

Introduction to Numerical Relativity

Roberto De Pietri (Parma University)

Lecture 2

Two-bodies problem and GWs

Parma International School of Theoretical Physics, September 8 – 13, 2008

and a second for a for some second to the second se

Post Newton ... Damour E(body) wavefe bodies proble

 ω_{22}^{NR}

 $^{2\Omega}_{\substack{\mathrm{EOB}\\\omega_{22}}}$

0.6

0.5

0.4

0.3

0.2

0.1

0.35

0 3

0.25

0.2

0.15

0.1

0.05

1400

1450

 $|\Psi_{22}^{NR}|/v$

 $|\Psi_{22}^{EOB}|/v$

1550

1500

۱ NR

Exponentially dumped oscillation (QNM)

Parma International School of Theoretical Physics, September 8 - 13, 2008

Numerical General Relativity

- $$\begin{split} R_{\mu\nu} &- \frac{1}{2} g_{\mu\nu} R = 8\pi G \, T_{\mu\nu} & \text{Einstein Equations} \\ \nabla_{\mu} T^{\mu\nu} &= 0 & \text{Conservation of energy momentum} \\ \nabla_{\mu} (\rho \, u^{\mu} \,) &= 0 & \text{Conservation of baryon density} \\ p &= p(\rho, \epsilon) & \text{Equation of state} \end{split}$$
- Introduce a foliation of space-time
 write as a 3+1 evolution equation
 solve them on a computer ! T^{µν} = (ρ(1 + ε) + p)u^µu^ν + pg^{µν}

Why Numerical Relativity is hard!

- No obviously "better" formulation of Einstein's equations
 - ADM, conformal decomposition, first-order hyperbolic form,.... ???
- Coordinates (spatial and time) do not have a special meaning
 - this gauge freedom need to be carefully handled
 - gauge conditions must avoid singularities
 - gauge conditions must counteract "grid-stretching"
- Einstein's Field equations are highly non-linear
 - Essentially unknown in this regime
- Physical singularity are difficult to deal with

3+1 formulation

ADM evolution

$$\partial_t \gamma_{ij} = -2\alpha K_{ij} + \nabla_i \beta_j + \nabla_j \beta_i, \qquad (2)$$

$$\partial_t K_{ij} = -\nabla_i \nabla_j \alpha + \alpha \left[R_{ij} + K K_{ij} - 2K_{im} K_j^m - 8\pi \left(S_{ij} - \frac{1}{2} \gamma_{ij} S \right) - 4\pi \rho_{ADM} \gamma_{ij} \right] + \beta^m \nabla_m K_{ij} + K_{im} \nabla_j \beta^m + K_{mj} \nabla_i \beta^m. \qquad (2)$$

(.1) 6 equations for the metric +6 equations for the time-coordinate derivative of the metric (extrinsic curvature)

Hamiltonian + Momentum constraints

$$^{(3)}R + K^{2} - K_{ij}K^{ij} - 16\pi\rho_{ADM} = 0$$
$$\nabla_{j}K^{ij} - \gamma^{ij}\nabla_{j}K - 8\pi j^{i} = 0$$

+1 constrain equation +3 constrain equation

.2)

ADM evolution is not stable !

