡ − i

2

(
ψ†%∇ψ − %∇ψ†ψ

)

N =

∫
ddx n(%x), Pi =

∫
ji(%x), Mij =

∫
(xi jj(%x) − xj ji (%x))

Ki =

∫
xin(%x), D =

∫
xi ji (%x), C =

∫
x2n(%x)

2

satisfy all the commutation relations not involving the Hamiltonian.
With H0 =

R

d&x 1
2∇iψ

†∇iψ, ψ saturates unitarity bound.



QFT realization

free fermions (or free bosons): S0 =

∫
dtddx

(
ψ†i∂tψ + %∇ψ† · %∇ψ

)

n(%x) ≡ ψ†ψ, %j(%x) ≡ − i

2

(
ψ†%∇ψ − %∇ψ†ψ

)

N =

∫
ddx n(%x), Pi =

∫
ji(%x), Mij =

∫
(xi jj(%x) − xj ji (%x))

Ki =

∫
xin(%x), D =

∫
xi ji (%x), C =

∫
x2n(%x)

2

satisfy all the commutation relations not involving the Hamiltonian.
With H0 =

R

d&x 1
2∇iψ

†∇iψ, ψ saturates unitarity bound.

towards interacting NRCFT:

∆S =
1

2

∫
dt

∫
d%xd%yψ†(%x)ψ†(%y) V (|%x − %y |)︸ ︷︷ ︸ ψ(%y )ψ(%x)

≡ V (r)



geometric realization

A metric whose isometry group is the schrödinger group:

L−2ds2
Schrz

d

=
2dξdt + d%x2 + dr2

r2
− 2β2 dt2

r2z

? = ‘schrödinger space’ [Son; Balasubramanian, JM]



geometric realization

A metric whose isometry group is the schrödinger group:

L−2ds2
Schrz

d

=
2dξdt + d%x2 + dr2

r2
− 2β2 dt2

r2z

? = ‘schrödinger space’ [Son; Balasubramanian, JM]

Compare to AdS in light-cone coordinates:

ds2
AdSd+3

=
−dτ2 + dy2 + d%x2 + dr2

r2

=
2dξdt + %dx

2
+ dr2

r2

without the β2 term, ∂t is lightlike.



comments

1. only z = 2 has conformal symmetry.

2. if ξ ∈ IR, we can scale away 2β2 by (remnant of boost)

{
t 6→ t√

2β

ξ 6→
√

2βξ
but discrete spectrum requires compact ξ # ξ + Lξ
β
Lξ

is an invariant parameter ∼ M.

3. dual to vacuum of a gal. inv’t field theory (no antiparticles!).
the ξ-circle is null. (light winding modes?)

(this is the phase of the wavefunction of a state with no particles!)

at finite temperature or density, not so.

4. all curvature scalars are constant.

5. this spacetime is conformal to a pp-wave.
conformal boundary is one-dimensional.
[Berenstein-Nastase, Hubeny-Rangamani]

Nevertheless, we will compute correlators of a CFT with d spatial dims.



What holds it up?

Rµν − 1

2
gµνR = −Λgµν − δtµδ

t
νgttE

Λ = − (d+1)(d+2)
2L2 : CC E : a constant energy density (’dust’)

A realization of the dust: metric is sourced by e.g. the ground state of
an Abelian Higgs model in its broken phase.

S =

∫
dd+3x

√
g

(
−1

4
F 2 +

1

2
|DΦ|2 − V

(
|Φ|2

))

with DaΦ ≡ (∂a + ieAa)Φ, with a Mexican-hat potential

V
(
|Φ|2

)
= g

(
|Φ|2 − z(z + d)

e2

)2

+ Λ

extreme type II limit : g → ∞ =⇒ m2
h → ∞

!2 !1 0 1 2
###

1

2

3

4

5

6
V!###"

!2 !1 0 1 2
###

1

2

3

4

5

6
V!###"

Lbulk = −1

4
F 2 − m2

2
A2 − Λ, m2 = z(z + d)



Holographic dictionary
Basic entry: bulk fields ↔ operators in dual QFT
Irreps of schrod labelled by ∆, N̂ = ., so we work at fixed

ξ-momentum, .: φ(r , t,%x , ξ) = fω,k,0(r)e
i(0ξ−ωt+1k ·1x) ↔ O0,∆(ω,%k)

scalar operator.
Consider a probe scalar field:

S [φ] = −
∫

dd+1x
√

g
(
(∂φ)2 + m2φ2

)
.

or: δg x
y also satisfies this equation

Scalar wave equation in this background:

(
−rd+3∂r

(
1

rd+1
∂r

)
+ r2(2lω + %k2) +r4−2z l2 + m2

)
fω,1k,l(r) = 0.

For z ≤ 2, the behavior of the solution near the boundary (r ∼ 0) is:

f ∝ r∆, ∆± = 1 +
d

2
±

√(
1 +

d

2

)2

+ m2 + δz ,2l2.

For z > 2, not power law. (??!)



some basic checks (focus on z = 2)
1) ∆+ + ∆− = d + 2 matches dimensional analysis on

Sbdy 8
∫

dtddx φ0O

(φ0 is the source for O)

[x ] = −1, [t] = −2, [φ0] = ∆−, [O] = ∆+.

2) unitarity bound ∆ ≥ d
2 matches requirement on m to prevent

bulk tachyon instability (analog of BF-bound).
3) the correlators are of the expected form

→ 〈O1(x , t)O2(0, 0)〉 ∝ δ∆1,∆2θ(t)
1

|ε2t|∆ e−iMx2/2|t|

consistent with (determined by [Nishida-Son]) NR conformal Ward ids.



some basic checks (focus on z = 2)
1) ∆+ + ∆− = d + 2 matches dimensional analysis on

Sbdy 8
∫

dtddx φ0O

(φ0 is the source for O)

[x ] = −1, [t] = −2, [φ0] = ∆−, [O] = ∆+.

2) unitarity bound ∆ ≥ d
2 matches requirement on m to prevent

bulk tachyon instability (analog of BF-bound).
3) the correlators are of the expected form

→ 〈O1(x , t)O2(0, 0)〉 ∝ δ∆1,∆2θ(t)
1

|ε2t|∆ e−iMx2/2|t|

consistent with (determined by [Nishida-Son]) NR conformal Ward ids.

But: the vacuum of a galilean-invariant field theory is extremely
boring: no antiparticles! no stuff!
How to add stuff?



A holographic description of more than zero atoms?

A black hole (BH) in schrödinger spacetime.
[A. Adams, K. Balasubramanian, JM; Maldacena et al; Rangamani et al]

Here, string theory was extremely useful:
A solution-generating machine named Melvin [Ganor et al]

insert string vacuum
here

χy

OUT

β

MELVIN

IN

IN: AdS5 × S5 OUT: schrodinger ×S5

→ A hint about which NRCFTs we are describing:

we can also feed N = 4 SYM to Melvin.



A holographic description of more than zero atoms?

