Introduction into Standard Model and Precision Physics – Lecture V –

Stefan Dittmaier

MPI München

General overview

- Lecture I Standard Model (part 1)
- Lecture II Standard Model (part 2)
- Lecture III Quantum Corrections
- Lecture IV Unstable Particles (part 1)
- Lecture V Unstable Particles (part 2)
- **11** The pole scheme for radiative corrections to resonance processes
- 12 Single-W production at hadron colliders
- **13** $e^+e^- \rightarrow WW \rightarrow 4f$: double-pole approximation vs. complex-mass scheme

11 The pole scheme for radiative corrections to resonance processes

11.1 General strategy for a single resonance

Stuart '91; H.Veltman '92; Aeppli, v.Oldenborgh, Wyler '94

The idea: expansion about resonance pole

$$\mathcal{M} = \frac{R(p^2)}{p^2 - m^2} + N(p^2) = \frac{R(m^2)}{p^2 - m^2} + \frac{R(p^2) - R(m^2)}{p^2 - m^2} + N(p^2)$$

$$\hookrightarrow \underbrace{\frac{R(m^2)}{p^2 - m^2 + im\Gamma}}_{\text{resonant}} + \underbrace{\frac{R(p^2) - R(m^2)}{p^2 - m^2}}_{\text{non-resonant}} + N(p^2)$$

Benefits / drawbacks / subtleties:

- procedure is gauge invariant, because residue $R(m^2)$ is gauge invariant
- scheme is applicable to higher orders
- $R(p^2)$ in general not analytic at $p^2 = m^2$
 - $\hookrightarrow \ \ \text{``non-factorizable corrections''} \quad (i.e. \ \text{not of the form const.} \times \text{Breit-Wigner}) \\$
- $R(m^2)$ is "ambiguous", because it depends on other phase-space variables $\hookrightarrow R(m^2)$ depends on choice of phase-space parametrization
- reliability questionable in presence of small scales, e.g. γ radiation with $E_{\gamma} \sim \Gamma$, vicinity of thresholds: $E - E_{\text{threshold}} \sim \Gamma$

The pole expansion including higher orders:

Starting point: complete matrix element $\mathcal{M} = \underbrace{\frac{W(p^2)}{p^2 - m^2 + \Sigma(p^2)}}_{=\mathcal{M}'} + N(p^2)$

Isolation of pole structure:

recall:
$$p^2 - m^2 + \Sigma(p^2) = p^2 - M^2 + \Sigma(p^2) - \Sigma(M^2)$$

= $(p^2 - M^2)[1 + \Sigma'(M^2)] + \mathcal{O}((p^2 - M^2)^2)$

$$\Rightarrow \mathcal{M}' = \frac{W(M^2)}{p^2 - M^2} \frac{1}{1 + \Sigma'(M^2)} + \left[\frac{W(p^2)}{p^2 - m^2 + \Sigma(p^2)} - \frac{W(M^2)}{p^2 - M^2} \frac{1}{1 + \Sigma'(M^2)} \right]$$
$$\equiv \frac{w}{p^2 - M^2} + n(p^2)$$

Comments:

- complex pole mass M as well as w and $\Sigma(M^2)$ are gauge invariant
- evaluation of $W(M^2)$ for complex $p^2 = M^2$ not straightforward !

But:
$$w \text{ and } n(p^2) \text{ can be perturbatively obtained}$$

from quantities with real momenta Aeppli et al. '94

Perturbative evaluation of w and $n(p^2)$:

Alternative expansion of resonant diagrams about real mass m^2 :

$$\mathcal{M}' = \frac{W(p^2)}{p^2 - m^2} \sum_{n=0}^{\infty} \left(\frac{-\Sigma(p^2)}{p^2 - m^2}\right)^n = \bar{N}(p^2) + \frac{W_{-1}}{p^2 - m^2} + \sum_{n=2}^{\infty} \frac{W_{-n}}{(p^2 - m^2)^n}$$

 \hookrightarrow perturbative expansion for coefficients:

$$W_{-1} = W(m^2) + \frac{d}{dp^2} \Big[-W(p^2)\Sigma(p^2) \Big]_{p^2 = m^2} + \frac{1}{2} \frac{d^2}{d(p^2)^2} \Big[W(p^2)\Sigma^2(p^2) \Big]_{p^2 = m^2} + \dots$$

$$\bar{N}(p^2) = \frac{W(p^2) - W(m^2)}{p^2 - m^2} - \frac{W(p^2)\Sigma(p^2) - W(m^2)\Sigma(m^2) - (p^2 - m^2)\frac{d}{dp^2} \Big[W(p^2)\Sigma(p^2) \Big]_{p^2 = m^2}}{(p^2 - m^2)^2} + \dots$$

One can show to all orders:

(see next slides)

$$w = W_{-1}, \qquad n(p^2) = \bar{N}(p^2)$$

 \hookrightarrow residue and non-resonant remainder can be obtained from perturbative calculation with real $p^2 = m^2$

Proof that $w = W^{-1}$:

$$W_{-1} = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\frac{\mathrm{d}^n}{\mathrm{d}s^n} W(s) \left(-\Sigma(s) \right)^n \right]_{s=m^2}$$

