Introduction into Standard Model and Precision Physics – Lecture IV –

Stefan Dittmaier

MPI München

General overview

- Lecture I Standard Model (part 1)
- Lecture II Standard Model (part 2)
- Lecture III Quantum Corrections
- Lecture IV Unstable Particles (part 1)
- 9 Unstable particles in quantum field theory
- **10** Lowest-order descriptions of resonance processes
- Lecture V Unstable Particles (part 2)

9 Unstable particles in quantum field theory

9.1 Introduction

Almost all interesting elementary particles are unstable:

- known: leptons μ , τ and massive gauge bosons Z, W^{\pm} , etc.
- Higgs bosons: $H_{\rm SM}$, $\{h, H, A, H^{\pm}\}_{\rm MSSM}$
- postulated new particles, e.g. in SUSY: $\tilde{l}, \tilde{q}, \tilde{g}, \tilde{\chi}$ (maybe apart from LSP)

Lifetimes τ too short for detection (e.g. $\tau_{W,Z} \sim 10^{-25} s \rightarrow \Delta l = c\tau \sim 10^{-16} m$) \hookrightarrow only decay products detected,

unstable particles appear as resonances in certain observables

Examples:
$$e^+e^- \rightarrow Z \rightarrow f\bar{f}$$
, $e^+e^- \rightarrow WW \rightarrow 4f$, $e^+e^- \rightarrow t\bar{t} \rightarrow 6f$,
 $pp \rightarrow W/Z \rightarrow 2l$, $pp \rightarrow H+2q \rightarrow ZZ+2q \rightarrow 4l+2jets$, etc.

⇒ Consistent treatment of unstable particles needed in perturbative evaluation of quantum field theories

9.2 Mass and width of unstable particles

Dyson series and propagator poles

Propagator near resonance: (scalar example)

$$- \bigcirc = + + - \bigcirc + + - \bigcirc + + \cdots$$

$$= \frac{i}{p^2 - m^2} + \frac{i}{p^2 - m^2} i\Sigma(p^2) \frac{i}{p^2 - m^2} + \cdots = \frac{i}{p^2 - m^2 + \Sigma(p^2)}$$

 $\Sigma(p^2)={\rm renormalized}$ self-energy, $\ m={\rm ren.}\ {\rm mass}$

Stable particle: $\operatorname{Im}\{\Sigma(p^2)\} = 0 \text{ at } p^2 \sim m^2$

- \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma(m^2) = 0$
- Unstable particle: $\operatorname{Im}\{\Sigma(p^2)\} \neq 0 \text{ at } p^2 \sim m^2$
 - \hookrightarrow propagator pole shifted into complex p^2 plane, definition of mass and width non-trivial

Commonly used mass/width definitions:

• "on-shell mass/width"
$$M_{OS}/\Gamma_{OS}$$
: $M_{OS}^2 - m^2 + \operatorname{Re}\{\Sigma(M_{OS}^2)\} \stackrel{!}{=} 0$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow{p^2 \to M_{OS}^2} \frac{1}{(p^2 - M_{OS}^2)(1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}) + i\operatorname{Im}\{\Sigma(M_{OS}^2)\}}$
comparison with form of Breit–Wigner resonance $\frac{R_{OS}}{p^2 - m^2 + im\Gamma}$
yields: $M_{OS}\Gamma_{OS} \equiv \operatorname{Im}\{\Sigma(M_{OS}^2)\} / (1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}), \quad \Sigma'(p^2) \equiv \frac{\partial\Sigma(p^2)}{\partial p^2}$

• "pole mass/width"
$$M/\Gamma$$
: $\mu^2 - m^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$
complex pole position: $\mu^2 \equiv M^2 - iM\Gamma$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow[p^2 \to \mu^2]{} \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} = \frac{R}{p^2 - M^2 + iM\Gamma}$

Note:
$$\mu =$$
 gauge independent for any particle (pole location is property of *S*-matrix)
 $M_{OS} =$ gauge dependent at 2-loop order Sirlin '91; Stuart '91; Gambino, Gras

si '99; Grassi, Kniehl, Sirlin '01

Relation between "on-shell" and "pole" definitions:

Subtraction of defining equations yields:

$$M_{\rm OS}^2 + {\rm Re}\{\Sigma(M_{\rm OS}^2)\} = M^2 - iM\Gamma + \Sigma(M^2 - iM\Gamma)$$

