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General introduction
• So far, the SM of EP appears to work extremely well (see 
MM’s lectures) at least at scales below 100 GeV

• CGR also works very well in a vast range of scales (see TD’s 
lectures)
• There are problems with GR at very short scales 
(singularities) and possibly also at very large scales (dark 
energy) 

• CGR is bound to fail in extreme-curvature regimes
•Wide-spread belief that a consistent theory of QG may avoid 
the short-distance problems of CGR (BTW: having a consistent 
theory of QG is not just a theoretical luxury if LSS does 
originate from primordial quantum fluctuations)



• When appied to GR, QM appears to bring new problems 
instead of new solutions (UV divergences, information 
paradox, a huge cosmological constant).
• Although a serious candidate for a quantum theory of 
gravity does exists, ST, we still lack a full understanding of 
how it provides answers to the abovementioned questions 
• QG today reminds us (me?) of the early days of QM about a 
century ago: trying to learn its basic rules and to extract its 
physical consequences
•A century ago much progress was made (both in QM and in 
R) by considering gedanken experiments. Will history repeat 
itself?
• This is the question I will try to adress in the context of 
superstring theory, using QM and SR, but without appealing to 
any GR prejudice: 
•Class. and Quant. Gravity not an input, hopefully an output!



TPE collisions as a GE
   Trans-Planckian-Energy (TPE => E >> MP, or Gs/h >> 1) 
collisions represent a very rich theoretical laboratory for 
addressing the physics of Black Holes (BH).

The need for TPE comes from our wish to understand the 
physics of semiclassical -rather than Planck size- BH’s

There are many classical results on whether and how 
smooth initial data can either lead to black-hole formation 
or to a completely dispersed final state (Christodoulou & 
Kleinermann, Christodoulou..., Choptuik,... CTS criteria, ... 
Christodoulou ‘08)
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Figure 1: Phase space picture of the critical gravitational collapse.

Space-times with CSS are very interesting from various points of view (see [11] for a com-

prehensive rewiew). Although DSS is a remarkable phenomenon in gravity, it seems to be a

disadvantage when trying to establish a holographic correspondence with the Regge region in

QCD, where no echo behavior is to be found. However, the so-called leading (log s)-behavior

of the amplitudes does indeed show scale invariance (see Section 4). This is a fundamental

reason to abandon the construction of the holographic map using collapsing massless scalar

fields and to use instead a system where the critical solution exhibits scale invariance. The

archetypical system of this kind is the spherical collapse of a perfect fluid.

One of the main (technical) difficulties in the original computation of the Choptuik exponent

[9] is that it requires a very involved numerical solution of the Einstein equations. In [10, 12]

an alternative procedure to compute γ was proposed based on a renormalization group analysis

of critical gravitational collapse. In this picture, the surface p = p∗ represents a critical surface

in the space of solutions separating the basins of attraction of two fixed points, corresponding

respectively to Minkowski and the black hole space-times (see Fig. 1). The critical solution

with DSS or CSS has a single unstable direction normal to the critical surface.

In this approach, the critical solution is characterized by having a single growing mode for

perturbations around it. We can characterize it by the corresponding Lyapunov exponent. If
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In general, one expects to find a critical hypersurface 
Scr(Cl) (in the parameter space P(Cl) of the initial state) 
separating the two phases 

The approach to criticality looks like that of phase 
transitions in Stat. Mech. (order of transition, crit. exp’s,..) 
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R ≥ k −O(δ) (provided R > 0)

If M(θ,φ, δ) =
∫ δ

0
dv

dM(v, φ, δ)
dv dcosθ dφ

≥ k

8π
for all θ,φ

v=0
v=δ

then a CTS forms with 

incoming energy (G=1) per unit 
advanced time & solid angle 

?



At the quantum level we can prepare pure initial states 
that correspond, roughly, to the classical data. They 
define a parameter space P(Q). We may ask:
• Is there a unitary S-matrix (unitary evolution operator) 

describing the evolution of the system?
• If yes, does such an S-matrix develop singularities as 

one approaches a critical surface Scr(Q) in P(Q)?
• If yes, what happens in the vicinity of this critical 

surface? Does the nature of the final state change as 
one goes through it? Is there any connection between   
Scr(Cl) and Scr(Q)? 

• What happens to the final state deep inside the BH 
region? Does it resemble at all Hawking’s thermal 
spectrum for each initial pure state?



A phenomenological motivation?
(from gedanken to real experiments!)