A black hole (BH) in schrödinger spacetime.
[A. Adams, K. Balasubramanian, JM; Maldacena et al; Rangamani et al]

Here, string theory was extremely useful:
A solution-generating machine named Melvin [Ganor et al]

insert string vacuum
here

χy

OUT

β

MELVIN

IN

IN: AdS5 × S5 OUT: schrodinger ×S5

→ A hint about which NRCFTs we are describing:

we can also feed N = 4 SYM to Melvin.

IN: AdS5 BH ×S5 OUT: schrodinger BH × squashed S5



“Null Melvin Twist”

is a machine
χy

OUT

β

MELVIN

IN

which generates new type II SUGRA
solutions from old Ganor et al, Gimon et al. (with different asymptotics)

Previous work: dials set to ‘highly non-commutative’.



“Null Melvin Twist”

is a machine
χy

OUT

β

MELVIN

IN

which generates new type II SUGRA
solutions from old Ganor et al, Gimon et al. (with different asymptotics)

Previous work: dials set to ‘highly non-commutative’.

Choose two killing vectors (∂y , ∂χ) and:

1. Boost along y with boost parameter γ

2. T-dualize along y .

3. Twist: replace χ→ χ+ αy , α constant

4. T-dualize back along y

5. Boost back by −γ along y

6. Scaling limit: γ → ∞, α→ 0 keeping β = 1
2αeγ fixed.



Schrödinger spacetime in string theory
Input solution of type IIB supergravity: AdS5 × S5

ds2 =
−dτ2 + dy2 + d%x2 + dr2

r2
+ ds2

S5
%x ≡ (x1, x2).

ds2
S5

= ds2
P2 + η2. η ≡ dχ+ A = vertical one-form of Hopf fibration
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Input solution of type IIB supergravity: AdS5 × S5

ds2 =
−dτ2 + dy2 + d%x2 + dr2

r2
+ ds2

S5
%x ≡ (x1, x2).

ds2
S5

= ds2
P2 + η2. η ≡ dχ+ A = vertical one-form of Hopf fibration

Feeding this to the melvinizer gives:

ds2 =
1

r2

(
−
(

1 +
β2

r2

)
dτ2+

(
1 − β2

r2

)
dy2+2

β2

r2
dτdy+d%x2+dr2

)
+ds2

S5

Defining ξ ≡ 1
2β

(y − τ), t ≡ β(τ + y), and reducing on the 5-sphere:

−→ ds2 =
2dξdt + d%x2 + dr2

r2
− dt2

r4

(
Schrz=2

d=2

)

The ten-dimensional metric is sourced by

B = βr−2η∧(dτ+dy), F5 = (1+5)Vol(S5)
5d−→ A = r−2dt, m2 = 8, Λ.



Schrödinger spacetime in string theory
Input solution of type IIB supergravity: AdS5 × S5

ds2 =
−dτ2 + dy2 + d%x2 + dr2

r2
+ ds2

S5
%x ≡ (x1, x2).

ds2
S5

= ds2
P2 + η2. η ≡ dχ+ A = vertical one-form of Hopf fibration

Feeding this to the melvinizer gives:

ds2 =
1

r2

(
−
(

1 +
β2

r2

)
dτ2+

(
1 − β2

r2

)
dy2+2

β2

r2
dτdy+d%x2+dr2

)
+ds2

S5

Defining ξ ≡ 1
2β

(y − τ), t ≡ β(τ + y), and reducing on the 5-sphere:

−→ ds2 =
2dξdt + d%x2 + dr2

r2
− dt2

r4

(
Schrz=2

d=2

)

The ten-dimensional metric is sourced by

B = βr−2η∧(dτ+dy), F5 = (1+5)Vol(S5)
5d−→ A = r−2dt, m2 = 8, Λ.

– No higgs field, alas.
– This can be done for S5 → any Sasaki-Einstein 5-manifold. – It works

similarly for the AdS BH, but then the sphere gets squashed.
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BH is saddle point of Z = tr e−
1
T

(H−µN) = tr e−
1
T (i∂τ−µi∂ξ)

Temperature & Chemical Potential: euclidean regularity requires

it # it + n
T , ξ # ξ + Lξµn =⇒ T =

κ

2π
=

1

πβrH
, µ = − 1

2β2

note: µ < 0!

We got finite density for free. Which is good because SBH )= 0,

but no antiparticles.

Entropy: SBH =
1

4GN

Ly

r3
H

= VLξ
π2N2T 3

16µ2

Free energy : F = SonshellT = VLξ
π2N2T 4

32µ2

Sonshell is renormalized by adding local boundary counterterms

fancy reason: makes the variational problem well defined

Mystery: we are forced to add extrinsic boundary terms for the
massive gauge field: Sbdy 8

∫
nµAνF

µν

The required coefficient is exactly the one that changes the boundary

conditions on Aµ from Dirichlet to Neumann.



Boundary stress tensor

Sbdy =

∫ √
γ
(
Θ + c0 + c1Φ + c2Φ

2 + nµAµFµν (c5 + c6Φ)
)

Vary metric at boundary:

Tµ
ν = − 2

√
γ

δSonshell

δγν
µ

= Θµ
ν − δµ

ν Θ − c.t.|bdy Θ = extrinsic curvature

Fix counterterm coeffs w/

–Ward identity: 2E = dP = residual bulk gauge symmetries

–first law of thermodynamics: (E + P = TS + µN)
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Boundary stress tensor

Sbdy =

∫ √
γ
(
Θ + c0 + c1Φ + c2Φ

2 + nµAµFµν (c5 + c6Φ)
)

Vary metric at boundary:

Tµ
ν = − 2

√
γ

δSonshell

δγν
µ

= Θµ
ν − δµ

ν Θ − c.t.|bdy Θ = extrinsic curvature

Fix counterterm coeffs w/

–Ward identity: 2E = dP = residual bulk gauge symmetries

–first law of thermodynamics: (E + P = TS + µN)

−→ E =
E

V
= −

∫ √
γT t

t =
1

16πGr4
H

=
π2N2

64
Lξ

T 4

µ2

Who is T ξ
t ? Just as Tχ

µ is the R-charge current,

Density: ρ =

∫ √
γT ξ

t =
β2

16πGr4
H

=
π2N2T 4

32µ3
Lξ

Note: T ξ
ξ , T t

ξ = ∞ with naive falloffs on δµν . We don’t care about these
anyway.
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(‘dipole theory’ [Ganor et al] ).

Einstein gravity
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This black hole gives the thermo and hydro of some NRCFT
(‘dipole theory’ [Ganor et al] ).

Einstein gravity
[Iqbal−Liu]

=⇒ η

s
=

1

4π
.

Satisfies laws of thermodynamics, correct scaling laws, correct kubo relations.