Equation can be uniquely solved via recursion in powers of coupling α :

ansatz:
$$M_{OS}^2 = M^2 + c_1 \alpha^1 + c_2 \alpha^2 + \dots$$

 $M_{OS} \Gamma_{OS} = M \Gamma + d_2 \alpha^2 + d_3 \alpha^3 + \dots$, $c_i, d_i = \text{real}$
counting in α : $M_{OS}, M = \mathcal{O}(\alpha^0), \quad \Gamma_{OS}, \Gamma, \Sigma(p^2) = \mathcal{O}(\alpha^1)$

Result:

$$M_{OS}^{2} = M^{2} + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\} + \mathcal{O}(\alpha^{3})$$
$$M_{OS}\Gamma_{OS} = M\Gamma + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\}^{2}$$
$$+ \frac{1}{2} \operatorname{Im}\{\Sigma(M^{2})\}^{2} \operatorname{Im}\{\Sigma''(M^{2})\} + \mathcal{O}(\alpha^{4})$$

i.e. $\{M_{OS}, \Gamma_{OS}\} = \{M, \Gamma\} + \text{gauge-dependent 2-loop corrections}$

Important examples: W and Z bosons

In good approximation: $W \to f\bar{f}', \quad Z \to f\bar{f}$ with masses fermions f, f'so that: $\operatorname{Im}\{\Sigma_{\mathrm{T}}^{\mathrm{V}}(p^2)\} = p^2 \times \frac{\Gamma_{\mathrm{V}}}{M_{\mathrm{V}}} \theta(p^2), \quad \mathrm{V} = \mathrm{W}, \mathrm{Z}$ $\hookrightarrow M_{\mathrm{OS}}^2 = M^2 + \Gamma^2 + \mathcal{O}(\alpha^3) \qquad M_{\mathrm{OS}}\Gamma_{\mathrm{OS}} = M\Gamma + \frac{\Gamma^3}{M} + \mathcal{O}(\alpha^4)$

In terms of measured numbers:

W boson: $M_{\rm W} \approx 80 \,{\rm GeV}$, $\Gamma_{\rm W} \approx 2.1 \,{\rm GeV}$ $\hookrightarrow M_{\rm W,OS} - M_{\rm W,pole} \approx 28 \,{\rm MeV}$ Z boson: $M_{\rm Z} \approx 91 \,{\rm GeV}$, $\Gamma_{\rm Z} \approx 2.5 \,{\rm GeV}$ $\hookrightarrow M_{\rm Z,OS} - M_{\rm Z,pole} \approx 34 \,{\rm MeV}$ Exp. accuracy: $\Delta M_{\rm W,exp} = 29 \,{\rm MeV}$, $\Delta M_{\rm Z,exp} = 2.1 \,{\rm MeV}$

 \hookrightarrow Difference in definitions phenomenologically important !

A closer look into resonance shapes:

• "on-shell mass/width" $M_{\rm OS}/\Gamma_{\rm OS}$: $M_{\rm OS}^2 - m^2 + {\rm Re}\{\Sigma(M_{\rm OS}^2)\} \stackrel{!}{=} 0$

$$G^{\phi\phi}(p) = \frac{1}{p^2 - M_{\rm OS}^2 + \Sigma(p^2) - \operatorname{Re}\{\Sigma(M_{\rm OS}^2)\}}$$

$$\overbrace{p^2 \to M_{\rm OS}^2}^{p^2 \to M_{\rm OS}^2} \frac{1}{(p^2 - M_{\rm OS}^2)[1 + \operatorname{Re}\{\Sigma'(M_{\rm OS}^2)\}] + \operatorname{i}\operatorname{Im}\{\Sigma(p^2)\} + \mathcal{O}[(p^2 - M_{\rm OS}^2)^2]}$$

$$= \frac{R_{\rm OS}}{p^2 - M_{\rm OS}^2 + \operatorname{i}M_{\rm OS}\Gamma_{\rm OS}(p^2) + \mathcal{O}[(p^2 - M_{\rm OS}^2)^2]}$$

with the "running on-shell width" $\Gamma_{OS}(p^2) = \frac{Im\{\Sigma(p^2)\}}{M_{OS}[1 + Re\{\Sigma'(M_{OS}^2)\}]}$

• "pole mass/width" M/Γ : $\mu^2 - m^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$

$$G^{\phi\phi}(p) = \frac{1}{p^2 - \mu^2 + \Sigma(p^2) - \Sigma(\mu^2)}$$

$$\widetilde{p^2 \to \mu^2} \quad \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} + \mathcal{O}[(p^2 - \mu^2)^2] = \frac{R}{(p^2 - \mu^2) + \mathcal{O}[(p^2 - \mu^2)^2]}$$