Finding signatures of string/quantum gravity @ LHC:
 In KK models with large extra dimensions;
 In brane-world scenarios; in general:
 If the true Quantum Gravity scale is O(few TeV)

NB: In the most optimistic situation the LHC will be very 
marginal for producing BH, let alone semiclassical ones

Q: Can there be some precursors of BH behaviour even below 
the expected production threshold? 



1st talk (12/09)

•  3 scales & 3 regimes in TPE string collisions
•  The small-angle regime
•Leading eikonal
•Tidal excitations
•s-channel production of heavy strings

•  The “stringy” regime and precocious BH behaviour

Outine of the two talks



2nd talk (13/09)

• Classical corrections in the large-angle regime
• Identification of the relevant diagrams
• Resumming classical corrections via an eff. action
• The axisymmetric case: critical lines and comparison 

with CTS criteria
•Two-body scattering at b ≠ 0: critical point
• Graviton spectra below and near criticality 
• What happens above criticality?

• Summary and outlook



Part 1



Classical expectations
based on the construction of 

Closed Trapped Surfaces 
in two-body scattering

(DC’s criterion not so useful for this problem)



CTS (sufficiency) criteria => bounds
 Point-particle collisions:
1. b=0: Penrose (‘74) :

D’Eath & Payne (‘92), Pretorius (’08):
2. b≠0: Eardley and Giddings, gr-qc/0201034, Yoshino & 

Nambu, hep-th/0209003: one example:

 Extended sources: 
• Yurtsever (‘88) gave arguments for critical size O(R)
• Kohlprath and GV, gr-qc/0203093: one example:

for central collision of 2 homogeneous null 
beams of radius L

(
R

L

)

cr

≤ 1 , D = 4

(
R

b

)

cr

≤ 1.25 , D = 4

MBH ∼ 0.86 E

(R = 2G
√

s = 4GE1 = 4GE2)

MBH > E/
√

2 ∼ 0.71E



3 broad-band regimes in trans-Planckian 
superstring scattering

1) Small angle scattering (b >> R, ls )
2) Large angle scattering (b ~ R > ls), collapse (b, ls < R)
3) Stringy (ls  > R, b)

The string length parameter ls plays the role of the beam size!

3 length scales: b, R and ls =>

They will become 6 narrow-band regimes



R(E)

b

ls 

ls 

lP

2

3

1

BH

lP

Critical line?

NB: we take the string coupling gs very small so that ls  >> lP  

E= Eth ~ Ms/gs2E = MP



1. Gross-Mende, Mende-Ooguri (‘87-’90)
2. ‘t-Hooft; Muzinich & Soldate; ACV; Verlinde2; 

FPVV…, Arcioni, de Haro, ‘t-Hooft; …(‘87-’05); 
Giddings; Giddings, Gross, Maharana Jr. (‘07); 
Giddings and Srednicki (‘07);ACV07, Marchesini & 
Onofri (08), GV & Wosiek (08), Ciafaloni & Colferai 
(08)

************
  Two very different approaches; agree incredibly well in the 

region of ph. sp. where they can be both justified.

Two complementary approaches
Reconsidered recently within AdS/CFT (AM, CCP, BPST)



ACV  approach (1987-2007)

 Work in energy-impact parameter space, A(E,b)
 Go to arbitrarily high energy while increasing b 

(NB: R=RS)
 

 Go over to A(E, q ~ θ E) by FT and reach the regime 
of fixed θ << 1 by picking up contributions from 
saddle point in the above region of b (bs ~ R/θ >> R)  

 Extend to large angle (collapse) i.e. to b ~ R (b < R)
 Cross fingers throughout! 

b > RS(E) ∼ (GNE)
1

D−3



The semiclassical S-matrix
General arguments as well as string-loop calculations 

suggest the following form for the TPE S-matrix:

NB: For Im Acl some terms may be more than just corrections...

Leading eikonal diagrams (crossed ladders included)

S(E, b) ∼ exp

(
i
Acl

!

)
;

Acl

! ∼ Gs

! cDb4−D
(
1 + O((R/b)2(D−3)) + O(l2s/b2) + O((lP /b)D−2) + . . .