[Rangamani-Ross-Son, McEntee-JM-Nickel]

But it’s a very different class from unitary fermions:

F ∼ T 4

µ2
, µ < 0

(note: scaling symmetry =⇒ F ∼ T
D+2

2 g(T/µ))

Q: why is g(x) = x2?
A [MMTv5]: a) if solution arises from DLCQ, an extra (boost)
symmetry: t → αt, ξ → α−1ξ =⇒ T → T

α , µ → µ
α2 ,F → F =⇒

F (T , µ) = g
( µ

T 2

)

b) melvin twist doesn’t change planar amplitudes
(bulk explanation: symmetry of tree-level string theory

boundary explanation: ‘non-commutative phases’ cancel)



New gravity realizations of Schrod

This is not a necessary consequence of ∃ gravity dual.
[K Balasubramanian, JM, to appear]

Unnecessary assumption: All of Schrod must be realized geometrically.
We now know how to remove this assumption, can find more realistic models.

Gravity solutions with a ξ dimension are like DLCQ of rel CFT:
periodically identify x+ ≡ x + t. Clear from e.g. [Barbon-Fuertes]

(SchrodD is the subgroup of SO(d + 1, 2) which is preserved.)

We thought the ξ direction was required since [K ,P ] = iN

LHS must be realized geometrically.

This action has solutions with Schrodd asymptotics:

Sd+2 =

∫
ddxdtdr

√
g
[
R − 2Λe−σ − e3σ

4
(dB)2 − 3

2
(∂σ)2

]

ds2 = eσ

(
−Q

dt2

r6
+

d%x2

r2
+

dr2

r2

)
, B = Q

fdt

r4
, e2σ =

r2

Q



Realization of symmetries
Symmetry generators of the lower dimensional theory realize Schröd:

! Particle Number:

B → B + dλ, Φ → e i0λΦ

(we take Φ to vanish in the solution shown above.) . is the mass of
the associated particle.

! Translations and rotations are realized as-usual by isometries.
! Galilean Boosts act by:

K i = −t∂i + Gauge shift

where the gauge transformation parameter is λ = 1
2v2t +%v ·%x .

t → t, %x → %x − %vt, ϕ→ ϕ+ .

(
1

2
v2t + %v · %x

)
,

where Φ ≡ e iϕ|Φ| Role of ξ played by ϕ.

! Scale symmetry acts by

D = −2t∂t − x i∂i − r∂r + shift in σ;



wave equation:

(
−ω2r6 + m2 + r2(2.ω + k2)

)
Φ − rd+3∂r

(
r−d−1∂rΦ

)
= 0 (5)

(5) is the eom from:

Sprobe[Φ] =

∫ √
g
[
|(∂ − i.B)Φ|2 −

(
.2e−3σ + m2e−σ

)
|Φ|2

]
.

coupling to scalar σ req’d to realize Schröd.

First term in (/) is unimportant for the boundary behavior (r → 0), but does

spoil the Schrödinger invariance of the equation.

Note: we can’t find a solution which preserves all of schrod
(recall our surprise at finding a vacuum solution earlier)

But, black hole solution:

ds2 = eσ

(
−Qf

dt2

r6
+

d%x2

r2
+

dr2

r2f

)
, B = Q

fdt

r4
, e2σ =

r2

Q

where f = 1 − r4/r4
H

Same thermo as before (obtained by dim’l reduction and scaling).



Another system which realizes schrod

SE
4 =

∫
d4x(−g4)

1/2
[
R4−2Λe−σ−e3σ

4
(dB)2−3

2
(∂σ)2−1

2
(∂Ψ)2

]

A solution with asymptotic Sch symmetry:

ds2
E

(
Ŝch
)

= eσ

(
−QK 2

x

dt2

r6
+ Kx

d%x2

r2
+

dr2

r2

)

B = Q
(1 − r4/r4

0 )dt

r4
, e2σ =

r2

Q
, e2Ψ/

√
5 =

1 − r4/r4
0

1 + r4/r4
0

K 2
x = 1 − r8/r8

0 .

Geometry ends at r = r0 with a curvature singularity.
related solutions: [Gubser-Rocha, Goldstein-Kachru-Prakash-Trivedi ]

This curvature singularity at r = r0 can be resolved by oxidation!



Lift to ten and eleven dimensions
The action SE

4 is a consistent truncation of

SE
5 =

∫
d5x(−g5)

1/2
[
R5 − 2Λ − 1

2
(∂Ψ)2

]

which is a consistent truncation of type IIB supergravity [MMT].
Lift to 10d:

ds2
10 = ds2

E

(
Ŝch
)

+ e2σ (dξ + B)2 + ds2
(
S5
)
,

F5 = Q (Ω5 + 5Ω5) , and (4)

e2Φ = e2Ψ

is still singular at r = r0.
T-dualize on the Hopf dir [Duff-Pope] and lift to 11d SUGRA:

ds2
11 = e−Ψ/2

[
ds2

E

(
Ŝch
)
+e2σ (dξ + B)2+ds2

(
CIP2

)
+dχ2

1

]
+e4Ψ/3dχ2

2

and G4 = ...



Consequences of lift
The important point: the 11d geometry ends smoothly at r = r0.
(like the geometries describing confining gauge theories.) [KS, MN]

This determines the boundary conditions on fields
(like origin of polar coords.)

The solution has non-zero energy, pressure, density and free
energy, but has zero entropy (no horizon).
Real boundary conditions.
for example on Bµ, which computes current correlators.

This is a ”Mott” ”insulator”:

ρ (= 0 but there is a gap to charge excitations
(“Mott”: there are strong interactions,

and it’s not a band insulator or an Anderson insulator)

But: translation invariance =⇒ σ(Ω) ∝ δ(Ω).
As specified, it’s a perfect conductor.

Conjecture: if we pinned down the center-of-mass mode, it would
be an insulator.



Some future questions

! How close can we get to unitary fermions with a gravity dual?

! Can we realize the superfluid phase?

Should break ξ-isometry, cut off IR geometry.



Towards
Physical Applications of Holographic Duality

Parts 5 and 6

John McGreevy, MIT





Fermi Liquids and Non-Fermi Liquids



Fermi Liquids

Basic question: what is the ground state of a nonzero density of
interacting fermions? (∃ sign problem)



Fermi Liquids

Basic question: what is the ground state of a nonzero density of
interacting fermions? (∃ sign problem)

Lore: if it’s a metal, it’s a Fermi liquid [Landau, 50s]. E(k)

k
F

EF

k

Recall:

if we had free fermions, we would fill single-particle
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Fermi Liquids

Basic question: what is the ground state of a nonzero density of
interacting fermions? (∃ sign problem)

Lore: if it’s a metal, it’s a Fermi liquid [Landau, 50s]. E(k)

k
F

EF

k

Recall:

if we had free fermions, we would fill single-particle

energy levels E(k) until we ran out of fermions: →
Low-energy excitations:

remove or add electrons near the fermi surface EF , kF .