Example of W and Z bosons continued:

Approximation of massless decay fermions:

$$\Gamma_{\rm V,OS}(p^2) = \Gamma_{\rm V,OS} \times \frac{p^2}{M_{\rm V,OS}^2} \theta(p^2), \qquad {\rm V} = {\rm W}, {\rm Z}$$

Fit of W/Z resonance shapes to experimental data:

• ansatz
$$\left|\frac{R'}{p^2 - m'^2 + i\gamma'p^2/m'}\right|^2$$
 yields: $m' = M_{V,OS}$, $\gamma' = \Gamma_{V,OS}$
• ansatz $\left|\frac{R}{p^2 - m^2 + i\gamma m}\right|^2$ yields: $m = M_{V,pole}$, $\gamma = \Gamma_{V,pole}$

Note: the two forms are equivalent: $R = \frac{R'}{1 + i\gamma'/m'}, \quad m^2 = \frac{{m'}^2}{1 + {\gamma'}^2/{m'}^2}, \quad m\gamma = \frac{m'\gamma'}{1 + {\gamma'}^2/{m'}^2}$

 \hookrightarrow consistent with relation between "on-shell" and "pole" definitions !

Complex mass and decay widths 9.3

Free propagator with finite width:

$$G(x-y) = \int \frac{\mathrm{d}^4 p}{(2\pi)^4} \,\mathrm{e}^{-\mathrm{i}p(x-y)} \frac{\mathrm{i}}{p^2 - M^2 + \mathrm{i}M\Gamma}, \qquad \tilde{E}_p = \sqrt{\mathbf{p}^2 + M^2 - \mathrm{i}M\Gamma}$$
$$= \int \frac{\mathrm{d}^3 \mathbf{p}}{(2\pi)^3} \,\mathrm{e}^{\mathrm{i}\mathbf{p}(\mathbf{x}-\mathbf{y})} \int \frac{\mathrm{d}p_0}{2\pi} \,\mathrm{e}^{-\mathrm{i}p_0(x_0-y_0)} \frac{\mathrm{i}}{2\tilde{E}_p} \left(\frac{1}{p_0 - \tilde{E}_p} - \frac{1}{p_0 + \tilde{E}_p}\right)$$

Contour integration in p_0 plane yields

$$\begin{aligned} G(x-y) &= \int \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \,\mathrm{e}^{\mathrm{i}\mathbf{p}(\mathbf{x}-\mathbf{y})} \frac{1}{2\tilde{E}_{p}} \left[\theta(x_{0}-y_{0}) \mathrm{e}^{-\mathrm{i}(x_{0}-y_{0})\tilde{E}_{p}} + \theta(y_{0}-x_{0}) \mathrm{e}^{\mathrm{i}(x_{0}-y_{0})\tilde{E}_{p}} \right] \\ \mathsf{For} \, \mathbf{\Gamma} \ll M : \quad \tilde{E}_{p} \approx E_{p} - \mathrm{i}\mathbf{\Gamma}M/(2E_{p}), \quad E_{p} &= \sqrt{\mathbf{p}^{2} + M^{2}} \\ G(x-y) &= \int \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \,\mathrm{e}^{\mathrm{i}\mathbf{p}(\mathbf{x}-\mathbf{y})} \frac{1}{2E_{p}} \left[\,\theta(x_{0}-y_{0}) \mathrm{e}^{-\mathrm{i}(x_{0}-y_{0})E_{p}} \, \mathrm{e}^{-(x_{0}-y_{0})\mathbf{\Gamma}m/(2E_{p})} \right. \\ &+ \theta(y_{0}-x_{0}) \mathrm{e}^{\mathrm{i}(x_{0}-y_{0})E_{p}} \, \mathrm{e}^{-(y_{0}-x_{0})\mathbf{\Gamma}m/(2E_{p})} \right] \end{aligned}$$

Exponential decay in particle and antiparticle propagation $x_0 - y_0 \gtrsim 0$: $|G|^2 \propto e^{\mp (x_0 - y_0)\Gamma_p}$ with $\Gamma_p = \Gamma M / E_p = \Gamma / \gamma$ = width of particle with momentum p

Parma School of Theoretical Physics, SNFT06, September 2006

Conventional definition of decay widths via amplitudes:

Partial decay widths for $\phi \rightarrow f$:

$$\Gamma_{\phi \to f, \text{conv}} = \frac{1}{2m} \int d\Phi_{\phi \to f} \left| \mathcal{M}_{\phi \to f} \right|^2$$

Comments:

- flux factor
- Lorentz-invariant phase space for final state $|f\rangle = |\phi_1(k_1), \dots, \phi_n(k_n)\rangle$: Γ^n c 141 C

$$\int d\Phi_{\phi \to f} = \left[\prod_{l=1} \int \frac{d^{-}\kappa_{l}}{(2\pi)^{4}} (2\pi)\delta(k_{l}^{2} - m_{l}^{2})\theta(k_{l}^{0}) \right] (2\pi)^{4}\delta(p - \sum_{m=1}^{n} k_{m})$$

• Transition matrix element $\mathcal{M}_{\phi \to f}$ calculated from diagrams $\phi - \bigoplus$

 $\mathcal{M}_{\phi \to f}$ involves external unstable particle ϕ Note: \hookrightarrow problems expected in higher orders !

- Mass definition of ϕ relevant
 - \hookrightarrow usual choice at 1–2 loops: $m = M_{OS}$

Total decay width: Γ

$$\Gamma_{\rm conv} = \sum_{f} \Gamma_{\phi \to f, \rm conv}$$

 \hookrightarrow Relation between Γ_{conv} and "on-shell" / pole definitions ? Answer by unitarity...

9.4 Unstable particles and unitarity in (perturbative) QFT

Causality implies Cutkowsky cut rules for diagrams:

 \Rightarrow unitarity of S-matrix: $SS^{\dagger} = 1$

9.4 Unstable particles and unitarity in (perturbative) QFT

Causality implies Cutkowsky cut rules for diagrams:

Note: "derivation" quite sloppy (ignores problems in defining $\mathcal{M}_{\phi \to f}$ in higher orders !)

Subtleties with S-matrix elements and unitarity

S-matrix elements:

Definition for $|i\rangle \to |f\rangle$: $\langle f|S|i\rangle = \lim_{\substack{t_0 \to -\infty \\ t_1 \to +\infty}} \langle f, t_1|S|i, t_0\rangle$

But: for unstable states $|f\rangle$: $\lim_{t_1 \to +\infty} \langle f, t_1 | = 0$

 → S-matrix elements for external unstable particles do not exist, application of LSZ reduction not justified !

Unitarity:

Cut equations not consistent for external or internal unstable particles !

But: important result of Veltman '63

Toy field theory with stable and unstable scalar fields \hookrightarrow theory is unitary, causal, and renormalizable on space of stable external states

Comments on Veltman's result:

- cut equations: no cuts of internal propagators for unstable particles
- statement rests on consideration of "complete" (resummed) propagators
 → does not provide a practical method for standard perturbation theory

9.5 Resonances – factorization into production and decay subprocesses

Transition rate near a resonance: $|i\rangle \rightarrow |X, \phi(p)\rangle \rightarrow |X, f\rangle$

$$\int \mathrm{d}\Phi_{i\to Xf} \left| \mathcal{M}_{i\to Xf} \right|^2 \, \underbrace{}_{p^2 \to m^2} \, \int \mathrm{d}\Phi_{i\to Xf} \left| \mathcal{M}_{i\to X\phi \to Xf} \right|^2$$

Phase-space factorization:

$$\int d\Phi_{i\to Xf} = \int \frac{dp^2}{2\pi} \int d\Phi_{i\to X\phi(p)} \int d\Phi_{\phi(p)\to f}$$

Decomposition of resonance diagrams:

$$\mathcal{M}_{i \to X\phi \to Xf} = \sum_{\lambda} \mathcal{M}_{i \to X\phi}^{(\lambda)} \frac{1}{p^2 - m^2 + \mathrm{i}m\Gamma} \mathcal{M}_{\phi \to f}^{(\lambda)}, \quad \lambda = \text{polarization index of } \phi$$

 \hookrightarrow total rate proportional to

(hat on $\hat{\Phi}$, $\hat{\mathcal{M}}$ means $p^2 {=} m^2$ used)

