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�

The QED case
To understand renormalization at the two-loop level we consider first
the case of pure QED where we have

�
QED

	
s 
 m �� e2

16 � 2

��� 1 � 	 s 
 m ��� e4

256 � 4

��� 2 � 	 s 
 m ��
 (1)

where p2 ��� s and where we have indicated a dependence of the
result on the (bare) electron mass. Suppose that we compute the
two-loop contribution (3 diagrams) in the limit m � 0. The result is

��� 2 � 	 s 
 0 ���� 4� ��� 	 1 ��
 (2)

where n � 4 � � . This is a well-known result which shows the
cancellation of the double ultraviolet pole as well as of any non-local
residue. The latter is related to the fact that the four one-loop diagrams
with one-loop counterterms cancel due to a Ward identity. Let us
repeat the calculation with a non-zero electron mass;
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�

after scalarization of the result we consider the ultraviolet divergent
parts of the various diagrams. Collecting all the terms we obtain

� � 2 � 	 s 
 m ����� 1�
4 1 � 24

m2

s
� 192

m4

s2

1� 	
m � ln

� 	
m ��� 1� 	
m ��� 1

� � 	 1 ��!
(3)

Note that the m dependent part is not only finite but also zero in the
limit s " 0; indeed, in the limit s " 0 and with # 2 � m2 $ s � i % we have

� � 2 i #&� i
2 # �'� #)( 2 
 1� ln

� � 1� � 1
��� 1

2 # 2 
 (4)

so that

� � 2 � 	 0 
 m �*��� 4� � � � 2 �fin

	
0 
 m ��! (5)
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+

Eq.(5) is the main ingredient to build our renormalization equation and
contains only bare parameters, in the true spririt of the fitting equations
that express a measurable input, , in this case, as a function of bare
parameters, e and m in this case, and of ultraviolet singularites.
To make a prediction, the running of , in this case, is a different issue:
the scattering of two charged particles is proportional to

e2

1 � f
	
s � � e2 1 � f

	
s ��� f 2 	 s ���.-/-/- 


f
	
s �� e2

16 � 2

��� 1 � 	 s ��� e4	
16 � 2 � 2

��� 2 � 	 s �0��� e6 ! (6)
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1

Renormalization

Renormalization amounts to substituting

e2 � 4 �2,3�4, 2 � � 1 � 	 0 �5� , 3

4 �
� � 1 � 	 0 � 2 � � � 2 � 	 0 � ��� , 4 
 (7)

with the following result

e2

1 � f
	
s � � 4 �2, 1 � ,

4 �
� � 1 �

R

	
s ��� ,

4 �
2 � � 1 �

R

	
s � � � 1 �R

	
s �

� � � 2 �R

	
s ���6� , 3 


� � n �
R

	
s ��� � � n � 	 s ��� � � n � 	 0 ��! (8)
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7

If our result has to be ultraviolet finite then the poles in
� � n � 	 s � should

not depend on the scale s. This is obviously true for the one-loop
result but what is the origin of the scale-dependent extra term in
Eq.(3)? One should take into account that

� � 1 � 	 s 
 m ���� 8
3

1� � 4
3

ln
m2

M2 � 	 1 � 2
m2

s
� 	

m � ln
� 	

m ��� 1� 	
m ��� 1

� 20
9
� 4

3
8

UV � 16
3

m2

s

 (9)

and that m is the bare electron mass. To proceed step-by-step we
introduce a renormalized electron mass which is given by

m � mR 1 � e2

16 � 2 � 6� � finite part ! (10)
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If we write m2 � m2
R

	
1 ��%:� then

� 	
m �� � 	 mR ��� 2

m2
R� 	

mR � s %���� % 2 

ln
� 	

m �5� 1� 	
m ��� 1

� ln
� 	

mR �0� 1� 	
mR �;� 1

� %� 	
mR � ��� % 2 ! (11)