Expand [...] with $s = M^2 + (m^2 - M^2)$ about $s = M^2$:

$$W_{-1} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{\infty} \frac{1}{k!} \left[\frac{\mathrm{d}^{n+k}}{\mathrm{d}s^{n+k}} W(s) \left(-\Sigma(s)\right)^n \right]_{s=M^2} \underbrace{(m^2 - M^2)}_{=\Sigma(M^2)}^k \\ = \sum_{n,k=0}^{\infty} \frac{1}{(n+k)!} \binom{n+k}{n} \left[\frac{\mathrm{d}^{n+k}}{\mathrm{d}s^{n+k}} W(s) \left(-\Sigma(s)\right)^n \left(\Sigma(M^2)\right)^k \right]_{s=M^2} \\ = \sum_{r=0}^{\infty} \frac{1}{r!} \frac{\mathrm{d}^r}{\mathrm{d}s^r} \left[W(s) \underbrace{(\Sigma(M^2) - \Sigma(s))^r}_{=[-\Sigma'(M^2)]^r(s-M^2)^r + \dots} \right]_{s=M^2}, \quad r = n+k$$

Only the terms $\propto [-\Sigma'(M^2)]^r$ survive after setting $(s - M^2)$:

$$\Rightarrow W_{-1} = \sum_{r=0}^{\infty} W(M^2) [-\Sigma'(M^2)]^r = \frac{W(M^2)}{1 + \Sigma'(M^2)} = w$$

Proof that $n(p^2) = \overline{N}(p^2)$:

Formal manipulations with Taylor series:

$$\begin{split} \bar{N}(s) &= \frac{W(s) - W(m^2)}{s - m^2} - \frac{W(s)\Sigma(s) - W(m^2)\Sigma(m^2) - (s - m^2)\frac{d}{ds} \left[W(s)\Sigma(s)\right]_{s=m^2}}{(s - m^2)^2} + \dots \\ &= \sum_{n=0}^{\infty} (s - m^2)^{-n-1} \left(W(s) \left(-\Sigma(s)\right)^n - \sum_{k=0}^n \frac{1}{k!} \left[\frac{d^k}{ds^k} W(s) \left(-\Sigma(s)\right)^n\right]_{s=m^2} (s - m^2)^k\right) \\ &= \sum_{n=0}^{\infty} \sum_{k=n+1}^{\infty} \frac{1}{k!} \left[\frac{d^k}{ds^k} W(s) \left(-\Sigma(s)\right)^n\right]_{s=m^2} (s - m^2)^{k-n-1}, \qquad k = n + \ell \\ &= \sum_{\ell=1}^{\infty} (s - m^2)^{\ell-1} \sum_{n=0}^{\infty} \frac{1}{(n+\ell)!} \left[\frac{d^{n+\ell}}{ds^{n+\ell}} W(s) \left(-\Sigma(s)\right)^n\right]_{s=m^2}, \qquad n = r - \ell \\ &= \sum_{\ell=1}^{\infty} (s - m^2)^{\ell-1} \left\{\sum_{r=0}^{\infty} -\sum_{r=0}^{\ell-1}\right\} \frac{1}{r!} \left[\frac{d^r}{ds^r} \frac{W(s)}{[-\Sigma(s)]^\ell} \left(-\Sigma(s)\right)^r\right]_{s=m^2} \\ &= -\frac{W(M^2)}{s - M^2} \frac{1}{1 + \Sigma'(M^2)} + \frac{W(s)}{s - m^2 + \Sigma(s)} \qquad (\text{see next page}) \\ &= n(s) \end{split}$$

Proof that $n(p^2) = \overline{N}(p^2)$: (continued)

First term in curly brackets:

$$\sum_{\ell=1}^{\infty} (s-m^2)^{\ell-1} \sum_{\substack{r=0\\r=0}}^{\infty} \frac{1}{r!} \left[\frac{\mathrm{d}^r}{\mathrm{d}s^r} \frac{W(s)}{[-\Sigma(s)]^{\ell}} \left(-\Sigma(s) \right)^r \right]_{s=m^2}$$

known from proof that $w = W_{-1}$

$$= \sum_{\ell=1}^{\infty} (s-m^2)^{\ell-1} \frac{W(M^2)}{[-\Sigma(M^2)]^{\ell}} \frac{1}{1+\Sigma'(M^2)}$$

$$= \frac{1}{-\Sigma(M^2)} \frac{W(M^2)}{1+\Sigma'(M^2)} \sum_{\ell'=0}^{\infty} \frac{(s-m^2)^{\ell'}}{[-\Sigma(M^2)]^{\ell'}} = -\frac{W(M^2)}{s-M^2} \frac{1}{1+\Sigma'(M^2)}$$

Second term in curly brackets:

$$\begin{aligned} &-\sum_{\ell=1}^{\infty} \sum_{r=0}^{\ell-1} (s-m^2)^{\ell-1} \frac{1}{r!} \left[\frac{\mathrm{d}^r}{\mathrm{d}s^r} \frac{W(s)}{[-\Sigma(s)]^{\ell}} \left(-\Sigma(s) \right)^r \right]_{s=m^2}, \qquad \ell = \ell' + r \\ &= -\sum_{\ell'=1}^{\infty} \sum_{r=0}^{\infty} (s-m^2)^{\ell'+r-1} \frac{1}{r!} \left[\frac{\mathrm{d}^r}{\mathrm{d}s^r} \frac{W(s)}{[-\Sigma(s)]^{\ell'}} \right]_{s=m^2} \\ &= -\sum_{\ell'=1}^{\infty} (s-m^2)^{\ell'-1} \frac{W(s)}{[-\Sigma(s)]^{\ell'}} = \frac{W(s)}{s-m^2 + \Sigma(s)} \end{aligned}$$