Idea [Landau]: The low-energy excitations of the
interacting theory are still weakly-interacting fermionic, charged
‘quasiparticles’
Elementary excitations are free fermions with some dressing:

in medium−→



The standard description of metals

The metallic states that we understand well are described by
Landau’s Fermi liquid theory.
Landau quasiparticles → poles in single-fermion Green function GR

at k⊥ ≡ |!k |− kF = 0, ω = ω!(k⊥) ∼ 0: GR ∼
Z

ω − vF k⊥ + iΓ
Measurable by ARPES (angle-resolved photoemission):

k

ω ω

k
ω k

−e

k−=

ω

out

out
in

= ω

k

in
in

in

−

Intensity ∝
spectral density :

A(ω, k) ≡ ImGR(ω, k)
k⊥→0→ Zδ(ω − vF k⊥)

Landau quasiparticles are long-lived: width is Γ ∼ ω2
!.

residue Z (overlap with external e−) is finite on Fermi surface.
Reliable calculation of thermodynamics and transport relies on this.



Ubiquity of Landau fermi liquid

Physical origin of lore:
1. Landau FL successfully describes 3He, all metals
studied before ∼ 1980s, ...

2. RG: Landau FL is stable under almost all perturbations.

[Shankar, Polchinski, Benfatto-Gallivotti 92]

UV

H(free fermion) z
IR

superfluid



Effective Field Theory
and the Fermi Surface

Polchinski, hep-th/9210046

also
Benfatto-Gallivotti;
Shankar, RMP 66 (1994) 129



Non-Fermi liquids exist, but are mysterious
e.g.: ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)

k

ω ω

k
ω k

−e

k−=

ω

out

out
in

= ω

k

in
in

in

−

=⇒

among other anomalies: ARPES shows gapless modes at finite k (FS!)

with width Γ(ω!) ∼ ω!, vanishing residue Z
k⊥→0→ 0.

Working defintion of NFL:

Still a sharp Fermi surface (nonanalyticity of A(ω ∼ 0, k ∼ kF ) )

but no long-lived quasiparticles.
[Anderson, Senthil] ‘critical fermi surface’
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k

ω ω

k
ω k

−e

k−=

ω

out

out
in

= ω

k

in
in

in

−

=⇒

among other anomalies: ARPES shows gapless modes at finite k (FS!)

with width Γ(ω!) ∼ ω!, vanishing residue Z
k⊥→0→ 0.

Working defintion of NFL:

Still a sharp Fermi surface (nonanalyticity of A(ω ∼ 0, k ∼ kF ) )

but no long-lived quasiparticles.
[Anderson, Senthil] ‘critical fermi surface’

T

Most prominent
mystery of the strange metal phase:
e-e scattering: ρ ∼ T 2, e-phonon: ρ ∼ T 5,

no known robust effective theory: ρ ∼ T .



Superconductivity is a distraction

Look ‘behind’ superconducting dome by turning on magnetic field:

Strange metal persists to T ∼ 0!
So we want to look for a theory of this intermediate-scale physics

(like Fermi liquid theory).



Another source of NFL: how do fermi liquids die?

Some systems have both a Fermi liquid phase,
and a phase without a Fermi surface (Mott insulator).
e.g. spin- 1

2 Hubbard model near half-filling:

H =
∑

〈ij〉

t c†i cj + U
∑

i

n↑i n
↓
i

t: kinetic term U: on-site repulsion

Mott insulator Fermi liquid t/U

Mott critical point fig from [Senthil, 0803.4009]

t/U → ∞: free electrons, FL.
t/U → 0: each electron picks a site and sits there (Mott insulator).



Critical fermi surfaces

but:
Theorem [Luttinger]: The volume inside the fermi surface is

proportional to the number of electrons, which is conserved.

It can’t just shrink if the number of particles is fixed.



Critical fermi surfaces

but:
Theorem [Luttinger]: The volume inside the fermi surface is

proportional to the number of electrons, which is conserved.

It can’t just shrink if the number of particles is fixed.

At a continuous transition: “critical fermi surface” [Brinkman-Rice, Senthil]:
Z → 0.
Z = jump in momentum space occupation number at the fermi
momentum n(k) =

∫
dω
π f (ω)ImG (ω, k)

f (ω) ≡ 1
eβω+1

, ω measured from µ.
n(k)

n(k)

n(k)

K

K

K

Kf

K
f

Kf

(a)

(b)

(c)

a) FL
b) mott insulator
c) critical fermi surface
∂(")

k n(k) = ∞ for some %

Z is like an order parameter for the FL phase.



NFL from non-Holography

• Luttinger liquid (1+1-d) G (k,ω) ∼ (k − ω)2g !

• numerics on Hubbard model
• loophole in RG argument:
couple a Landau FL perturbatively to a bosonic mode
(magnetic photon, slave-boson gauge field, statistical gauge field,

ferromagnetism, SDW, Pomeranchuk order parameter...)

k k − q

q

k

[Holstein et al, Baym et al, .... Halperin-Lee-Read,

Polchinski, Altshuler-Ioffe-Millis, Nayak-Wilczek, Schafer-Schwenzer, Chubukov et al,

Fradkin-Kivelson-Oganesyan, Metzner et al, S-S Lee, Metlitski-Sachdev, Mross et al]

→ nonanalytic
behavior in GR(ω) ≡ 1

vF k⊥+Σ(ω,k) at FS:

Σ(ω) ∼

{

ω2/3 d = 2 + 1

ω logω d = 3 + 1
=⇒ Z

k⊥→0→ 0,
Γ(k⊥)

ω!(k⊥)
k⊥→0→ const



Fermi liquid killed by gapless boson

1. In these perturbative calculations, non-analytic terms ∝ control parameter

=⇒
perturbative answer is parametrically reliable ↔

effect is visible only at parametrically low temperatures.

2. Recently, the validity of the 1/N expansion has been questioned.

[Sung-Sik Lee 0905.4532, Metlitski-Sachdev 1001.1153]

large N

zb−2∼ 1

N

small
zb−2

unstable?
3

1

2

2
0

zb

N−1

zb = 3

N = 2

A controlled perturbation expansion does exist in a slightly

different theory.

[David. Mross, JM, Hong Liu, Senthil, 1003.0894]

3. Not strange enough:

These NFLs are not strange metals in terms of transport.
FL killed by gapless bosons: small-angle scattering dominates =⇒

k k − q

q

k

(forward scattering does not degrade current)

‘transport lifetime’ (= ‘single-particle lifetime’
i.e. in models with Γ(ω!) ∼ ω!, ρ ∼ Tα>1.



Holographic non-Fermi liquids:
Strange metal from black holes

based on:

Hong Liu, JM, David Vegh, 0903.2477
Tom Faulkner, HL, JM, DV, 0907.2694

TF, Gary Horowitz, JM, Matthew Roberts, DV, 0911.3402
TF, Nabil Iqbal, HL, JM, DV, 1003.1728 and to appear

see also: Sung-Sik Lee, 0809.3402

Cubrovic, Zaanen, Schalm, 0904.1933



Can string theory be useful here?