 ϕ

p

 ϕ_1

$$\int d\Phi_{i\to Xf} \left| \mathcal{M}_{i\to Xf} \right|^2 \underbrace{\sum_{p^2 \to m^2} \sum_{\lambda,\lambda'} \int d\hat{\Phi}_{i\to X\phi(p)} \, \hat{\mathcal{M}}_{i\to X\phi}^{(\lambda)} (\hat{\mathcal{M}}_{i\to X\phi}^{(\lambda')})^*}_{X \to \int \frac{dp^2}{2\pi} \frac{1}{|p^2 - m^2 + im\Gamma|^2} \underbrace{\int d\hat{\Phi}_{\phi(p)\to f} \, \hat{\mathcal{M}}_{\phi\to f}^{(\lambda)} (\hat{\mathcal{M}}_{\phi\to f}^{(\lambda')})^*}_{=D_{\lambda\lambda'}} =D_{\lambda\lambda'} \quad \text{("decay correlation")}$$

Manipulations for total rate:

- Rotational invariance in ϕ rest frame implies for full integral $\int d\Phi_{\phi(p)\to f} D_{\lambda\lambda'} = \delta_{\lambda\lambda'} \bar{D}$, with spin average $\bar{D} = 2m\Gamma_{\phi\to f,\text{conv}}$
- "Narrow-width approximation" (NWA) for resonance factor:

$$\frac{1}{|p^2 - m^2 + im\Gamma|^2} = \frac{1}{(p^2 - m^2)^2 + m^2\Gamma^2} \widetilde{\Gamma \to 0} \frac{\pi}{m\Gamma} \delta(p^2 - m^2)$$

Resulting NWA for total rate and total cross section:

$$\int d\Phi_{i\to Xf} \left| \mathcal{M}_{i\to Xf} \right|^2 \xrightarrow[p^2 \to m^2]{} \sum_{\lambda} \int d\hat{\Phi}_{i\to X\phi(p)} \left| \hat{\mathcal{M}}_{i\to X\phi}^{(\lambda)} \right|^2 \underbrace{\frac{\Gamma_{\phi \to f, \text{conv}}}{\Gamma}}_{=\text{BR}_{\phi \to f}} \text{("branching ratio")}$$

 $\Rightarrow \sigma_{i \to Xf}^{\text{NWA}} = \sigma_{i \to X\phi} \text{ BR}_{\phi \to f} \quad \text{with} \quad \sum_{f} \text{BR}_{\phi \to f} = 1 \quad \text{if } \Gamma = \Gamma_{\text{conv}}$

Note: NWA insufficient to describe

- invariant-mass distributions of decay products (needed for resonance shape)
- angular distributions of decay products (needed for spin determination)
- "off-shell effects" resulting from regions with $|p^2 m^2| \gg m\Gamma$ (in particular because of neglect of non-resonant diagrams)

9.6 The issue of gauge invariance

Gauge invariance implies...

- Slavnov–Taylor or Ward identites
 - = algebraic relations of or between Greens functions
 - \hookrightarrow guarantee cancellation of unitarity-violating terms, crucial for proof of unitarity of *S*-matrix
- compensation of gauge-fixing artefacts
 - = gauge-parameter independence of S-matrix

although Greens function (e.g. self-energies) are gauge dependent

Both statements hold order by order in standard perturbation theory !

- But: Resonances require Dyson summation of resonant propagators
 - \hookrightarrow perturbative orders mixed
 - \hookrightarrow gauge invariance jeopardized !
- Note: Gauge-invariance-violating terms are formally of higher order, but can be dramatically enhanced

Important Ward identities for processes with EW gauge bosons:

Elmg. U(1) gauge invariance implies

$$k^{\mu}$$
 $\overbrace{\gamma_{\mu}}^{k}$ $\overbrace{F_{n}}^{F_{1}} = 0$ for any on-shell fields F_{l}

 \hookrightarrow Identity becomes crucial for collinear light fermions:

for fermion momenta
$$p_1 \sim c p_2$$
:
 $p_1 \quad k = p_1 - p_2$
 $p_2 \quad = \bar{u}_2(p_2)\gamma^{\mu}u_1(p_1) \propto k^{\mu}$

A typical situation: quasi-real space-like photons

$$e \xrightarrow{\gamma \quad k} e \\ \gamma \quad k \\ \ddots \quad k \\ \ddots \quad k \\ \ddots \quad k \\ \gamma \quad k \\ \sim \frac{1}{k^2} \ k^{\mu} \ T^{\gamma}_{\mu} \quad \text{for } k^2 \rightarrow \mathcal{O}(m_e^2) \ll E^2$$

Identity $k^{\mu} T^{\gamma}_{\mu} = 0$ needed to cancel $1/k^2$, otherwise gauge-invariance-breaking terms enhanced by E^2/m_e^2 (~ 10^{10} for LEP2)