Perturbative ordering in pole scheme:

First step: calculate M^2 from $M^2 = m^2 - \Sigma^{(1)+...+(n+1)}(M^2)$ \hookrightarrow yields Γ in M^2 up to *n*-loop order

Expansion of matrix element:

 $(A^{(n)} \equiv n \text{-loop contribution to } A)$

$$\begin{split} \mathcal{M} &= \frac{W(p^2)}{p^2 - m^2 + \Sigma(p^2)} + N(p^2) \\ &= \frac{W(M^2)}{p^2 - M^2} \frac{1}{1 + \Sigma'(M^2)} + n(p^2) + N(p^2) \\ &= \frac{W^{(0)}(m^2)}{p^2 - M^2} \\ &+ \frac{W^{(1)}(m^2)}{p^2 - M^2} - \frac{W^{(0)}(m^2)\Sigma^{(1)'}(m^2)}{p^2 - M^2} - \frac{W^{(0)'}(m^2)\Sigma^{(1)}(m^2)}{p^2 - M^2} \\ &+ \frac{W^{(0)}(p^2) - W^{(0)}(m^2)}{p^2 - m^2} + N^{(0)}(p^2) \\ &+ \frac{W^{(0)}(p^2) - W^{(0)}(m^2)}{p^2 - m^2} + N^{(0)}(p^2) \\ &+ non-factorizable corrections \end{split}$$

+ higher orders

Modified (improved!) version of the pole expansion:

Inclusion of lowest order without pole expansion:

$$\mathcal{M} = \mathcal{M}^{(0)} \begin{cases} \mathsf{LO:} \\ \mathsf{complete leading order} \\ + \frac{W^{(1)}(m^2)}{p^2 - M^2} - \frac{W^{(0)}(m^2)\Sigma^{(1)'}(m^2)}{p^2 - M^2} \\ + \mathsf{non-factorizable corrections} \\ + \mathsf{higher orders} \end{cases} \mathsf{NLO:} \\ \mathsf{correction to residue} \\ \mathsf{and} \\ \mathsf{non-fact. corrections} \\ \end{cases}$$

Comments:

- inclusion of $\mathcal{M}^{(0)}$ is usually easier than its expansion
- wave-function correction $\Sigma^{(1)\prime}(m^2) = 0$ in on-shell renormalization scheme
- naive estimate of relative theoretical uncertainty (TU) in NLO:

TU ~ $\begin{cases} \frac{\alpha}{\pi} \times \frac{\Gamma}{m} \times \text{const.} & \text{in resonance region } |p^2 - m^2| \lesssim m\Gamma \\ \frac{\alpha}{\pi} \times \text{const.} & \text{off resonance } |p^2 - m^2| \gg m\Gamma \end{cases}$

Factorizable corrections:

$$\mathcal{M}_{\text{fact.}}^{(1)} = \frac{W^{(1)}(m^2) - W^{(0)}(m^2)\Sigma^{(1)\prime}(m^2)}{p^2 - M^2}$$

$$= \sum_{\lambda} \frac{\mathcal{M}_{\text{production}}^{(1)}(\lambda)\mathcal{M}_{\text{decay}}^{(0)}(\lambda) + \mathcal{M}_{\text{production}}^{(0)}(\lambda)\mathcal{M}_{\text{decay}}^{(1)}(\lambda)}{p^2 - M^2}$$

$$\xrightarrow{\stackrel{\cdot X}{\stackrel{\cdot}{\overset{\cdot}{}}} \phi_1}{\stackrel{\cdot}{\overset{\cdot}{}} \phi_n} \qquad \xrightarrow{\stackrel{\cdot X}{\overset{\cdot}{}} \phi_1}{\stackrel{\cdot}{\overset{\cdot}{}} \phi_n}$$

Subtlety in kinematics:

gauge invariance of $\mathcal{M}^{(n)}_{\rm production/decay}$ requires $p^2=m^2$

 \hookrightarrow "on-shell projection" of momenta needed !

Example:

off-shell phase space: $(p_1 + p_2 - k)^2 = p^2 \neq m^2$ \hookrightarrow define \hat{k} (e.g. from angle of k) such that $(p_1 + p_2 - \hat{k})^2 = m^2$

Non-factorizable corrections:

Melnikov, Yakovlev '96; Beenakker, Berends, Chapovsky '97; Denner, Dittmaier, Roth '97,'98

Origin:

on-shell limit ($p^2 \rightarrow m^2$) and IR regularization (e.g. $m_{\gamma} \rightarrow 0$) do not commute

in diagrams with exchange of γ/g between external and/or resonant lines:

"manifestly non-factorizable"

- diagram has no explicit propagator factor $(p^2 - m^2)^{-1}$
- resonant IR-divergent contribution in loop integral from region $q \rightarrow 0$

"not manifestly non-factorizable" diagrams

- diagram has explicit propagator factor $(p^2 m^2)^{-1}$ and contributes also to factorizable corrections $W^{(1)}(m^2)$
- non-factorizable part:

$$W^{(1)}_{\text{non-fact.}}(p^2) \equiv \left[W^{(1)}(p^2) - W^{(1)}(m^2) \right]_{p^2 \to m^2}$$