It would be valuable to have a non-perturbative description of such
states in more than one dimension.

Gravity dual?

We’re not going to look for a gravity dual of the whole material.
or of the Hubbard model.

Rather: lessons for principles of “non-Fermi liquid”.

Basic question for the holographic descripion:

How to make a finite density of fermions?



Outline

1. Strategy for holographic description

2. Fermion green functions, numerically

3. Analytic understanding of Fermi surface behavior

4. Charge transport

5. Stability of the groundstate

6. A framework for strange metal



Strategy to find a holographic Fermi surface

Consider any relativistic CFT with a gravity dual
a conserved U(1) symmetry proxy for fermion number → Aµ

and a charged fermion proxy for bare electrons → ψ.
Any d > 1 + 1, focus on d = 2 + 1.

!" !" !" !" !"

AdS
4

x
1

x
2

AdS
2 
! !2

CFT at finite density: charged

black hole (BH) in AdS .
To find FS: [Sung-Sik Lee 0809.3402]

look for sharp features
in fermion Green functions
at finite momentum
and small frequency.

To compute GR : solve Dirac equation in charged BH geometry.
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→ gauge field F = dA in the bulk.
An ensemble with finite chemical potential for that current is described by the
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→ gauge field F = dA in the bulk.
An ensemble with finite chemical potential for that current is described by the
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ds2 =
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)

+ L2 dr2

r2f
, A = µ

(

1 −
( r0

r

)d−2
)

dt

f (r) = 1 +
Q2

r2d−2
−

M

rd
, f (r0) = 0, µ =

gF Q

cdL2rd−1
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,

• a charged fermion operator OF (proxy for bare electrons)

→ spinor field ψ in the bulk Ld+1 ) ψ̄
(

DMΓM − m
)

ψ + interactions

with Dµψ =
(

∂µ + 1
4ωµ · Γ − iqAµ

)

ψ ( ∆ = d
2 ± mL, q = q )

‘Bulk universality’: for two-point functions, the interaction terms don’t matter!

Results only depend on q, ∆.



Comments about the strategy

! There are many string theory vacua with these ingredients.
In specific examples of dual pairs
(e.g. M2-branes ⇔ M th on AdS4 × S7), interactions and {q,m} are
specified.
which sets {q, m} are possible and what correlations there are is not clear.

! This is a large complicated system (ρ ∼ N2), of which we are
probing a tiny part (ρΨ ∼ N0).

! In general, both bosons and fermions of the dual field theory
are charged under the U(1) current: this is a Bose-Fermi
mixture.



Computing GR

Translation invariance in &x , t =⇒ ODE in r .
Rotation invariance: ki = δ1i k
Near the boundary, solutions behave as (Γr = −σ3 ⊗ 1)

ψ
r→∞
≈ aαr

m

(

0
1

)

+ bαr
−m

(

1
0

)

Matrix of Green’s functions, has two independent eigenvalues:

Gα(ω,&k) =
bα
aα

, α = 1, 2

To compute GR : solve Dirac equation in BH geometry,
impose infalling boundary conditions at horizon [Son-Starinets, Iqbal-Liu].



Dirac equation

Γaea
M

(

∂M +
1

4
ωabMΓab − iqAM

)

ψ − mψ = 0

Φα ≡ (−gg rr )−1/4Πk̂
αψ, ψ = e−iωt+iki x

i
ψω,k ,

(

∂r + Mσ3
)

Φα =
(

(−1)αKσ1 + Wiσ2
)

Φα, α = 1, 2

with

M ≡ m
√

grr =
m

r
√

f
, K ≡ k

√
grr

gii
=

k

r2
√

f
, W ≡ u

√
grr

gii
=

u

r2
√

f
.

u ≡

√

−g tt

g ii

(

ω + µq

(

1 −
( r0

r

)d−2
))

Eqn depends on q and µ only through µq ≡ µq

→ ω is measured from the effective chemical potential, µq.
Results are in units of µ.



Fermi surface!
At T = 0, we find (numerically):
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G (ω, k = 0.9)

For q = 1,m = 0 : kF ≈ 0.918528499



Fermi surface!
At T = 0, we find (numerically):
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For q = 1,m = 0 : kF ≈ 0.918528499

But it’s not a Fermi liquid:

The peak moves
with dispersion relation ω ∼ kz

⊥ with

z = 2.09 for q = 1,∆ = 3/2.
z = 5.32 for q = 0.6,∆ = 3/2

and the residue vanishes.



Emergent quantum criticality

Whence these exponents?

Near-horizon geometry of black hole is AdS2 × Rd−1.
The conformal invariance of this metric is emergent.
(We broke the microscopic conformal invariance with finite density.)

boundary

d+1AdSd−1
xRAdS2

horizon
r−1<<1 r>>1
ω - µ ω . µ

AdS/CFT says that the low-energy physics is governed by the dual
IR CFT.
The bulk geometry is a picture of the RG flow from the CFTd to this NRCFT.



Analytic understanding of Fermi surface behavior: idea

T > 0: GR(ω) analytic near ω = 0 → can compute in series
expansion. [Policastro-Son-Starinets]

T = 0: Expanding the wave equation in ω is delicate.
The ω-term dominates near the horizon.

Method of matched asymptotic expansions:
Find solution (in ω-expansion) in two regions of BH geometry (IR and UV),

match their behavior in the region of overlap.

Familiar from the brane absorption calculations which led to AdS/CFT.

[Klebanov, Gubser, Maldacena, Strominger...]

boundary

d+1AdSd−1
xRAdS2

horizon
r−1<<1 r>>1

Here: this ‘matching’ can be interpreted in the QFT as RG
matching between UV and IR CFTs.



Matching regions

boundary

d+1AdSd−1
xRAdS2

horizon
r−1<<1 r>>1
ω - µ ω . µ

Inner: ζ ≡ λ
L2

2

r − 1
for ε < ζ < ∞

Outer:
λL2

2

ε
< r − 1

(L2 is the ‘AdS radius’ of the IR AdS2.)

and consider the limit

λ→ 0, ζ = finite, ε→ 0,
λR2

2

ε
→ 0 .

The boundary of AdS2 × R
2 (ζ → 0) attaches to the near-horizon of the outer

region.



Inner region (IR data)

ds2 =
R2

2

ζ2

(

−dτ2 + dζ2
)

+ d&x2, A = dτ
ed

ζ

Wave equations for charged fields in AdS2 are solvable.
Near the boundary:

ψ
ζ→0
≈ Gζνv+ + ζ−νv−

νk ≡ R2

√

m2 + k2 − q2/2, δk =
1

2
+ νk

For a spinor in AdS2, k is a parity-violating mass term m̃ψ̄Γψ: m̃ ≡ k L2
r0

Ψ(ω, k) matches onto some IR CFT operator Ok of dimension
δk = 1

2 + νk , whose (retarded) two-point function is the

IR CFT Green function : Gk(ω) = c(k)ω2νk

c(k) ∈ C, known.