Inserting this expansion into our results we obtain

�
QED

	
s 
 mR �*� e2

� 2 � 1
6
� � 1

12
ln

m2
R

M2

� 1
3

1
4
� 1

2
m2

R

s
� 2

m4
R

s2

1� 	
mR � ln

� 	
mR �5� 1� 	
mR ��� 1

�
� 5

36
� 1

12
8

UV � 1
3

m2
R

s

� e4

� 4 � 1
64
� � 1

256
� � 2 �

fin

	
s 
 mR � 
 (12)
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<

showing cancellation of the ultraviolet poles in
� � n �

R

	
s 
 mR � with

n � 1 
 2. Of course Eq.(10) is not yet a true renormalization equation
since the latter should contain the physical electron mass me and not
the intermediate parameter mR but the relation between the two is
ultraviolet finite. All of this is telling us that a renormalization equation
has the structure

pphys � f
1� 
 pbare 
 (13)

where the residue of the ultraviolet poles must be local. A prediction,

O
1� 
 pbare = O

	
pphys��
 (14)

gives a finite quantity that can be computed in terms of some input
parameter set.
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The SM case

In the full standard model the one-loop result is

� � 1 � � � � 1 �bos �
l

� � 1 �
l � � � 1 �tb � � � 1 �udcs ! (15)

We introduce

xW � M2
W

s

 xl � m2

l

M2
W


 etc 

8

UV �6? � ln �@� ln
M2

W# 2 
 LA 	 x �� ln
� 	

x ��� 1� 	
x ��� 1


 (16)
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B

In the limit s " 0 we have

� � 1 �
bos

	
0 ���� 3 � 2� � 8 UV 


� � 1 �
l

	
0 �� 4

3
� 2� � 8 UV � 4

9
� 4

3
ln xl 


� � 1 �
tb

	
0 �� 20

9
� 2� � 8 UV � 20

27
� 16

9
ln xt � 4

9
ln xb ! (17)

First we consider fermion mass renormalization, obtaining

m2
f � m2

f R 1 � 2
g2

16 � 2

% Z f
m� 
 (18)

with renormalization constants given by
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C

fermion mass renormalization

lepton

% Z l
m ��� 3

2
1
c4 x ( 1

H � 3
1
c2 � 3 � 3

4
xL

� 2
x2

L

xH

� 6
x2

B

xH

� 6
x2

T

xH

� 3
4

xH � 3 x ( 1
H 
 (19)
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D

b quark

% Z b
m ��� 3

2
1
c4 x ( 1

H � 1
3

1
c2 � 1

3
� 3

4
xB � 3

4
xT

� 2
x2

L

xH

� 6
x2

B

xH

� 6
x2

T

xH

� 3
4

xH � 3 x ( 1
H 
 (20)
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E

t quark

% Z t
m ��� 3

2
1
c4 x ( 1

H � 2
3

1
c2 � 2

3
� 3

4
xB � 3

4
xT

� 2
x2

L

xH

� 6
x2

B

xH

� 6
x2

T

xH

� 3
4

xH � 3 x ( 1
H ! (21)
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F

Consider the fermionic part of
� � 1 � relative to one fermion generation

( G l 
 l 
 t and b) and perform fermion mass renormalization; we obtain

� � 1 �
fer " � � 1 �

ferm � g2

� 2

� 8H� � 1 �
ferm 
 (22)

where

� � 1 �
fer � 32

9
� 2� � 8 UV � 4

3
ln xL � 1

3
ln xB � 4

3
ln xT

� 160
27

� 16
3

xW

	
xL � 1

3
xB � 4

3
xT �0� 4

3
	
1 � 2 xW xL � 8 x2

W x2
L �

� 4
3
� ( 1 	 xW xL � LA 	 xW xL ��� 4

9
� ( 1 	 xW xB � LA 	 xW xB �

� 16
9
� ( 1 	 xW xT � LA 	 xW xT ��
 (23)
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I

8H� � 1 �
ferm � 3

2
c ( 4xW xLx ( 1

H � 1
2

c ( 4xW xBx ( 1
H � 2c ( 4xW xT x ( 1

H � 3c ( 2xW xL

� 1
9

c ( 2xW xB � 8
9

c ( 2xW xT � 6xW xLx2
B x ( 1

H � 6xW xLx2
T x ( 1

H ��-/-/-
� 2x2

W x2
T xH � 16

9
x2

W x2
T � 2x2

W x3
T � 16x2

W x4
T x ( 1

H ! (24)
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J

When we add the two-loop result we obtain

g2

16 � 2

� � 1 �
fer � g4	

16 � 2 � 2
��� 2 � � one loop � g4

� 4 R
� 2 � � ( 2 � R

� 1 � � ( 1 � � fin !
(25)

