Problems on Event Generator Physics

Use the event generator of your choice for the following exercises.

- 1. Generate hadronic Z^0 decays via $e^+e^- \to Z^0 \to q\bar{q}$ (q=d,u,s,c,b). Compare the charged multiplicity distribution and the distribution of $\ln(1/x_p)$ $(x_p=2|\mathbf{p}|/\sqrt{s})$ with LEP1 data.
- 2. Generate $e^+e^- \to q\bar{q}$ (q=d,u,s,c,b) at higher energies, $\sqrt{s}=200,500,1000$ GeV. (Turn off QED radiation, otherwise you will be dominated by $e^+e^- \to Z^0\gamma$.)
 - (a) Compare the mean charged multiplicity with the QCD prediction

$$\langle n_{\rm ch} \rangle \sim a \frac{\exp \sqrt{cL}}{\sqrt{L}}$$

where a is a non-perturbative constant, c=72/23 and $L=\ln(s/\Lambda^2)$. At each energy, compute the variance and hence the error in your MC result.

(b) Compare the position ξ_p of the peak in the distribution of $\ln(1/x_p)$ with the QCD prediction

$$\xi_p \sim \text{const} + \frac{1}{4} \ln s$$
.

- 3. Generate $e^+e^- \to t\bar{t}$ at threshold and force the tops to decay leptonically (to e or μ).
 - (a) Compare the charged and neutral lepton p_T distributions with those shown in the lectures.
 - (b) Explain why the neutrinos tend to have higher p_T than the charged leptons. How would things change if the decay went via $t \to bH^+$ with $m_{H^+} = m_W$?
- 4. Same as qu.3, but for $pp \to t\bar{t}X$ at LHC energy ($\sqrt{s} = 14$ TeV). Here p_T should be defined relative to the direction of motion of the parent t or \bar{t} .