Electroweak SU(2) gauge invariance implies

 $F_l =$ on-shell fields $\chi, \phi^{\pm} =$ would-be Goldstone fields

A typical situation: high-energetic quasi-real longitudinal vector bosons

 \hookrightarrow fermion current attached to ${
m V}(k)$ again $\propto k^{\mu}$

$$\begin{array}{c} & k \\ & \ddots & \\ & \ddots & \\ & \ddots & V \end{array} \sim \frac{1}{k^2 - M_V^2} \ k^\mu \ T^V_\mu \quad \text{for } \ k^0 \gg M_V \end{array}$$

Identity $k^{\mu}T^{V}_{\mu} = c_{V}M_{V}T^{S}$ needed to cancel factor k^{0} , otherwise gauge-invariance/unitarity-breaking terms enhanced by k^{0}/M_{V}

10 Lowest-order descriptions of resonance processes

10.1 Motivation

The final aim: a method to describe resonance processes in lowest order that

- is mathematically consistent, but simple to apply
- valid in resonant and non-resonant regions of phase space
- supports arbitrary differential distributions
- respects gauge invariance (at least controls breaking effects)
- respects unitarity (at least controls breaking effects)
- can be generalized to higher orders
- → Aim is highly demanding,
 different solutions proposed (with different strengths and weaknesses)

Discussed in the following:

naive "solutions" (propagator modifications, fudge factors, etc.), "complex-mass scheme", "fermion-loop scheme", pole expansions

Not discussed:

proposals of effective field theories

Beenakker et al. '00,'03; Beneke et al. '03,'04; Hoang, Reisser '04

Counting of orders in resonance processes:

- self-energy = loop effect: $\Sigma(p^2) = \mathcal{O}(\alpha)$
- width = higher-order effect: $m\Gamma = m^2 \mathcal{O}(\alpha)$
- \hookrightarrow Propagator in resonance region and in the continuum:

$$\frac{m\Gamma}{p^2 - m^2 + \Sigma(p^2)} \sim \frac{m\Gamma}{p^2 - m^2 + \mathrm{i}m\Gamma} = \begin{cases} \mathcal{O}(1) & \text{for } |p^2 - m^2| \sim m\Gamma \\ \mathcal{O}(\alpha) & \text{for } |p^2 - m^2| \gg m\Gamma \end{cases}$$

Implications: [resonant part counted as $\mathcal{O}(1)$]

- higher-order corrections to resonant parts are of $\mathcal{O}(\alpha)$
 - \hookrightarrow (virtual+real) corrections to scattering matrix elements and to total width Γ in resonant denominator
- off-shell effects are generically of $\mathcal{O}(\Gamma/m) = \mathcal{O}(\alpha)$ or in presence of phase-space cuts:

$$\int_{(m-\Delta)^2}^{(m+\Delta)^2} \mathrm{d}p^2 \, |\mathcal{M}_{\mathrm{res}}|^2 \propto \int_{(m-\Delta)^2}^{(m+\Delta)^2} \mathrm{d}p^2 \, \frac{1}{(p^2 - m^2)^2 + m^2 \Gamma^2} \sim \frac{\pi}{m\Gamma}$$
$$\int_{(m-\Delta)^2}^{(m+\Delta)^2} \mathrm{d}p^2 \, |\mathcal{M}_{\mathrm{non-res}}|^2 \propto \mathcal{O}(\Delta) \qquad \Rightarrow \sigma_{\mathrm{non-res}}/\sigma_{\mathrm{res}} \sim \frac{\Delta\Gamma}{m^2} \quad \text{for } \Delta \gg \Gamma$$

10.2 Naive approaches

Naive propagator substitutions in full tree-level amplitudes:

 $\frac{1}{k^2 - m^2} \rightarrow \frac{1}{k^2 - m^2 + \mathrm{i}m\Gamma(k^2)}$ for resonant or all propagators

- constant width $\Gamma(k^2) = \text{const.} \rightarrow U(1)$ respected (if all propagators dressed), SU(2) "mildly" violated
- step width $\Gamma(k^2) \propto \theta(k^2) \longrightarrow U(1)$ and SU(2) violated
- running width $\Gamma(k^2) \propto \theta(k^2) \times k^2 \rightarrow U(1)$ and SU(2) violated \hookrightarrow results can be totally wrong !