Low-frequency expansion in outer region (UV data)

Basis of solutions at ω = 0:

ψ(0)±
α

r→1
≈ v±(r − 1)∓ν

These two solutions match to the leading and subleading solutions in the

near-horizon region.

=⇒ ψα = ψ+
α + G(ω)ψ−

α .

ψ±
α = ψ(0)±

α +ωψ(1)±
α +ω2ψ(2)±

α + . . . , ψ(n)±
α

r→∞
≈

(

b
(n)±
α r−m

a
(n)±
α rm

)

.

GR(ω, k) = K
b

(0)
+ + ωb

(1)
+ + O(ω2) + Gk(ω)

(

b
(0)
− + ωb

(1)
− + O(ω2)

)

a
(0)
+ + ωa

(1)
+ + O(ω2) + Gk(ω)

(

a
(0)
− + ωa

(1)
− + O(ω2)

)



Analytic understanding of Fermi surface behavior: results

GR(ω, k) =
b

(0)
+ + ωb

(1)
+ + O(ω2) + Gk(ω)

(

b
(0)
− + ωb

(1)
− + O(ω2)

)

a
(0)
+ + ωa

(1)
+ + O(ω2) + Gk(ω)

(

a
(0)
− + ωa

(1)
− + O(ω2)

)

The location of the Fermi surface (a(0)
+ (k = kF ) = 0) is determined by

short-distance physics (analogous to band structure –

a, b ∈ R from normalizable sol’n of ω = 0 Dirac equation in full BH)

but the low-frequency scaling behavior near the FS is universal
(determined by near-horizon region, IR CFT G !).

G = c(k)ω2ν is the retarded GR of the op to which OF matches.
its scaling dimension is ν + 1

2 , with (for d = 2 + 1)

ν ≡ L2

√

m2 + k2
F − q2/2

L2 is the ‘AdS radius’ of the IR AdS2.



Inner region (IR data) in more detail
c(k)

GR(ω) =

︷ ︸︸ ︷

e−iπν Γ(−2ν)Γ (1 + ν − iqed)

Γ(2ν)Γ (1 − ν − iqed)
·
(m + i m̃)L2 − iqed − ν

(m + i m̃)L2 − iqed + ν
(2ω)2ν

The AdS2 Green’s functions look like DLCQ of 1+1d CFT.

Leftmoving bit depends on q, rightmoving bit depends on ω.

qv [Azeyanagi et al, Guica et al, de Boer et al]



Inner region (IR data) in more detail
c(k)

GR(ω) =

︷ ︸︸ ︷

e−iπν Γ(−2ν)Γ (1 + ν − iqed)

Γ(2ν)Γ (1 − ν − iqed)
·
(m + i m̃)L2 − iqed − ν

(m + i m̃)L2 − iqed + ν
(2ω)2ν

The AdS2 Green’s functions look like DLCQ of 1+1d CFT.

Leftmoving bit depends on q, rightmoving bit depends on ω.

qv [Azeyanagi et al, Guica et al, de Boer et al]

(BH in)

d+1AdSd−1
xRAdS2

horizon boundary
r−1<<1 r>>1

T (= 0: near-horizon geometry is a BH in AdS2

ω2ν is the T → 0 limit of

T 2νg(ω/T ) = (2πT )2ν
Γ(1

2 + ν − iω
2πT + iqed)

Γ
(

1
2 − ν − iω

2πT + iqed

)

DLCQ of 1+1d CFT at T > 0.



Consequences for Fermi surface

GR(ω, k) =
h1

k⊥ − 1
vF
ω − h2c(k)ω2νkF

h1,2, vF real, UV data.
The AdS2 Green’s function

is the self-energy Σ = G = c(k)ω2ν !

Correctly fits numerics near FS:



ν <
1
2: non-Fermi liquid

GR(ω, k) =
h1

k⊥ − 1
vF
ω − h2ω

2νkF

if νkF
<

1

2
, ω!(k) ∼ kz

⊥, z =
1

2νkF

> 1

Α!
Α%k!&0

k!'0

Γ(k)

ω!(k)
k⊥→0→ const, Z ∝ k

1−2νkF
2νkF

⊥
k⊥→0→ 0.

Not a stable quasiparticle.



ν >
1
2: Fermi liquid

GR(ω, k) =
h1

k⊥ + 1
vF
ω + cω2νkF

ω!(k) ∼ vFk⊥

c is complex.

!1.0 !0.5 0.5 1.0

!0.003

!0.002

!0.001
!k!"2 Ν

vF k!

Γ(k)

ω!(k)
∝ k

2νkF
−1

⊥
k⊥→0→ 0 Z

k⊥→0→ h1vF .

A stable quasiparticle, but never Landau Fermi liquid.



summary
Depending on the dimension of the operator (ν + 1

2) in the IR
CFT, we find Fermi liquid behavior (but not Landau)

or non-Fermi liquid behavior:

ν < 1
2 ν = 1

2 ν > 1
2



ν = 1
2: Marginal Fermi liquid

GR ≈
h1

k⊥ + c̃1ω lnω + c1ω
, c̃1 ∈ R, c1 ∈C

Γ(k)

ω!(k)
k⊥→0→ const, Z ∼

1

| lnω!|
k⊥→0→ 0.

A well-named phenomenological model of high-Tc cuprates near optimal doping

[Varma et al, 1989].



UV data: where are the Fermi sufaces?
Above we supposed a(kF )(0)+ = 0. This happens at
kF : k s.t. ∃ normalizable, incoming solution at ω = 0:
This black hole can acquire ‘inhomogenous fermionic hair’

Schrodinger potential V (τ)/k2 at ω = 0 for m < 0, m = 0, m > 0.
τ is the tortoise coordinate Right (τ = 0) is boundary; left is horizon.

k > qed : Potential is always positive
k < kosc ≡

√

(qed )2 − m2: near the horizon V (x) = α
τ2 , with

α < −1
4 (“oscillatory region”)

k ∈ (qed , kosc ): the potential develops a potential well, indicating
possible existence of a zero energy bound state.
Note: can exist on asymp. flat BH [Hartman-Song-Strominger 0912]



Finite temperature movies

At finite T , the pole doesn’t quite hit the real axis: thermal
broadening.
mink (Imωc) . T (up to 1% accuracy).

Branch cut from ω2ν approximated by a sequence of poles on neg
Im axis. Like a dipole array approximates a capacitor.



Charge transport by holographic
Fermi surfaces

[Tom Faulkner, Nabil Iqbal, Hong Liu, JM, David Vegh, 1003.1728 and to appear]



Charge transport

T

Most prominent mystery →
of strange metal phase: σDC ∼ T−1

(j = σE)

e-e scattering: σ ∼ T−2, e-phonon scattering: σ ∼ T−5, nothing: σ ∼ T−1



Charge transport

T

Most prominent mystery →
of strange metal phase: σDC ∼ T−1

(j = σE)

e-e scattering: σ ∼ T−2, e-phonon scattering: σ ∼ T−5, nothing: σ ∼ T−1

We can compute the contribution
to the conductivity from
the Fermi surface. [Faulkner, Iqbal, Liu, JM, Vegh]

+ + + + + + + +

O(N2)

O(N0)Note: this is not the dominant contribution. →

σDC = lim
ω→0

Im
1

ω
〈jx jx〉(ω,&0) = N2 T 2

µ2
+ N0

(

σFS
DC + ...