 \hookrightarrow receives only contributions from $q \to 0$

Evaluation of NLO non-factorizable corrections:

Only leading behaviour of loop integrands for soft-photon momentum $q \rightarrow 0$ relevant

- \hookrightarrow "Extended soft-photon (or gluon) approximation":
 - neglect q in numerator of diagrams \rightarrow scalar loop integrals only
 - q only kept in propagators that become singular for $q \rightarrow 0$
 - resonance propagators are dressed with complex mass: $[(p+q)^2 M^2]^{-1}$
 - take limits $p^2, M^2 \rightarrow m^2$ in final result whenever possible

Result factorizes from Born amplitude: $\mathcal{M}_{non-fact.}^{virt} = \delta_{non-fact.}^{virt} \mathcal{M}^{(0)}$

Features of $\delta_{non-fact.}^{virt}$:

- gauge independent by definition
- contains contributions like $\alpha \ln \left(\frac{p^2 M^2}{m_{\gamma}M}\right)$ from non-commutativity of on-shell and soft-photon limits
- free of collinear singularities from external particles
- various cancellations after addition of corresponding real-photon contributions:
 - $\diamond\,$ no resonant contribution from photon exchange between initial and final states
 - $^{\diamond}\,$ non-local cancellation of whole effect after integration over p^2

11.2 Real corrections to resonance processes

Calculation of real NLO corrections:

- NLO: 1-particle bremsstrahlung in LO (tree-level diagrams)
- $\,\hookrightarrow\,$ LO prescriptions for resonances applicable
- But: real $|\mathcal{M}_{i \to f+\gamma/g}|^2$ is related to $2 \operatorname{Re} \{\mathcal{M}_{i \to f}^{(0)*} \mathcal{M}_{i \to f}^{(1)}\}$ in soft and collinear limits, \hookrightarrow matching between resonance descriptions in virtual and real corrections !

Pole expansions for real corrections:

Split diagrams with radiating resonances (2 resonant propagators) as follows:

$$\frac{1}{[(p+k)^2 - M^2](p^2 - M^2)} = \frac{1}{2pk} \left[\frac{1}{p^2 - M^2} - \frac{1}{(p+k)^2 - M^2} \right]$$

$$\frac{1}{[(p+k)^2 - M^2](p^2 - M^2)} = \frac{1}{2pk} \left[\frac{1}{p^2 - M^2} - \frac{1}{(p+k)^2 - M^2} \right]$$

 $E_\gamma \gg \Gamma_{\rm W}$ (hard photon): photon can be assigned to production or decay, resonances are well separated in phase space

- \hookrightarrow pole-scheme decomposition contains two leading on-shell contributions
- $E_{\gamma} = \mathcal{O}(\Gamma_{W})$ ("semi-soft photon"): two resonances overlap in phase space
 - \hookrightarrow definition of leading-pole approximation potentially problematic

(definition depends on specific observable; keep p^2 or $(p-k)^2$ fixed ?)

Enhancement of real-photon emission due to collinear singularities

Collinear photon emission off light particles:

→ leads to mass-singular universal corrections
 which can be described via "structure functions" in leading-log approximation:

$$\Gamma_{ff}(x, M^2) = \delta(1-x) + \frac{Q_f^2 \alpha}{2\pi} \ln\left(\frac{M^2}{m_f^2}\right) \left(\frac{1+x^2}{1-x}\right)_+ + \dots$$

$$\rightarrow \text{ e.g. } \sigma_{e^+e^- \to X}^{ISR}(p_+, p_-) \approx \int_0^1 dx_1 \Gamma_{ee}(x_1, M^2) \int_0^1 dx_2 \Gamma_{ee}(x_2, M^2) \sigma_{e^+e^- \to X}^{Born}(x_1 p_+, x_2 p_-)$$

Comments:

- M = QED factorization scale = typical scale of process (set by full calculation)
- structure fucntions Γ_{ff} , etc., known up to $\mathcal{O}(\alpha^5) \oplus \mathsf{IR}$ exponentiation
- unitarity / KLN theorem demands $\int_0^1 dx \Gamma_{ff}(x, M^2) = 1$ \hookrightarrow mass singularities cancel for FSR if $f + n\gamma$ is treated inclusively for collinear γ s
- ISR / FSR can lead to large effects, e.g. distortion of resonances

Distortion of resonance shapes by real radiation:

Initial state fixed:

Typical situations:

$$e^+e^- \rightarrow Z \rightarrow f\bar{f},$$

 $\mu^+\mu^- \rightarrow Z, H, ? \rightarrow f\bar{f}$

 $\hookrightarrow\,$ scan over s-channel resonance in $\sigma(s)$ by changing CM energy \sqrt{s}

Initial-state radiation (ISR):

Z can become resonant for $s=(p_++p_-)^2 > (p_++p_--k_\gamma)^2 \sim M_Z^2$

 $\,\hookrightarrow\,$ radiative tail for $s>M_{\rm Z}^2$ due to "radiative return"

Final-state radiation (FSR):

 $s=k_{\rm Z}^2\sim M_{\rm Z}^2$ for FSR

 \hookrightarrow only rescaling of resonance

An example:

cross section for $\mu^-\mu^+ \rightarrow b\bar{b}$ in lowest order and including photonic and QCD corrections, with and without invariant-mass cut $\sqrt{s} - M(b\bar{b}) < 10 \,\text{GeV}$

Distortion of resonance shapes by real radiation:

Resonance reconstructed from decay products:

Typical situations: $e^+e^- \rightarrow WW/ZZ \rightarrow 4f$, $pp \rightarrow Z \rightarrow f\bar{f} + X$

 \hookrightarrow resonance in invariant-mass distribution $\frac{\mathrm{d}\sigma}{\mathrm{d}M}$ of reconstructed invariant mass M

Final-state radiation (FSR):

resonance for $M^2 = (k_1 + k_2)^2 < (k_1 + k_2 + k_\gamma)^2 \sim M_Z^2$ \hookrightarrow radiative tail for $M < M_Z$

An example:

Z in
$$e^+e^- \rightarrow ZZ \rightarrow 4l$$

reconstructed via $M_{ee} = (p_{l_1} + p_{l_2})^2$
lowest order, $\mathcal{O}(\alpha)$ FSR,
and higher-order FSR beyond $\mathcal{O}(\alpha)$

(continued)

12 Single-W production at hadron colliders

Drell–Yan-like W and Z production:

Physics goals:

- $M_Z \rightarrow$ detector calibration by comparing with LEP1 result
- $\sin^2 \theta_{\text{eff}}^{\text{lept}} \rightarrow \text{ comparison with results of LEP1 and SLC}$
- $\bar{\nu}_l, l^+$ $M_W \rightarrow$ improvement to $\Delta M_W \sim 15 \,\mathrm{MeV}$
 - decay widths $\Gamma_{\rm Z}$ and $\Gamma_{\rm W}$ from M_{ll} or $M_{{\rm T},l\nu_l}$ resonance tails
 - search for Z' and W' at high M_{ll} or $M_{T,l\nu_l}$
 - information on PDFs

Partonic cross section and W-boson resonance:

Born amplitude:

$$\mathcal{M}_{0} = \frac{e^{2}}{2s_{W}^{2}} \left[\bar{v}_{d} \gamma^{\mu} \frac{1}{2} (1 - \gamma_{5}) u_{u} \right] \frac{1}{s - M_{W}^{2} + i M_{W} \Gamma_{W}} \left[\bar{u}_{\nu_{l}} \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) v_{l} \right]$$

Electroweak corrections:

Dittmaier, Krämer '02; Baur, Wackeroth '04 Arbuzov et al. '05; Carloni Calame et al. '06

virtual corrections:

W self-energy

Wud and $Wl\nu_l$ vertex corrections

box diagrams

inclusion in factorized form: $|\mathcal{M}_0 + \mathcal{M}_1|^2 = (1 + 2 \operatorname{Re}\{\delta^{\operatorname{virt}}\})|\mathcal{M}_0|^2 + \dots$ with $\delta^{\text{virt}} = \delta_{\text{self}}(\hat{s}) + \delta_{Wdu}(\hat{s}) + \delta_{W\nu_l}(\hat{s}) + \delta_{\text{box}}(\hat{s}, \hat{t})$

- $\hookrightarrow \delta^{\text{virt}}$ gauge independent in limit $\Gamma_{\text{W}} \to 0$, non-analytic terms in δ^{virt} described via $\ln(\hat{s} - M_W^2) \rightarrow \ln(\hat{s} - M_W^2 + iM_W\Gamma_W)$
- real photon corrections:

full amplitude calculation for $u\bar{d} \rightarrow \nu_l l^+ \gamma$ with complex W mass

 \hookrightarrow gauge invariant with correct IR (soft and collinear) limits

Electroweak corrections in Pole Approximation (PA):

 \hookrightarrow decomposition into factorizable and non-factorizable contributions:

$$\begin{split} \delta_{\mathrm{PA}}^{\mathrm{virt}} &= \delta_{\mathrm{fact}}^{\mathrm{virt}} + \delta_{\mathrm{nonfact}}^{\mathrm{virt}}(\hat{s}, \hat{t}) \\ \delta_{\mathrm{fact}}^{\mathrm{virt}} &= \delta_{Wdu}(M_{\mathrm{W}}^2)|_{\Gamma_{\mathrm{W}}=0} + \delta_{W\nu_l l}(M_{\mathrm{W}}^2)|_{\Gamma_{\mathrm{W}}=0} \\ \delta_{\mathrm{nonfact}}^{\mathrm{virt}}(\hat{s}, \hat{t}) &= \delta^{\mathrm{virt}}|_{\hat{s} \to M_{\mathrm{W}}^2, \Gamma_{\mathrm{W}} \to 0} - \delta_{\mathrm{fact}}^{\mathrm{virt}} \\ &= -\frac{\alpha}{2\pi} \Big\{ -2 + Q_d \operatorname{Li}_2 \Big(1 + \frac{M_{\mathrm{W}}^2}{\hat{t}_{\mathrm{res}}} \Big) - Q_u \operatorname{Li}_2 \Big(1 + \frac{M_{\mathrm{W}}^2}{\hat{u}_{\mathrm{res}}} \Big) \\ &+ 2 \ln \Big(\frac{M_{\mathrm{W}}^2 - \mathrm{i}M_{\mathrm{W}}\Gamma_{\mathrm{W}} - \hat{s}}{m_{\gamma}M_{\mathrm{W}}} \Big) \Big[1 + Q_d \ln \Big(-\frac{M_{\mathrm{W}}^2}{\hat{t}_{\mathrm{res}}} \Big) - Q_u \ln \Big(-\frac{M_{\mathrm{W}}^2}{\hat{u}_{\mathrm{res}}} \Big) \Big] \Big\} \end{split}$$