The two residues are given by

R
� 2 � ��� 11

256



R
� 1 � � 11

256
8

UV � 407
27648

� 9
64

c ( 4xW x ( 1
H � 9

128
c ( 2xW � 131

6912
c ( 2

� 3
64

xW xL � 3
16

xW x2
L x ( 1

H � 9
64

xW xB � 9
16

xW x2
B x ( 1

H (26)
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K

� 9
64

xW xT � 9
16

xW x2
T x ( 1

H � 9
32

xW x ( 1
H � 9

128
xW xH

� 1
32

xWL � 3
512

xL � 7
1536

xB � 13
1536

xT

� � ( 1 	 xW � LA 	 xW � � 11
768

� 3
64

c ( 4xW x ( 1
H � 9

32
c ( 4x2

W x ( 1
H

� 1
32

c ( 2xW � 9
64

c ( 2x2
W � 3

128
xW xL � 1

16
xW x2

L x ( 1
H � 9

128
xW xB

� 3
16

xW x2
B x ( 1

H � 9
128

xW xT � 3
16

xW x2
T x ( 1

H � 3
32

xW x ( 1
H

� 3
128

xW xH � 13
384

xW � 3
32

x2
W xL � 3

8
x2

W x2
L x ( 1

H

� 9
32

x2
W xB � 9

8
x2

W x2
B x ( 1

H � 9
32

x2
W xT � 9

8
x2

W x2
T x ( 1

H

� 9
16

x2
W x ( 1

H � 9
64

x2
W xH � 1

16
x2

W ! (27)
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M

Theorem
Therefore massN renormalization has removed

all logarithms in the residue of the simple ultraviolet pole for the
fermionic part

while a non-local residue remains in the bosonic part.

Unfortunately a simple procedure of W mass renormalization is not
enough to get rid of logarithmic residues in the bosonic component and
the reason is that in a bosonic loop we may have three different fields,
the W, the O and the charged ghosts
and only one mass is available.
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P

Example

The situation is illustrated in Fig. 1 where the cross denotes insertion
of a counterterm % ZM ; the latter is fixed to remove the ultraviolet pole in
the W self-energy and one easily verifies that the total in the second
and third line of Fig. 1 ( O and X self-energies, respectively) is not
ultraviolet finite.
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Q

R
ZM �

R
ZM �

ZM

Figure: W mass counterterm insertion in the charged tarnsitions. While the
WW one is ultraviolet finite the same is not true for and ghost-ghost
transitions.
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S

R
ZM �

R
ZM T 2

R
Z
UV

�

ZM ZW Z

ZW Z

Figure: The correct recipe for renormalizing mass dependent ultraviolet
poles in the charged sector.
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W

The procedure has to be changed if we want to make the result in the
bosonic sector as similar as possible to the one in the fermionic sector.
With this goal in mind we introduce the following counterterms

WXY� Z 1Z 2
W W RX 
 O2� Z 1Z 2[ O R 
 MW � Z 1Z 2

M MR

W
! (28)

Our solution is to work in a R\]\ -gauge where the gauge-fixing term
(limited to the charged sector) is

^ ��� 1_
W

` X WXa� _ [ MW Ob! (29)
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c

We also introduce additional counter-terms for the gauge parameters,

_
W � Z

\
W

_ R
W 
 _ [ � Z

\[ _ R[ ! (30)

Our scheme is further specified by imposing the condition

_ R
W � _ R[ � 1 ! (31)
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d

Dropping from now on the index R for renormalized fields and
parameters we define the counter-Lagrangian to be

e
ct � g2

16 � 2

e W W
ct � e [ W

ct � e [f[ct 
 e ij
ct �hg R

i � ij g R
i 
 (32)

g i being a vector or scalar field. We define % Z factors in the
MS-scheme as

Z � 1 � g2

16 � 2 % Z 1� 
 (33)
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i

and obtain

� � W WXkj ��� % ZW

	
p2 � M2

W
�5��% ZM M2

W
%lXfjm� 2 % Z \W pX pjn
� � [f[ ��� % Z[ 	 p2 � M2

W
�5� M2

W

	 % ZM � 2 % Z \[ � 
� � W
[X � 	 % Z \W �4% Z \[ � i MW pXo! (34)
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p