)



exchanged gravi-reggeons

1. Diffractively(tide)-excited strings  => Im Acl

2. Heavy strings
 produced in s-ch. 
=> Im Acl 
(cut gravi-reggeons)

Two examples of string corrections (controlled by ls )

Classical corrections (controlled by R/b) to be discussed later



I) Small-angle elastic scattering (leading eikonal)
II) Small-angle inelastic scattering (a.string excitation) 
III) Small-angle inelastic scattering (b.string formation)
IV) Small-angle inelastic scattering (c.graviton emission)
V) Large-angle inelastic scattering 
VI) Classical Collapse 

The existence of these corrections complicates the previous 
diagram with new regions appearing in our parameter space. 
We may roughly distinguish 6 (increasingly difficult) regimes:



R(E)/lP

b/lP

ls/lP 

 IV:grav. 
rad.

critical line?

I: leading 
eikonal 

ls/lP 

1
1

II:diffr. 
str. exc.

III: s-channel 
 string prod.

(ls/lP)2 

(ls/lP)1/2 

VI: black hole 
production/evaporation 

V: large angle 

log-log plot
D=4 



I: Small-angle elastic scattering 
(leading eikonal)

Leading eikonal diagrams (crossed ladders included)

S(E, b) ∼ exp

(
i
Acl

!

)
;

Acl

! ∼ Gs

! cDb4−D
(
1 + O((R/b)2(D−3)) + O(l2s/b2) + O((lP /b)D−2) + . . .

)



Imδ ∼ GD s l2s
(Y ls)D−2

e−b2/b2I , b2
I ≡ l2sY

2 , Y =
√

log(α′s)

δ(E, b) =
∫

dD−2q
Atree(s, t)

4s
e−iqb , s = E2, t = −q2

Reδ ∼ Gsb4−D

Recovering CGR expectations @ large distance

For b >> lsY (Region I), we can forget about Im δ

Going over to scattering angle θ, we find a saddle point at 

corresponding precisely to the relation between impact 
parameter and deflection angle in the (emerging!) AS metric 

generated by a relativistic point-particle of energy E.

bD−3
s ∼ G

√
s

θ
; θ ∼

(
RS

b

)D−3

S = e2iδ



Note that at fixed θ, larger E probe larger b
The reason is quite simple: because of eikonal exponentiation, 

Re δ also gives the average loop-number. The total (huge) 
momentum transfer q = θ E is shared among many many 
exchanged  gravitons to give:

meaning that the process is soft at large s

qind. ∼
q

Gsb4−D
∼ θ

RD−3
S b4−D

∼ b−1
s



θ1 ∼ GD E2 b3−D ⇒ ∆θ1 ∼ GD E2 ls b2−D

II: Small-angle inelastic scattering 
(a. diffractive/tidal string excitation)

When a string moves in an AS metric it suffers tidal 
forces as a result of its finite size (Giddings 0604072) 
Grav. counterpart to diffractive excitation?
When does DE kick-in? Tidal-force argument (SG/GV): 

This angular spread provides an invariant mass: 

strings get excited if  

... as in ACV ‘87  

M1 ∼ E1∆θ1 ∼ GD s ls b2−D = M2

M1,2 ∼Ms = !l−1
s ⇒ b = bD ∼

(
Gsl2s

!

) 1
D−2

σel ∼ exp(−S(M)) ∼ exp(−M/Ms) ∼ exp(−Gs

!
l2s

bD−2
)→ exp(−Gs

! l4−D
s )



bb+ΔX

Xu

Xd

(E, p)

(E, -p)
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σel ∼ exp(−4Imδ) = exp
[
− GD s l2s

(Y ls)D−2

]
≡ exp

[
− s

M2
∗

]

M∗ =
√

MsMth ∼Msg
−1
s

Because of Im δ≠0, Sel is suppressed as exp(-2 Im δ):

At E= Eth = Ms/gs2 
σel ∼ exp(−g−2

s ) ∼ exp(−Ssh) (Ssh = entropy of a BH/string of M=Eth)

III: Small-angle inelastic scattering  
(b. string formation @ b, R < ls)

M∗ =
√

MsMth ∼Msg
−1
s

〈NCGR〉 = 4Imδ =
GD s l2s
(Y ls)D−2

= O

(
s

M2
∗

)

〈E〉CGR =
√

s

〈NCGR〉
∼ MsY

D−2

(
ls
RS

)D−3

∼ Teff ≡
M2
∗

E
=

M2
s

g2
sE

Also: and thus:

NB: same as DE abs. @ b = ls!



E

Ms 

MD M* =Ms/gs

Ms/gs 

Mth=Ms/gs
2

<E>CGR

Ms

Ms/gs
2

E ~E-1

BH?

window

TH ∼ E−
1

D−3