PA versus full $\mathcal{O}(\alpha)$ correction:

$\sqrt{\hat{s}}/{ m GeV}$	40	80	120	200	500	1000	2000
$\hat{\sigma}_0/\mathrm{pb}$	2.646	7991.4	8.906	1.388	0.165	0.0396	0.00979
$\delta/\%$	0.7	2.42	-12.9	-3.3	12	19	23
$\delta_{ m PA}/\%$	0.0	2.40	-12.3	-0.7	18	31	43

error estimate:
$$|\delta_{\rm A}^{\rm virt} - \delta^{\rm virt}| \sim \frac{\alpha}{\pi} \max\left\{\frac{\Gamma_{\rm W}}{M_{\rm W}}, \ln\left(\frac{\hat{s}}{M_{\rm W}^2}\right), \ln^2\left(\frac{\hat{s}}{M_{\rm W}^2}\right)\right\} \times \text{const.}$$

Hadronic pp cross section and Jacobian peak:

Note: ν_l not detectable \rightarrow e.g. study "transverse W mass":

$$M_{\mathrm{T},\nu_l l}^2 = (E_{\mathrm{T},\mathrm{miss}} + E_{\mathrm{T},l})^2 - (\mathbf{p}_{\mathrm{T},\mathrm{miss}} + \mathbf{p}_{\mathrm{T},l})^2$$

- pole approximation (PA) for W resonance sufficient near Jacobian peak, but not for large $M_{\mathrm{T},\nu_l l}$
- EW corrections sensitively depend on treatment of photon radiation
 - $\,\hookrightarrow\,$ issue of inclusiveness / KLN violation causes large effects

13 $e^+e^- \rightarrow WW \rightarrow 4f$: double-pole approximation vs. complex-mass scheme

13.1 Double-pole approximation (DPA)

Structure of Monte Carlo generators with EW corrections used at LEP2: *RacoonWW* (Denner, Dittmaier,Roth,Wackeroth) and *KoralW* \oplus *YFSWW* (Jadach,Płaczek,Skrzypek,Ward) include

• full lowest-order matrix elements for $e^+e^- \rightarrow 4f(+\gamma)$

signal diagrams

non-universal electroweak corrections DPA

leading term in expansion about W resonances

- \hookrightarrow contributions:
 - corrections to $ee \to WW$
 - corrections to $W \to f\bar{f}'$
- Böhm et al. '88; Fleischer, Jegerlehner, Zralek '89
- Bardin, S. Riemann, T. Riemann '86 Jegerlehner '86; Denner, Sack '90
- non-factorizable photonic corrections $_{\rm B}^{\rm N}$

Melnikov, Yakovlev '96 Beenakker, Berends, Chapovsky '97 Denner, Dittmaier, Roth '97

• improvements by leading higher-order corrections

Virtual corrections in DPA:

• Factorizable corrections:

$$\mathcal{M}_{\text{virt,fact,DPA}}^{\text{e^+e^-} \rightarrow \text{WW} \rightarrow 4f} = \frac{R(M_{\text{W}}^2, M_{\text{W}}^2)}{(k_+^2 - M_{\text{W}}^2 + \mathrm{i}M_{\text{W}}\Gamma_{\text{W}})(k_-^2 - M_{\text{W}}^2 + \mathrm{i}M_{\text{W}}\Gamma_{\text{W}})}$$

with the gauge-independent residue

$$R(M_{W}^{2}, M_{W}^{2}) = \sum_{W\text{-pols}} \left(\delta \mathcal{M}^{e^{+}e^{-} \rightarrow W^{+}W^{-}} \mathcal{M}_{Born}^{W^{+} \rightarrow f_{1}\bar{f}_{2}} \mathcal{M}_{Born}^{W^{-} \rightarrow f_{3}\bar{f}_{4}} + \mathcal{M}_{Born}^{e^{+}e^{-} \rightarrow W^{+}W^{-}} \delta \mathcal{M}^{W^{+} \rightarrow f_{1}\bar{f}_{2}} \mathcal{M}_{Born}^{W^{-} \rightarrow f_{3}\bar{f}_{4}} + \mathcal{M}_{Born}^{e^{+}e^{-} \rightarrow W^{+}W^{-}} \mathcal{M}_{Born}^{W^{+} \rightarrow f_{1}\bar{f}_{2}} \delta \mathcal{M}^{W^{-} \rightarrow f_{3}\bar{f}_{4}} \right)$$

containing the corrections to on-shell production and decay

• Non-factorizable corrections:

$$\mathcal{M}_{\text{virt,nonfact,DPA}}^{e^+e^- \to WW \to 4f} = \left. \delta \mathcal{M}^{e^+e^- \to 4f} \right|_{\text{doubly-resonant part}} - \mathcal{M}_{\text{virt,fact,DPA}}^{e^+e^- \to WW \to 4f}$$
$$= \left. \mathcal{M}_{\text{Born,DPA}}^{e^+e^- \to WW \to 4f} \right. \delta_{\text{virt,nonfact,DPA}}$$

Features of $\delta_{virt,nonfact,DPA}$ analogous to single-resonance case:

- ◊ gauge independent, no mass singularities
- ♦ compensates IR singularities of W bosons in $\mathcal{M}_{virt, fact, DPA}^{e^+e^- \rightarrow WW \rightarrow 4f}$
- ◇ no factorization of Breit–Wigner-type resonances (complicated dependence on off-shellness k_{\pm}^2 of W bosons)