Use BSSN rewriting of the evolution equation $\partial_{\mu}\varphi = -\frac{1}{6}\alpha K + \beta^{i}\partial_{j}\varphi + \frac{1}{6}\partial_{j}\beta^{i}$ $\partial_{t}K = -g^{ij}\nabla_{i}\nabla_{j}\alpha + \alpha(\widetilde{A}_{ij}\widetilde{A}^{ij} + \frac{1}{3}K) + \beta^{i}\partial_{i}K$ $\partial_{t}\widetilde{g}_{ii} = -2\alpha K_{ii} + \widetilde{g}_{ik}\partial_{i}\beta^{k} + \widetilde{g}_{ik}\partial_{i}\beta^{k} - \frac{2}{3}\widetilde{g}_{ii}\partial_{k}\beta^{k}$ $\partial_{t}\widetilde{\Gamma}^{i} = -2\widetilde{A}^{ij}\partial_{i}\alpha + 2\alpha(\Gamma^{i}_{ik}\widetilde{A}^{jk} - \frac{2}{3}\widetilde{g}^{ij}\partial_{i}K + 6\widetilde{A}^{ij}\partial_{i}\varphi) +$ $+\beta^{k}\partial_{k}\widetilde{\Gamma}^{i}-\widetilde{\Gamma}^{k}\partial_{k}\beta^{i}+\frac{2}{3}\widetilde{\Gamma}^{i}\partial_{k}\beta^{k}+\frac{1}{3}\widetilde{g}^{ij}\partial_{i}\partial_{k}\beta^{k}+\widetilde{g}^{jk}\partial_{i}\partial_{k}\beta^{i}$ $\partial_{t}\widetilde{A}_{ii} = e^{-4\varphi} \left(-(\nabla_{i}\nabla_{i}\alpha)^{TF} + \alpha R_{ii}^{TF} \right) + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{j}^{k} \right) - \partial_{i}\partial_{i}\alpha + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\alpha + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\alpha + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ik}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}^{k} \right) - \partial_{i}\partial_{i}\partial_{i}\beta + \alpha \left(\widetilde{A}_{ii}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}\widetilde{A}_{ik}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}K - 2\widetilde{A}_{ii}\widetilde{A}_{ik}K - 2\widetilde{$ $+\beta^{k}\partial_{k}\widetilde{A}_{ii}+\left(\widetilde{A}_{ik}\partial_{i}+\widetilde{A}_{ik}\partial_{i}\right)\beta^{\kappa}-\frac{2}{3}\widetilde{A}_{ii}\partial_{k}\beta^{k}$

or Use Harmonic evolution equations

Other schemes (beside BSSN)

90s

Nakamura-Oohara

95 Baumgarte-Shapiro Nakamura-Oohara Shibata-Nakamura 62 G-code **NCSA BSSN-code** AEI H-code ADM 97 92 PennState Alcubierre **Bona-Masso** 95-97 ChoquetBruhat-York Anderson-Yor See Hisa-aki Shinka, Cornell-Illinois Kidder-Scheel -Teukolsky Formulations of the Frittelli-Reula Einstein equations for Hern 99 ambda-system numerical simulations, 97 Iriondo-Leguizamon-Reula 86 Yoneda-Shinkai Ashtekar arXiv:0805.0068 for a review.

80s

2000s

Illinois

adjusted-system

Caltech

Shinkai-Yoneda

LSU

UWash

Shibata

Situation NOW: from 0805.0068

Theppenberge forfations....

Schwarzschild in Novikov Schwarzschild in Novikov Coordinates Geodesic slicing ($\alpha = 1, \beta^i = 0$) singeodesic slicing ($\beta^i = 0$) excision/puncture evolution

1+log $\partial_t \alpha = -2\alpha (\overset{\text{excision/puncture evoluti}}{K - K_0})$ Gamma-driver $\partial_t^2 \beta^i = \frac{3}{4} \alpha \partial_t \tilde{\Gamma}^i - 2 \partial_t \beta^i$

Code Used

CACTUS/BSSN: (<u>www.cactuscode.org</u>) Mainly developed at AEI (Golm, Germany) and LSU (USA)

WHISKY: (http://www.aei-potsdam.mpg.de/~hawke/Whisky.html) Whisky is a code to evolve the equations of hydrodynamics on curved space. It is being written by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit.

Gauge choice for the lapse and shift variables:

1+log
$$\partial_t \alpha = -2\alpha(K - K_0)$$

Gamma-driver $\partial_t^2 \beta^i = \frac{3}{4} \alpha \partial_t \tilde{\Gamma}^i - 2 \partial_t \beta^i$

Cactus => Infrastructure + GR

4. ella in Fig. della risolu usata dall'approx

 $-8\pi \left(S_{ij} - \frac{1}{2} \gamma_{ij} S \right) - 4\pi \rho_{ADM} \gamma_{ij} \right]$ $+\beta^m \nabla_m K_{ij} + K_{im} \nabla_j \beta^m + K_{mj} \nabla_i \beta^m.$ (2.2)

Hamiltonian + Momentum constraints

$${}^{(3)}R + K^2 - K_{ij}K^{ij} - 16\pi\rho_{\rm ADM} = 0$$
$$\nabla_i K^{ij} - \gamma^{ij}\nabla_i K - 8\pi j^i = 0$$

4.4: Convergenza della norma L2 del vincolo hamiltoniano a differenti zioni di griglia per una stella () con equazione to politrop**parma International Schoo**ello Allo fruttonistos, september 8 – 13, 2008 a le grandezze sono calcolate nell'ottante , e e riprodotte flessione.