)



Charge transport by holographic non-Fermi liquids
slight complication: gauge field ax mixes with metric perturbations.
There’s a big charge density. Pulling on it with !E leads to momentum flow.



Charge transport by holographic non-Fermi liquids
slight complication: gauge field ax mixes with metric perturbations.
There’s a big charge density. Pulling on it with !E leads to momentum flow.

aa

key step: ImDαβ(Ω, k; r1, r2) =
ψb
α(Ω,k,r1)ψ̄b

β(Ω,k,r2)

Wab
A(Ω, k)

bulk spectral density ImD

1. ... is determined by bdy fermion spectral density, A(ω, k) = ImGR(ω, k)

2. ... factorizes on normalizable bulk sol’ns ψb

a(r )1 2a(r )

Figs by Nabil Iqbal



Charge transport by holographic non-Fermi liquids

like Fermi liquid calculation
but with extra integrals over r , and no vertex corrections.

σFS
DC = C

∫ ∞

0
dkk

∫ ∞

−∞

dω

2π

df

dω
Λ2(k,ω)A2(ω, k)

f (ω) = 1

e
ω
T +1

: the Fermi distribution function

Λ: an effective vertex, data analogous to vF , h1,2.

Λ ∼ q
R

∞

r0
dr
√

gg xxax(r , 0)
ψ̄b(r)Γxψb(r)

Wab
∼ const.

∫

dkA(k,ω)2 ∼
1

T 2νg(ω/T )

scale out T -dependence =⇒ σDC ∼ T−2ν .



Dissipation mechanism

++

boundary

horizon
+ + +++ + + +

σDC ∝ Im〈jj〉 comes from fermions falling into the horizon.
dissipation of current is controlled by the decay of the fermions
into the AdS2 DoFs.
=⇒ single-particle lifetime controls transport.

marginal Fermi liquid: ν = 1
2 =⇒ ρFS =

(

σDC
)−1

∼ T .



Dissipation mechanism

++

boundary

horizon
+ + +++ + + +

σDC ∝ Im〈jj〉 comes from fermions falling into the horizon.
dissipation of current is controlled by the decay of the fermions
into the AdS2 DoFs.
=⇒ single-particle lifetime controls transport.

marginal Fermi liquid: ν = 1
2 =⇒ ρFS =

(

σDC
)−1

∼ T .

The optical conductivity σ(Ω) can distinguish the existence of
quasiparticles (ν > 1

2) through the presence of a transport peak.



Stability of the Reissner-Nordstrom
groundstate



Charged AdS black holes and frustration

Entropy density of black hole:

s(T = 0) =
1

Vd−1

A

4GN
= 2πedρ. (ed ≡

gF
√

2d(d − 1)
)

This is a large low-energy density of states!
not supersymmetric ... lifted at finite N



Charged AdS black holes and frustration

Entropy density of black hole:

s(T = 0) =
1

Vd−1

A

4GN
= 2πedρ. (ed ≡

gF
√

2d(d − 1)
)

This is a large low-energy density of states!
not supersymmetric ... lifted at finite N

pessimism: S(T = 0) 0= 0 violates third law of thermodynamics, unphysical,

weird string-theorist nonsense.

optimism:
we’re describing the state where the SC instability is removed by hand

(here: don’t include charged scalars, expt: large !B).

[Hartnoll-Polchinski-Silverstein-Tong, 0912.]: bulk density of fermions modifies
extreme near-horizon region (out to δr ∼ e−N2

), removes residual
entropy. (Removes non-analyticity in Σ(ω) for ω < e−N2

µ)



Stability of the groundstate

Charged bosons: In many explicit dual pairs, ∃ charged scalars.
• At small T , they can condense spontaneously breaking the U(1)

symmetry, changing the background [Gubser, Hartnoll-Herzog-Horowitz].

spinor: GR(ω) has poles only in LHP of ω [Faulkner-Liu-JM-Vegh, 0907]

scalar: ∃ poles in UHP 〈O(t)〉 ∼ e iω!t ∝ e+Imω!t

=⇒ growing modes of charged operator: holographic superconductor
[Gubser, Hartnoll-Herzog-Horowitz...]
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Charged bosons: In many explicit dual pairs, ∃ charged scalars.
• At small T , they can condense spontaneously breaking the U(1)

symmetry, changing the background [Gubser, Hartnoll-Herzog-Horowitz].

spinor: GR(ω) has poles only in LHP of ω [Faulkner-Liu-JM-Vegh, 0907]

scalar: ∃ poles in UHP 〈O(t)〉 ∼ e iω!t ∝ e+Imω!t

=⇒ growing modes of charged operator: holographic superconductor
[Gubser, Hartnoll-Herzog-Horowitz...]

+

+ + + + + 

-

++++++++++

AdS

AdS
Horizon

Boundary 

++++++++++

r = rh

r

(t, x, y)

Boundary 

why: black hole spontaneously

emits
charged particles [Starobinsky, Unruh, Hawking].
AdS is like a box: they can’t escape.

Fermi:
negative energy states get filled.
Bose: the created particles then cause
stimulated emission (superradiance).
A holographic superconductor is a “black hole laser”.



Stability of the groundstate, cont’d
• If their mass/charge is big enough, they don’t condense.
[Denef-Hartnoll]

This is weird: a weakly-coupled charged boson

at µ 0= 0 will condense.
Finding such string vacua

is like moduli stabilization.

• Many systems to which we’d like to
apply this also have a superconducting region.

• So far we are describing
the state behind and above the dome.

Aside: Other light bulk modes (e.g. neutral
scalars)
can also have an important effect on the groundstate

[ Fareghbal-Gowdigere-Mosaffa-Sheikh-Jabbari Mulligan, Polchinski,

Goldstein-Kachru-Prakash-Trivedi, Gubser-Rocha].



Photoemission ‘exp’ts’ on holographic superconductors
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So far: a model of
some features of the normal state.

In SC state: a sharp peak forms in A(k ,ω).
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With a suitable coupling between ψ and ϕ,

the superconducting condensate

opens a gap in the fermion spectrum.

[Faulkner, Horowitz, JM, Roberts, Vegh]

if qϕ = 2qψ we can have

Lbulk ) η5ϕψ̄CΓ5ψ̄T + h.c

The (gapped) quasiparticles
are exactly stable in a certain
kinematical regime
(outside the lightcone of the IR CFT) –
the condensate lifts the IR CFT modes

into which they decay.