These counter-terms are used to remove all poles from the transitions
in the charged sector. After including the tadpole contribution and
using Eq.(31) we find

% Z \W � 11
6



% Z \[ ��� 2
3
� 3

2
c ( 4x ( 1

H � 5
4

c ( 2 � xL � 2x2
L x ( 1

H

� 3xB � 6x2
B x ( 1

H � 3xT � 6x2
T x ( 1

H � 3 $ 4xH � 3x ( 1
H 


% ZW � 11
3% Z[ � 2 � c ( 2 � xL � 3xB � 3xT 


% ZM ��� 2
3
� 3c ( 4x ( 1

H � 3
2

c ( 2 � xL � 4x2
L x ( 1

H � 3xB

� 12x2
B x ( 1

H � 3xT � 12x2
T x ( 1

H � 3
2

xH � 6x ( 1
H ! (35)
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q

Theorem
An important result follows, namely both

� Z 1Z 2
W

	 _
W Z
\
W � ( 1 
 � Z 1Z 2

M Z
\[ Z 1Z 2[ M

_ [ 
 (36)

are ultraviolet finite so that the gauge-fixing term remains
unrenormalized.
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r

To continue our derivation we consider the ghost Lagrangian and the
associated counter-ters ms,

e
g � ZX tX u 1

Z
\
W

_
W

` 2 � Z
\[ ZM

_ [ M2
W

X u�! (37)

To this Lagrangian corresponds an operator

� � gg ��� 	 % ZX �4% Z \W � 	 p2 � M2
W
��� 	 % ZM ��% Z \W ��% Z \[ � M2

W
! (38)
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v

A simple calculation shows that, with the choice

% ZX � 23
6

 (39)

also the ghost Lagrangian is ultraviolet finite. The correct combination
of mass counterterms is illustrated in Fig. 2. Note that in the MS
scheme we define

Z � 1 � g2

16 � 2 % Z � 2� � 8 UV 
 % ZMS ��� 1
2
% ZMS ! (40)

Note that the two-loop part of
�

remains unchanged since
modifications are of � g6 while for

� � 1 �
bos we have to repeat the

calculation, working in the new gauge.
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w

The bare propagators for charged fields in the R\]\ gauge are

t8 WWXfj � 1
p2 � M2 %lXfxy�

_ 2
W � 1

p2 � _ 2
W M2

pX px
z %lx{j|� 	 1 �

_ [_
W

� 2
_ 2

W M2	
p2 � _ W

_ [ M2 � 2 px pj 

t8 W
[X � i M pX

_
W

	 _ [ � _ W �	
p2 � _ W

_ [ M2 � 2 
 t8 [f[ � p2 � _ 2
W M2	

p2 � _ W

_ [ M2 � 2 

t8 gg �

_
W

p2 � _ W

_ [ M2 
 (41)

where the last propagator refers to the ghost - ghost transition.
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}

One example will be enough to describe the procedure. Consider the
following integral, corresponding to a O loop in the AA self-energy:

IXfj~� dnq

	
q2 � _ 2

W M2
W
� 	l	 q � p � 2 � _ 2

W M2
W
�	

q2 � _ W

_ [ M2
W
� 2 	l	 q � p � 2 � _ W

_ [ M2
W
� 2z 	 2 qXa� pX�� 	 2 qj�� pj���! (42)

We expand the propagators,

	
q2 � _ 2

W M2
W
� ( k � 	 q2 � M2

W
� ( k

� 2 k
g2

16 � 2

�
dZ
\
W M2

W

	
q2 � M2

W
� ( k ( 1 ��-/-/-�
	

q2 � _ W

_ [ M2
W
� ( k � 	 q2 � M2

W
� ( k

� k
g2

16 � 2

� 	
dZ
\
W � dZ

\[ � M2
W

	
q2 � M2

W
��( k ( 1 ��-/-/-0
(43)
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�

and obtain
IXfj~� I0 %lXkj�� I1 pX pjn
 (44)

with form factors�
I0 � I0

	 _ � 1 �5� i � 2 g2 8 I0 dZ
\[ 


8
I0 � 1

8
n � 2
n � 1

A0
	
1 
 M2

W
�;� n � 1

2
M2

W
B0
	
1 
 1 
 p2 
 MW 
 MW �

� 1
4

1
n � 1

M2
W

	
p2 � M2

W
� B0
	
1 
 2 
 p2 
 MW 
 MW ��
 (45)

where MW is the bare W mass. Collecting all diagrams, renormalizing
the W mass and inserting the solution for the renormalization
constants we find the expression for the bosonic, one-loop, AA
self-energy:
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�

� � 1 �
bos " 6� � 6 � 3

8
UV � 8xW ��-/-/- (46)
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�

Including both components and taking into account the additional
contribution arising from renormalization we finally get residues for the
ultraviolet poles which show the expected properties:

R
� 2 � ��� 55

768



R
� 1 � � 11

192
8

UV � 1199
27648

� 131
6912

c ( 2 � 3
512

xL � 13
1536

xT

� 7
1536

xB ! (47)

Eq.(47) shows complete cancellation of poles with a logarithmic
residue; furthermore the two residues in Eq.(47) are scale independent
and cancel in the difference

� 	
p2 ��� � 	 0 � .
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Transitions

A final comment concerns the Z -photon transition which is not zero, at
p2 � 0, in any gauge where

_H�� 1 even after the � 1 re-diagonalization
procedure.

However, in our case, the non-zero result shows up only due to a
different renormalization of the two bare gauge parameters and it is,
therefore, of � g4 ; it can be absorbed into � 2 which does not modify
our result for

�
since there are no � 2-dependent terms in the AA

transition (only � 21 appears).
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�

renormalization� procedure

One should observe that our procedure is completely equivalent to
consider one-loop diagrams with the insertion of one-loop
counterterms and one may wonder why
we have not included % ZW 
/% Z[ 
/% ZX and also a % Ze,
arising from charge renormalization and a % ZA from the renormalization
of the photon field.
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�

about counter terms
The argument goes as follows: first we consider the relevant vertices
with counterterms:

AWW � ZW Z 1Z 2
A Ze � Born 


A O�O2� Z[ Z 1Z 2
A Ze � Born 


AW O2� 	 ZW Z[ ZA ZM � 1Z 2 Ze � Born 

AX u X u@� ZX Z 1Z 2

A Ze � Born ! (48)
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Next, we consider the ultraviolet divergent part of the corresponding
one-loop diagrams and obtain:

VUV � g2

16 � 2

% V� 
 (49)

where

% V AWWx Ak� ��� 11
3
% x A 	 p2 � 2 p1 � � � 11

3
%lx � 	 p1 � 2 p2 ��A

� 11
3
%lAk� 	 p1 � p2 ��x

% V A
[f[x � 2 � c ( 2 � xL � 3 xT � 3 xB

	
p1 � p2 ��x5


% V AXXx � 2 p1x 

% V AW

[x � � i %lx � MW

3
2

c ( 4 1
xH

� 5
4

c ( 2 � 2
x2

L

xH

� 6
x2

T

xH

� 6
x2

B

xH

� 3
xH

� 3
4

xH

� xL � 3xT � 3xB � 5
2
! (50)
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With these results we can prove that

% Ze � 1
2
% ZA � 0 
 (51)

i.e. that, like in QED, charge renormalization is only due to vacuum
polarization. Note that the � 1 prescription is crucial for proving the
Ward identity of Eq.(51). Consider now the one-loop photon
self-energy in our gauge; for instance, the diagrams with a ghost loop
have vertices proportional to ZX (thanks to Eq.(51)) and ghost
propagators given by

8 gg � 1
ZX

_
W

p2 � _ W

_ [ mw2 ! (52)

Clearly, % ZX gives no contribution. The same holds for all other
diagrams and for the remaining counterterms, % Z[ and % ZW . In
conclusion, in computing

�
we can forget about one-loop diagrams

with field and charge counterterms and only worry about mass
renormalization which we do, in some unconventional way, by
expanding the explicit expression for

� � 1 � 	 s � .
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Inclusion of
8

UV

In the previous section we have performed renormalization in the MS
scheme and here we proceed by extending the same procedure to the
MS scheme. The counterterms in the two schemes are connected by
the simple relation % ZMS ��� 1

2 % ZMS and what we may show that not
only the double and single ultraviolet poles of