Manifestly non-factorizable diagrams:

Diagrams contributing to factorizable and non-factorizable RCs:

Combination of contributions:

(as implemented in RacoonWW)

$$\int d\sigma = \frac{1}{2s} \left\{ \int d\Phi_{4f} \left[|\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 + 2\operatorname{Re} \left((\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f})^* \delta \mathcal{M}_{virt,fact,DPA}^{e^+e^- \to WW \to 4f} + |\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f}|^2 \delta_{virt,nonfact,DPA} \right) \right\}$$

+
$$\int d\Phi_{4f\gamma} = |\mathcal{M}_{Born}^{e^+e^- \to 4f\gamma}|^2$$

Note: virtual corrections in DPA \oplus real from full amplitudes

Combination of contributions:

(as implemented in RacoonWW)

$$\int d\sigma = \frac{1}{2s} \left\{ \int d\Phi_{4f} \left[|\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 + 2\operatorname{Re} \left((\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f})^* \, \delta \mathcal{M}_{virt,fact,DPA}^{e^+e^- \to WW \to 4f} + |\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f}|^2 \, \delta_{virt,nonfact,DPA} \right) \right\} \text{ non-singular}$$

$$+ |\mathcal{M}_{Born,DPA}^{e^+e^- \to WW \to 4f}|^2 \, \delta_{sub,1}^{4f} + |\mathcal{M}_{Born,DPA}^{e^+e^- \to 4f}|^2 \, \delta_{sub,2}^{4f} = \frac{1}{2} \left[\frac{|\mathcal{M}_{Born}^{e^+e^- \to 4f\gamma}|^2 - |\mathcal{M}_{Born}^{e^+e^- \to 4f}|^2 \, \delta_{sub}^{4f\gamma}}{\operatorname{non-singular}} \right]$$

Note: virtual corrections in DPA \oplus real from full amplitudes \hookrightarrow redistribution of singular contributions to avoid mismatch in cancellations

From LEP2 to the ILC:

Experimental vs. theoretical uncertainties for some observables:

Observable	$\Delta_{\exp}(\text{LEP2})$	$\Delta_{\exp}(ILC)$	$\Delta_{ m th}(m DPA/IBA)$
$\sigma_{ m WW}$	$\sim 1\%$	$\lesssim 0.5\%$	2%for $\sqrt{s} < 170 \text{GeV}$ (IBA range)0.7%for 170 $\text{GeV} < \sqrt{s} < 180 \text{GeV}$ 0.5%for 180 $\text{GeV} < \sqrt{s} < 500 \text{GeV}$
$M_{\rm W}({\rm threshold})$	$\sim 200{\rm MeV}$	$\sim 7{ m MeV}$? but $> 50 \mathrm{MeV}$
$M_{\rm W}({\rm reconstr.})$	$\sim 30{\rm MeV}$	$\sim 10{\rm MeV}$	$5{-}10{ m MeV}$
TGC	some %	$\sim 0.1\%$	$\lesssim 1\%$ at LEP2 ? at $\sqrt{s} \gg 200{ m GeV}$

Exceptional case: threshold region and below ($\sqrt{s} < 170 \,\text{GeV}$)

error estimate of DPA not reliable

- → description at LEP2 via IBA = "Improved Born Approximation" (off-shell Born calculation dressed with universal corrections such as ISR)
- ⇒ DPA/IBA approach sufficiently accurate at LEP2 but precision beyond DPA needed at ILC
 - \hookrightarrow recent treatment beyond DPA in complex-mass scheme

13.1 The complex-mass scheme at one loop and application to ${
m e^+e^-}
ightarrow 4f$

The complex-mass scheme at one loop Denner, Dittmaier, Roth, Wieders '05

 $mass^2 = location of propagator pole in complex p^2 plane$

 \hookrightarrow complex mass renormalization:

$$\underbrace{M_{\mathrm{W},0}^2}_{\text{bare mass}} = \mu_{\mathrm{W}}^2 + \underbrace{\delta \mu_{\mathrm{W}}^2}_{\text{ren. constant}}, \quad \text{etc}$$

 \hookrightarrow Feynman rules with complex masses and counterterms

Virtues and drawbacks:

- perturbative calculations as usual
- no double counting of contributions (bare Lagrangian unchanged !)
- spurios terms are of $\mathcal{O}(\alpha^2)$, but spoil unitarity
- complex gauge-boson masses also in loop integrals

Convenient choice:

complex field renormalization

$$\underbrace{W_0^{\pm}}_{0} = \left(1 + \frac{1}{2}\underbrace{\delta \mathcal{Z}_W}_{W}\right)W^{\pm}, \quad \text{etc}$$

bare field

ren. constant

- complex $\delta \mathcal{Z}_W$ applies to W^+ and $W^- \Rightarrow (W^{\pm})^{\dagger} \neq W^{\pm}$
- δZ_W drops out in S-matrix elements without external W bosons

Complex renormalization for W bosons explicitly:

On-shell renormalization conditions for renormalized (transverse) self-energy

$$\hat{\Sigma}_{T}^{W}(\mu_{W}^{2}) = 0, \quad \hat{\Sigma}_{T}^{\prime W}(\mu_{W}^{2}) = 0$$