Fudge factor approaches:

Multiply full amplitudes without widths with factors $\frac{p^2 - m^2}{p^2 - m^2 + \mathrm{i}m\Gamma}$ for each potentially resonant propagator

 \hookrightarrow procedure preserves gauge invariance, but introduces spurious factors of $\mathcal{O}(\Gamma/m)$

Note: none of these schemes preserves unitarity

$e^-e^+ \rightarrow e^- \bar{\nu}_e u \bar{d}$ result of Kurihara, Perret-Gallix, Shimizu '95 An example:

đ

Example continued:

Partial amplitude from above "photon diagrams":

$$\mathcal{M}_{\gamma} = Q_{\mathrm{e}} e \, ar{u}_{\mathrm{e}}(k_{\mathrm{e}}) \gamma^{\mu} u_{\mathrm{e}}(p_{\mathrm{e}}) \; rac{1}{k_{\gamma}^2} \; T^{\gamma}_{\mu}$$

Elmg. Ward identity:

$$0 \stackrel{!}{=} k_{\gamma}^{\mu} T_{\mu}^{\gamma} \propto (p_{+}^{2} - p_{-}^{2}) Q_{\mathrm{W}} P_{\mathrm{w}}(p_{+}^{2}) P_{\mathrm{w}}(p_{-}^{2}) + Q_{\mathrm{e}} P_{\mathrm{w}}(p_{+}^{2}) - (Q_{\mathrm{d}} - Q_{\mathrm{u}}) P_{\mathrm{w}}(p_{-}^{2})$$

With $Q_{\rm W} = Q_{\rm e} = Q_{\rm d} - Q_{\rm u}$ and $P_{\rm w}(p^2) = [p^2 - M_{\rm W}^2 + iM_{\rm W}\Gamma_{\rm W}(p^2)]^{-1}$ one obtains: $\Gamma_{\rm W}(p_+^2) \stackrel{!}{=} \Gamma_{\rm W}(p_-^2)$

→ Elmg. gauge invariance demands
 common width on *s*- and *t*-channel propagators in "naive fixed width scheme"

• replace $M_W^2 \rightarrow \mu_W^2 = M_W^2 - iM_W\Gamma_W$, $M_Z^2 \rightarrow \mu_Z^2 = M_Z^2 - iM_Z\Gamma_Z$

10.3 Complex-mass scheme at tree level

Application to gauge-boson resonances:

and define (complex) weak mixing angle via $c_{\rm W}^2 = 1 - s_{\rm W}^2 = \frac{\mu_{\rm W}^2}{\mu_{\rm Z}^2}$

 \hookrightarrow preserves all algebraic relations among parameters and amplitudes

virtue: gauge-invariant result !

(Slavnov–Taylor identities and gauge-parameter independence)

mass² = location of propagator pole in complex p^2 plane

 \hookrightarrow consistent use of complex masses everywhere !

 \hookrightarrow unitarity cancellations respected !

• drawbacks:

Basic idea:

- spurios terms of $\mathcal{O}(\frac{\Gamma}{m}) = \mathcal{O}(\alpha)$ (from off-shell propagators and complex mixing angle)
 - \hookrightarrow but these terms are beyond tree-level accuracy !
- cut equations not valid anymore (reformulation not yet worked out)
 - \hookrightarrow unitarity not yet understood, but possible unitarity violation is of $\mathcal{O}(\frac{\Gamma}{m})$

Examples:

results from RACOONWW (Denner et al. '99-'01) and LUSIFER (Dittmaier, Roth '02)

• σ [fb] for e⁺e⁻ \rightarrow ud $\bar{\mu}^- \bar{\nu}_{\mu}$

\sqrt{s}	$189{ m GeV}$	$500{ m GeV}$	$2{ m TeV}$	$10\mathrm{TeV}$
constant width	703.5(3)	237.4(1)	13.99(2)	0.624(3)
running width	703.4(3)	238.9(1)	34.39(3)	498.8(1)
complex mass	703.1(3)	237.3(1)	13.98(2)	0.624(3)

• σ [fb] for $e^+e^- \rightarrow u\bar{d}\mu^-\bar{\nu}_{\mu} + \gamma$ (separation cuts for "visible" γ : $E_{\gamma}, \theta_{\gamma f} > cut$)

$\sqrt{s} =$	$189{ m GeV}$	$500{ m GeV}$	$2{ m TeV}$	$10{\rm TeV}$
constant width	224.0(4)	83.4(3)	6.98(5)	0.457(6)
running width	224.6(4)	84.2(3)	19.2(1)	368(6)
complex mass	223.9(4)	83.3(3)	6.98(5)	0.460(6)