� 	
s � have scale

independent, local, residues but also the terms proportional to powers
of
8

UV have the same property.
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Fermion mass fitting equations

For the complete� answer we need fitting equations that relate the bare
masses to the physical ones since the renormalized mass is only an
intermediate parameter which is bound to disappear in the expresion
for any physical observable. For a generic u � d doublet we obtain

mf � mphys
f � g2

16 � 2 � f
m � mphys



m2

f ren � m2
f phys 1 � g2

8 � 2
� f

m2
f m � mphys

�4% Z f
m (53)
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W mass fitting equations

The relation between renormalized and physical W mass is

M2
W ren � M2

W phys 1 � g2

16 � 2

Re � WW

	 � M2
W phys�

M2
W phys

�4% ZM 
 (54)

where the quantity within square brackets is ultraviolet finite by
construction and where

� W W �
gen
� f

W W � � b
WW � 2

	 �
t1 ��� 1 ��! (55)
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Part II

Intr oduction to the Fermi Coupling Constant
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Definitions

Writing a renormalization equation that involves GF should not be
confused with making a prediction with the muon life-time.

In the following section we present few examples that are relevant in
evaluating

8
g (see Eq.(58)) up to two-loops and therefore in

contructing one of our renormalization equations.

– The Lagrangian of the Fermi theory which is relevant for our
pourposes can be written as:

e
F � e QED � GF�

2

� j mu ? X ?o� � X � e ? X ?o� � j e 
 (56)

where ?o��� 1 � ? 5.
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To leading order in GF and to all orders in , the muon lifetime takes the
form

1¢ X �£� 0
	
1 � 8 q ��
 � 0 � G2

F m5X
192 � 3 ! (57)

The standard model weak corrections to ¢ X are conventionally
parametrized by the relation

GF�
2
� g2

8 M2

	
1 � 8 g ��! (58)

Our goal will be to derive an explicit expression for
8

g so that one can
use Eq.(58) as a relation where on the left hand side there is a quantity
whose value is obtained by experiment and where on the right hand
side we have bare quantities.
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Ther quantity
8

g may be written as the sum of various contributions,
which are

8
g � 8 gWF � 8 gV � 8 gB � 8 gS ! (59)

The various terms arise from wave-function renormalization factors,
weak vertices, boxes and the W self-energy. Self-energy corrections
always play a special role and will be dicussed separately, although
they are crucial in establishing gauge parameter independence.
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Strategy of the calculation

In the standard model and in the
_ � 1 gauge the lowest order

amplitude is

¦
SM § 0 � 	 2�;� 4 i

g2

8
1

Q2 � M2 u
	
pj/¨k��? x ?�� u

	
pX©� u 	 pe ��? x ?�� v

	
pj e �

ª GF�
2

u
	
pj ¨k��? x ? � u

	
pX � u 	 pe ��? x ? � v

	
pj e � = ¦ F 
 (60)

where we have introduced Q � pX � pe.
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Note that at one loop we have

1¢ X �
m5X

192 � 3

g4

32 M2

	
1 � 2

8
g
� 1 � � 8 q

� 1 � ��
 (61)

and we have to separate the pure e.m. corrections evaluated in the
Fermi theory to obtain

8
g
� 1 � . To obtain the amplitude which generates

the one-loop weak correction we consider first

¦
W § 1 � ¦ SM § 1 � ¦ sub§ 1 
 (62)

where
¦

sub§ 1 is obtained by
grouping the one-loop SM corrections with one photon line connected
to external fermions and one W line,
by shrinking the W line to a point and by replacing the corresponding
W propagator with 1 $ M2.
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At the one-loop level and after the substitution g2 $ 	 8 M2 �" GF
$ � 2 we

obtain

¦
sub§ 1 = ¦ F § 1 
 (63)

where the latter generates � 0 8 q
� 1 � . In the subtracted amplitude the

soft terms have disappeared and we generate
8

g
� 1 � with the help of

¦ leading
W § 1 � lim

pi ®mi ¯ 0

¦
sub§ 1 
 (64)

i.e. we only retain the lading part, with vanishing lepton masses and
external momenta, which amounts to neglect corrections of� , m2 $ M2 . One-loop diagrams with no photons only have an hard
component and do not need a subtraction.
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Figure: Infrared divergent one-loop box.
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This amplitude contains two structures,