 $\,\hookrightarrow\,\,\mu_{\rm W}^2$ is location of propagator pole, and residue = 1

Solution of renormalization conditions:

 $\delta \mu_{\mathrm{W}}^2 = \Sigma_{\mathrm{T}}^W(\mu_{\mathrm{W}}^2), \quad \delta \mathcal{Z}_W = -\Sigma_{\mathrm{T}}^{\prime W}(\mu_{\mathrm{W}}^2)$

Note: evaluation of $\Sigma^W_{\rm T}(p^2)$ at complex p^2 can be avoided

$$\Sigma_{\mathrm{T}}^{W}(\mu_{\mathrm{W}}^{2}) = \Sigma_{\mathrm{T}}^{W}(M_{\mathrm{W}}^{2}) + (\mu_{\mathrm{W}}^{2} - M_{\mathrm{W}}^{2})\Sigma_{\mathrm{T}}^{\prime W}(M_{\mathrm{W}}^{2}) + \underbrace{\mathcal{O}(\alpha^{3})}_{\text{beyond one loop}}$$

 \Rightarrow Renormalized W self-energy:

$$\hat{\Sigma}_{T}^{W}(p^{2}) = \Sigma_{T}^{W}(p^{2}) - \delta M_{W}^{2} + (p^{2} - M_{W}^{2})\delta Z_{W}$$

with $\delta M_{W}^{2} = \Sigma_{T}^{W}(M_{W}^{2}), \quad \delta Z_{W} = -\Sigma_{T}^{W}(M_{W}^{2})$

Differences to the usual on-shell scheme:

- no real parts taken from $\Sigma^W_{\rm T}$
- $\Sigma^W_{\rm T}$ evaluated with complex masses and couplings

Full $\mathcal{O}(\alpha)$ corrections to (charged-current) $e^+e^- \rightarrow 4f$ Features of the calculation:

- # 1-loop diagrams \sim 1200, loops up to 6-point integrals
- W resonances treated in the complex-mass scheme
- all loop integrals with complex W/Z masses
- new tensor reduction methods for stability in exceptional phase-space points
- real-photonic corrections taken from RACOONWW
- 11 lowest-order diagrams: ("CC11 class")

Generic diagrams for loop insertions (4-, 5-, 6-point functions)

 $\mathcal{O}(1200)$ one-loop diagrams per channel:

• 40 hexagons

+ graphs with reversed fermion-number flow in final state

- 112 pentagons
- 227 boxes ('t Hooft–Feynman gauge)
- many vertex corrections and self-energy diagrams

σ [fb] $e^+e^- \rightarrow \nu_\tau \tau^+ \mu^- \bar{\nu}_\mu$ $e^+e^- \rightarrow \nu_\tau \tau^+ \mu^- \bar{\nu}_\mu$ δ [%] 200-10150-15100 -20IBA DPA 50ee4f -250 180 190200 210 180 150160 170150160170190200 210 \sqrt{s} [GeV] \sqrt{s} [GeV]

Complete $\mathcal{O}(\alpha)$ corrections to the total cross section – LEP2 energies

- $|ee4f DPA| \sim 0.5\%$ for $170 \, GeV \lesssim \sqrt{s} \lesssim 210 \, GeV$
- $|ee4f IBA| \sim 2\%$ for $\sqrt{s} \lesssim 170 \, GeV$
- $\hookrightarrow\,$ agreement with error estimates of DPA and IBA

Remaining theoretical uncertainty from higher-order EW effects $\sim~{\rm a}~{\rm few}~0.1\%$

Denner, Dittmaier, Roth, Wieders '05

Complete $\mathcal{O}(\alpha)$ corrections to the total cross section – ILC energies

Denner, Dittmaier, Roth, Wieders '05

• $|\text{ee4f} - \text{DPA}| \sim 0.7\%$ for $200 \,\text{GeV} \lesssim \sqrt{s} \lesssim 500 \,\text{GeV}$

 $\,\hookrightarrow\,$ agreement with error estimate of DPA

• $|ee4f - DPA| \sim 1-2\%$ for $500 \,\text{GeV} \lesssim \sqrt{s} \lesssim 1-2 \,\text{TeV}$

A (not exhaustive) selection of literature

- Radiative corrections to resonance processes (see also references therein)
 - ♦ expansion about resonance poles ("pole scheme"):
 - R. G. Stuart, Phys. Lett. B 262 (1991) 113;
 - A. Aeppli, G. J. van Oldenborgh and D. Wyler, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212];
 - H. G. J. Veltman, Z. Phys. C 62 (1994) 35.
 - ♦ electroweak corrections to Drell–Yan-like W production:
 - U. Baur, S. Keller and D. Wackeroth, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417];
 - S. Dittmaier and M. Krämer, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062];
 - U. Baur and D. Wackeroth, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191].
 - $\circ e^+e^- \rightarrow WW \rightarrow 4f$ in DPA:
 - W. Beenakker, F. A. Berends and A. P. Chapovsky, Nucl. Phys. B 548 (1999) 3 [hep-ph/9811481];
 - S. Jadach et al., Phys. Rev. D 61 (2000) 113010 [hep-ph/9907436];
 - A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307].
 - $^{\diamond} e^+e^- \rightarrow 4f$ and complex-mass scheme at one loop:
 - A. Denner, S. Dittmaier, M. Roth and L. H. Wieders, Phys. Lett. B 612 (2005) 223 [hep-ph/0502063] and Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042].