Framework for strange metal

a cartoon of the mechanism:

Quantum 
Critical

a similar picture has been advocated by [Varma et al]



Comparison
• a Fermi surface coupled to a critical boson field

L = ψ̄ (ω − vFk)ψ + ψ̄ψa + L(a)

small-angle scattering dominates.

• a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent [TF-HL-JM-DV 0907.2694,

Faulkner-Polchinski 1001...]

L = ψ̄ (ω − vFk)ψ + ψ̄χ+ ψχ̄+ χ̄G−1χ

χ: IR CFT operator

= + + +. . .

〈ψ̄ψ〉 =
1

ω − vFk − G
G = 〈χ̄χ〉 = c(k)ω2ν

ν ≤ 1
2 : the ψ̄χ coupling is a relevant perturbation.



Concluding remarks

1. The green’s function near the FS is of the form (‘local quantum

criticality’, analytic in k .) found previously in perturbative
calculations, but the nonanalyticity can be order one.
This is an input of many studies (dynamical mean field theory)

2. [Sachdev, 1007...]: Slave-particle solution of large-d , large-spin limit
of random antiferromagnet produces a very similar state
[Sachdev-Ye].

3. [Denef-Hartnoll-Sachdev] The leading N−1 contribution to the free
energy exhibits quantum oscillations in a magnetic field.

4. Main challenge: step away from large N. So far:

• Fermi surface is a small part of a big system.
• Fermi surface does not back-react on IR CFT.
• IR CFT has z = ∞.



The end.

Thanks for listening.



Where are the Fermi sufaces?

m = −0.4, 0, 0.4:
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orange: ‘oscillatory region’: ν ∈ iIR, G periodic in log ω

δk =
1

2
+ νk , νk =

1√
6

√

m2 + k2 − q2/2



Fermion poles always in LHP!

arg ck = arg
(

e2πiν ± e−2πqed
)

G = ckω
2ν

± for boson/fermion.
ω2ν

c = real ·
(

e−2πiν − e−2πqed
)

.

!0.4 !0.2 0.2 0.4

!1.0

!0.5

0.5

1.0

2ΑΝ

2ΒΝ

Figure: A geometric argument that poles of the fermion Green function
always appear in the lower-half ω-plane: Depicted here is the ω2ν

covering space on which the Green function is single-valued. The shaded
region is the image of the upper-half ω-plane of the physical sheet.



fermi velocity
Think of ω = 0 Dirac eqn as Schrödinger problem.

Like Feynman-Hellmann theorem: ∂k〈H〉 = 〈∂kH〉
we can derive a formula for vF in terms of expectation values in
the bound-state wavefunction Φ+

(0).
Let:

〈O〉 ≡
∫ ∞

r!

dr
√

grrO ,

Jµ ≡ Φ̄+
(0) ∂kµ /D0,kF

Φ+
(0) = Φ̄+

(0)Γ
µΦ+

(0)

is the bulk particle-number current.

vF =
〈J1〉
〈J0〉

=

∫

dr
√

grrg ii
(

|y |2 − |z |2
)

∫

dr
√

grr (−g tt) (|y |2 + |z |2)
.

Φ =

(

y

z

)

Note: gii

−gtt = f (r) ≤ 1 implies that vF ≤ c.



fermi velocity

Figure: The Fermi velocity of the primary Fermi surface of various
components as a function of 2ν > 1 for various values of m.



An explanation for the particle-hole symmetry

Α!
Α%k!&0

k!'0

!1.0 !0.5 0.5 1.0

!0.003

!0.002

!0.001
!k!"2 Ν

vF k!

Figure: Left: Motion of poles in the ν < 1
2 regime. As k varies towards

kF , the pole moves in a straight line (hence Γ ∼ ωc), and hits the branch
point at the origin at k = kF . After that, depending on γ(kF ), it may
move to another Riemann sheet of the ω-plane, as depicted here. In that
case, no resonance will be visible in the spectral weight for k > kF .
Right: Motion of poles in the ν > 1

2 regime, which is more like a Fermi
liquid in that the dispersion is linear in k⊥; the lifetime is still never of
the Landau form.

Note: the location of the branch cut is determined by physics:

at T > 0, it is resolved to a line of poles.



Oscillatory region

Above we assumed ν = R2

√

m2 + k2 − (qed)2 ∈ R

ν = iλ ⇔ Oscillatory region.

This is when particle production occurs in AdS2. [Pioline-Troost]

Effective mass below BF bound in AdS2. [Hartnoll-Herzog-Horowitz]

Reωi2λ = sin 2λ log ω =⇒ periodic in logω with period π
|ν| .

comments about boson case:
Net flux into the outer region > 0 = superradiance of AdS RN
black hole (rotating brane solution in 10d)

Classical equations know quantum statistics!
like: statistics functions in greybody factors

Required for consistency of AdS/CFT!

boson: particles emitted from near-horizon region, bounce off
AdSd+1 boundary and return, causing further stimulated emission.
spinor: there is particle production in AdS2 region, but net flux
into the outer region is negative (‘no superradiance for spinors’).



oscillatory region and log-periodicity

When ν(k) is imaginary, G ∼ ων is periodic in logω.
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Figure: Both ReG22(ω, k = 0.5) (blue curve) and ImG22(ω, k = 0.5)
(orange) are periodic in logω as ω → 0.
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Figure: The motion of poles of the Green functions of spinors (left) and
scalars (right) in the complex frequency plane. Both plots are for
parameter values in the oscillatory region (q = 1, m = 0). In order to give
a better global picture, the coordinate used on the complex frequency
plane is s = |ω| 1

20 exp(i arg(ω)). The dotted line intersects the locations
of the poles at k = k0 = ..., and its angle with respect to the real axis is
determined by G(k ,ω). The dashed lines in the left figure indicate the
motion of poles on another sheet of the complex frequency plane at
smaller values of k < k0. As k approaches the boundary of the oscillatory
region, most of the poles join the branch cut. It seems that one pole that
becomes the Fermi surface actually manages to stay in place. These plots
are only to be trusted near ω = 0.
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Oscillatory Region

No Classical Orbits

P

Information from WKB. At large q, m, the primary Fermi momentum is given

by the WKB quantization formula: kF

R s+

s
−

ds
p

V (s;α, β) = π, where

α ≡ q
k
,β ≡ m

k
, s is the tortoise coordinate, and s± are turning points

surrounding the classically-allowed region. For k < q/
√

3, the potential is

everywhere positive, and hence there is no zero-energy boundstate. This line

intersects the boundary of the oscillatory region at k2 + m2 = q2/2 at the point

P = (α,β) = (
√

6,
√

2). Hence, only in the shaded (blue) region is there a

Fermi surface. The exponent ν(kF ) is then given by ν(kF ) =
π
√

1+β2−α2/2
R

ds
√

V (s;α,β)
.

This becomes ill-defined at the point P, and interpolates between ν = 0 at the

boundary of the oscillatory region, and ν = ∞ at k = q/
√

3.