WHISKY \Rightarrow Matter evolution

Write hydrodynamic equation in a flux conservative form [*] J. A. Font, Living Rev. Relativity 6, 4 (2003).

 $\nabla_{\mu} T^{\mu\nu} = 0 ,$ $\nabla_{\mu} (\rho u^{\mu}) = 0 .$

$$\partial_t \mathbf{q} + \partial_i \mathbf{f}^{(i)}(\mathbf{q}) = \mathbf{s}(\mathbf{q})$$

$$\mathbf{q} \equiv (D, S^i, \tau)$$

$$D \equiv \rho^* = \sqrt{\gamma} W \rho ,$$

$$S^{i} \equiv \sqrt{\gamma}\rho h W^{2} v^{i} ,$$

$$\tau \equiv \sqrt{\gamma} \left(\rho h W^{2} - p\right) - D$$

 $T^{\mu\nu} = \rho h u^{\mu} u^{\nu} + p g^{\mu\nu}$

 $h = 1 + \varepsilon + \frac{p}{2}$

Stable evolutions of stable star!

_4 ∨ 10	ρ(0,y,0)						
4	····						
3	and the second						
2							
1	с <mark>.</mark>						
0 <u>1</u> 60		50					
40 20		0					
	0 -50						
		v _× (0,y,0)					
0.3	······································						
0.1							

	β	Full GR	CFC [1]
A9	0.189	791 Hz	809 Hz
A10	0.223	674 Hz	685 Hz

[1] Dimmelmeier, Stergioulas, Font: astro-ph/0511394

Parma International School of Theoretical Physics, September 8 – 13, 2008

Computers for Numerical Relativity

- standard workstation nodes: e.g., biprocessor Opteron/Intel with 4-8 GBytes of RAM
- Fast interconnection, e.g.,
 Infiniband
- A front-end workstation
- MPI communication Library
- Huge storage space to save results of the simulations

Computers for Numerical Relativity

Parma International School of Theoretical Physics, September 8 – 13, 2008

Code scaling on MPI clusters

The state of the s

UNIGRID

Total time for simulation

Parma International School of Theoretical Physics, September 8 – 13, 2008

Roberto De Pietri: Introduction to Numerical Relativity 21

Total time for simulation

3Level

Numerical relativity at work

Neutron star merger: low-mass merger to NS + disk

A CONTRACTOR OF THE AND THE PARTY AND THE AND

Numerical relativity at work

Neutron star merger: high-mass merger to BH + disk

Numerical relativity at work Neutron star merger: high-mass merger to BS + disk

Parma International School of Theoretical Physics, September 8 - 13, 2008

SNR BH-BH @ 100Mpc

2008

The second and the second of t

At 100 Mpc to be scaled by: $\sim 10^{-21} M/M_{\odot}$

$$SNR^2 = 4 \int df \; \frac{|\tilde{h}(f)|^2}{S_{hh}(f)}$$

SNR Dual SiC=1.4 SNR QUAD Si=3.9

Two bodies merging of NS-NS

Shibata et all., Phys.Rev. D71,084021 (2005) Shibata-Taniguchi, Phys.Rev. D73, 064027 (2006)

Model	$M_\infty(M_\odot)$
APR1313	1.30, 1.30
APR1214	1.20, 1.40
APR135135	1.35, 1.35
APR1414	1.40, 1.40
APR1515	1.50, 1.50
APR145155	1.45, 1.55
APR1416	1.40, 1.60
APR135165	1.35, 1.65
APR1317	1.30, 1.70
APR125175	1.25, 1.75
APR1218	1.20, 1.80
SLy1313	1.30, 1.30
SLy1414	1.40, 1.40
SLy135145	1.35, 1.45
SLy1315	1.30, 1.50
SLy125155	1.25, 1.55
SLy1216	1.20, 1.60

$$h_{\rm gw} \approx 10^{-22} \left(\frac{\sqrt{R_+^2 + R_\times^2}}{0.31 \text{ km}} \right) \left(\frac{100 \text{ Mpc}}{r} \right)$$