M0 � u ? x ?o� u u ? x ?�� v 
 M1 � u ? x ? X ? A ?�� u u ? A ? X ? x ?o� v !
(65)

However, M1 is simply related to the current � current structure as it
will be illustrated by considering the case of the one-loop box with W 
²?
exchange. We neglect for the moment all coupling constants and write

¦ sub
box³ W ��� dnq

q́ qµ	
q2 � M2 � 	 q2 � 2 J x ´:A J

A µfx 

J x ´:A � u

	
pj/¨¶��? x ?o�·? ´ ? A u

	
pX¸��
 J A µfx � u

	
pe ��? A ? µ ? x ?o� v

	
pj e ��!

(66)
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After integration we obtain

¦ sub
box³ W ��� i � 2 B0

	
2 
 1 º 0 
 0 
 M � J x ´:A J

A¶´ x ! (67)

It can be shown that

J x ´:A J
A¶´ x � B

� 1 � M0 
 (68)

where B
� 1 � is obtained with the help of a projection operator,
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spin

¼
J x ´:A J A¶´ x � B

� 1 � M0 � 0 

¼ � v

	
pj e ��?�½b?�� u

	
pj ¨ � u 	 pX¸��?b½b?o� u

	
pe ��! (69)

After a straightforward algebraic manipulation one obtains (in the limit
Q2 " 0)

B
� 1 � � 	 n � 2 � 2 
 (70)

which, after multiplication by B0
	
2 
 1 º 0 
 0 
 M � and in the limit n " 4

reproduces the correct result, proportional to B0
	
2 
 1 º 0 
 0 
 M ��� 1 $ 2.
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Alternatively we start from the expression for the ?�
 W box without
nullifying the soft scales,

¦
box³ W � dq 1

d0d1d2d3
u
	
pj/¨¶��? x ?o� � i

	 $q � $pX©�5� mX ? A u
	
pX¸�

z u
	
pe ��? A � i

	 $q � $pe �5� me ? x ?�� v
	
pj e ��
 (71)
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where we introduce

d0 � q2 
 d1 � 	 q � pX©� 2 � m2X 
 d2 � 	 q � P � 2 � M2 
 d3 � 	 q � pe � 2 � m2
e 


(72)

pXÀ� pj/¨ 2 � P2 
 	
pXÀ� pe � 2 � Q2 ! (73)

A standard decomposition gives

1
d0d1d2d3

� 1
P2 � M2

1
d0d1d3

� 1
d1d2d3

� 2
q - P

d0d1d2d3
! (74)
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– The first term in the decomposition (in the limit ÂP2 Â¶Ã M2) is the
QED vertex in the local Fermi theory that can be computed with
standardÄ techniques;

– The last two terms inside the square bracket of Eq.(74) are finite
in the soft limit so that the extra contribution from the infrared SM
box can be evaluated for mXÅ
 me � 0 and Q2 
 P2 � 0.

In this limit only the term with three propagators survives and gives the
well-known result.
With this technique (extracting instead of subtracting) we circumvent
the puzzling procedure of Eq.(64) where the subtracted term is zero in
dimensional regularization. However, the two procedures are totally
equivalent.
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If we neglect, for the moment, issues related to gauge parameter
independence it is convenient to define a G constant that is totally
process independent,

8
g ��% G � 8 gS 
 G � GF 1 � g2

8 M2 % G 
 % G �
n � 1

g2

16 � 2

n % � n �G !
(75)

Alternatively, but always neglecting issues related to gauge parameter
independence, we could resum % G by defyning GR � GF

$ 	 1 ��% G � .
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In one case we obtain

G � g2

8 M2 1 � g2

16 � 2 M2 � W W

	
0 � ( 1 


� W W

	
0 �� � � 1 �WW

	
0 ��� g2

16 � 2 � � 2 �W W

	
0 ��
 (76)

where � WW is the W self-energy,
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whereas withÉ resummation we get

GR � g2

8 M2 1 � g2

16 � 2 M2 � W W

	
0 � ( 1 


� W W

	
0 �� � � 1 �WW

	
0 ��� g2

16 � 2 � � 2 �W W

	
0 ��� � � 2 �W W

	
0 ��% � 1 �G ! (77)
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