• σ [fb] for $e^+e^- \rightarrow \nu_e \bar{\nu}_e \mu^- \bar{\nu}_\mu u \bar{d}$ (phase-space cuts applied)

\sqrt{s}	$500{ m GeV}$	$800{ m GeV}$	$2{ m TeV}$	$10{ m TeV}$
constant width	1.633(1)	4.105(4)	11.74(2)	26.38(6)
running width	1.640(1)	4.132(4)	12.88(1)	12965(12)
complex mass	1.633(1)	4.104(3)	11.73(1)	26.39(6)

10.4 Fermion-loop scheme Argyres et al. '95; Beenakker et al. '96; Passarino '99; Accomando et al. '99

Procedure: Dyson summation of all closed fermion-loop graphs

Benefits of the scheme:

- introduction of widths via resummed self-energies for particles that decay into fermions only, e.g. W and Z bosons
- Ward identites (WI) maintained, because full set of diagrams of the form $\sum_f N_f^{\text{colour}}$ is considered
- gauge-parameter independence, because gauge parameters do not enter loops, and WI are valid for "trees"
- natural inclusion of running-coupling effects possible
- no spurious terms included (selection of diagrams!)
- scheme has natural generalization to remaining "bosonic loops"
 - ← background-field quantization Denner, Dittmaier '96

Drawbacks / limitations:

- width in one-loop self-energy is tree-level quantity
 - $\,\hookrightarrow\,$ scheme does not include fermion-loop corrections to width
- no applicability to unstable particles that decay into bosons (top, Higgs)

Example: $e^-e^+ \rightarrow 4f$

Structural diagrams:

Building blocks:

• resummed propagators:

• corrected vertices:

Specific example: $\sigma[fb]$ for $e^-e^+ \rightarrow \mu^- \bar{\nu}_{\mu} u \bar{d}$ at high energies

WTO (Passarino '96)

\sqrt{s}	$200\mathrm{GeV}$	$500{ m GeV}$	$1\mathrm{TeV}$	$2{ m TeV}$	$5{ m TeV}$	$10\mathrm{TeV}$
running width	672.96(3)	225.45(3)	62.17(1)	33.06(1)	123.759(8)	481.18(5)
constant width	673.08(4)	224.05(3)	56.90(1)	13.19(1)	2.212(6)	0.591(4)
imaginary-part FLS	673.1(1)	224.5(7)	56.8(1)	13.18(4)	2.24(3)	0.597(6)
full FLS	683.7(1)	227.9(2)	58.0(1)	13.57(4)	2.34(3)	0.632(6)

A (not exhaustive) selection of literature

- Unstable particles in quantum field theory
 - ♦ mass and width of unstable particles:
 - A. Sirlin, Phys. Rev. Lett. 67 (1991) 2127; Phys. Lett. B 267 (1991) 240;
 - R. G. Stuart, Phys. Lett. B 262 (1991) 113; Phys. Rev. Lett. 70 (1993) 3193;
 - M. Passera and A. Sirlin, Phys. Rev. Lett. 77 (1996) 4146 [hep-ph/9607253];
 - P. Gambino and P. A. Grassi, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254];
 - P. A. Grassi, B. A. Kniehl and A. Sirlin, Phys. Rev. D 65 (2002) 085001 [hep-ph/0109228].
 - \diamond unitarity and causality:
 - M. J. G. Veltman, Physica 29 (1963) 186.
- Schemes for treating unstable particles in lowest-order amplitudes (see also references therein)
 - ◊ complex-mass scheme:
 - A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472].
 - ♦ fermion-loop scheme:
 - E. N. Argyres et al., Phys. Lett. B 358(1995) 339 [hep-ph/9507216];
 - W. Beenakker et al., Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260];
 - G. Passarino, Nucl. Phys. B 574 (2000) 451 [hep-ph/9911482];
 - E. Accomando, A. Ballestrero and E. Maina, Phys. Lett. B 479 (2000) 209 [hep-ph/9911489].
 - ♦ more discussions of gauge-invariance violation:
 - Y. Kurihara, D. Perret-Gallix and Y. Shimizu, Phys. Lett. B 349 (1995) 367 [hep-ph/9412215];
 - S. Dittmaier and M. Roth, Nucl. Phys. B 642 (2002) 307 [hep-ph/0206070].