 $f_{merger} = 6.5 \text{ kHz}$

-20

-10

0

10

20

-20 -10

10

0

20

-20

-10

0

10

20

-20

-10

0

20

10

Simulation APR1313

$$h_{\rm eff} \equiv \sqrt{|\bar{R}_+|^2 + |\bar{R}_\times|^2 f}$$

= 1.8 × 10⁻²¹ $\left(\frac{dE/df}{10^{51} \text{ erg/Hz}}\right)^{1/2} \left(\frac{100 \text{ Mpc}}{r}\right)^{1/2}$

 $R_{+}(km)$

h_{eff}

Simulation APR1313

S/N for the merger phase

Blu-line is EOB

32

Numerical relativity at work

T=00.00 M=1.5065 L=3.5401

and the second second

Movies

37

 $\beta = 0.2743$

Simulation Ub11

(Movies: http://www.fis.unipr.it/numrel/)

With a fair was a for an and the second of t

 $\beta = 0.2821$

Simulation Ub13

(Movies: http://www.fis.unipr.it/numrel/)

Where a first which the second of the second

C			10	X		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.044	\bigtriangledown			— (3	
-	974.Size- 206	inis mine			\bigwedge				->				
	Model	eta	notes	$t_i t_f$	η	τ_B	f_B						
				ms ms	(max)	(ms)	HZ		()			'	
	S6	0.240	$\delta = .04$	3 9	0.02	7	740	Ĺ	1) ^L -31			<u>\$2</u>	
	S5	0.245	$\delta = .04$	3 9	0.02		705		°			\rightarrow	
	S4	0.250	$\delta = .04$	39	0.03		556	A	-4	\searrow	\nearrow		
	S 3	0.252	$\delta = .04$	3 9	0.04		511	\backslash	-5		-		
	S2	0.253	$\delta = .04$	3 9	0.05		588		0 2	z 4 time	0 ≥ (msec)	0 10	_
	S1	0.254	$\left \begin{array}{c} \delta \\ \delta \end{array} \right = 0.04$	3 0	0.00*	9715	578		10.02 <u>/</u>				
	UI1	0.254	$\delta = 04$		0.05	5 26 5	67		0.01	$ \land $		\wedge \wedge	S 6
	01	0.255	004		0.15	5.20			0				
	<u>S1</u>	0.254		45 63	0.02	+ + =	99	\backslash	-0.01		\bigvee	JV	
	U1	0.255		45 63	0.13*	22.1 5	588 V	\backslash	-0.02 0 1	2 3 EIT: t = 9.404	4 5 (6 7 8 3 0306 + (0 4729)	9 10
					2			Ż	4	g g 3.404	± (0.4723) 1 = 740		1.11
	6	($\boldsymbol{\lambda}$	$s \cap \left(\right)^{2}$	$c_{1}^{2} - c_{2}^{2}$	$y^2 \setminus $	\land						UI
	$o\rho_2$	(x, y)	$(,z) \neq$	$\mathcal{O}_2 \setminus [7]$	$\sqrt{r^2}$	$\langle J \rangle$	Q, /						
					\\^¢	\bigvee	\bigvee						
							-						
	Parma Inte	rnational S		ווכעו דוואסונס,	September	0 - 13, 2000							40
													40

Un-perturbate dynamics at the threshold

Parma International School of Theoretical Physics, September 8 – 13, 2008

Unperturbed dynamics Different value of β Importance of non linear coupling at the threshold

Second Method

Instability Diagram in full GR

Extending parameter space

Parma International School of Theoretical Physics, September 8 – 13, 2008

Conclusions

- Numerical relativity is ready to simulate real physics
- A lot of work to do:
 - NS-NS merger with realistic EOS
 - MAGNETO-HYDRODYNAMICS
 - INSTABILITIES of isolated stars
 - Accretion driven collapse (of a NS to a BH)