### **TWO-LOOP** Renormalization in the Making

### **Giampiero PASSARINO**

Torino

July 12, 2006



Giampiero PASSARINO (Torino) TWO-LOOP Renormalization in the Making

Based on work done in collaboration with Stefano Actis, Andrea Ferroglia, Massimo Passera and Sandro Uccirati









Giampiero PASSARINO (Torino) TWO-LOOP Renormalization in the Making

▶ < ≣ ▶ 볼 ∽ < ⊂ July 12, 2006 3/47

2

### The basics

- The parameter  $\beta_h$
- 4)  $\beta_h$  setting at the lowest order
- 5  $\beta_h$  setting up to one loop
- 6)  $\beta_h$  vertices in one-loop calculations
- 7)  $\beta_h$  setting up to two loops
- 8)  $\beta_h$  vertices in two-loop calculations
- **9** The  $\beta_t$  Scheme
- $\mathbf{10} \ \ eta_t$  up to one loop
- $oldsymbol{10}$   $eta_t$  up to two loops
- 2 WST identities

- The basics
- The parameter  $\beta_h$
- •)  $\beta_h$  setting at the lowest order
- 5)  $\beta_h$  setting up to one loop
- 6)  $\beta_h$  vertices in one-loop calculations
- 7)  $\beta_h$  setting up to two loops
- **3**  $\beta_h$  vertices in two-loop calculations
- **9** The  $\beta_t$  Scheme
- $\mathbf{10} \ \ eta_t$  up to one loop
- $oldsymbol{10}$   $eta_t$  up to two loops
- WST identities

- The basics
- The parameter  $\beta_h$
- $\beta_h$  setting at the lowest order
- $oldsymbol{eta}_h$  setting up to one loop
- 6)  $\beta_h$  vertices in one-loop calculations
- 7)  $\beta_h$  setting up to two loops
- **a**  $\beta_h$  vertices in two-loop calculations
- **9** The  $\beta_t$  Scheme
- $\mathbf{10} \ \ eta_t$  up to one loop
- $oldsymbol{10}$   $eta_t$  up to two loops
- 2 WST identities

- The basics
- The parameter  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_{h}$  vertices in one-loop calculations
- $m{\sigma} ~eta_h$  setting up to two loops
- 8)  $\beta_h$  vertices in two-loop calculations
- **9** The  $\beta_t$  Scheme
- $\mathbf{10} \ \ eta_t$  up to one loop
- $oldsymbol{10}$   $eta_t$  up to two loops
- 2 WST identities

- The basics
- The parameter  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_h$  vertices in one-loop calculations
- $oldsymbol{eta}_h$  setting up to two loops
- $\beta_h$  vertices in two-loop calculations
- **9** The  $\beta_t$  Scheme
- $\mathbf{10} \ \ eta_t$  up to one loop
- 1)  $\beta_t$  up to two loops
- 2 WST identities

- The basics
- **The parameter**  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_h$  vertices in one-loop calculations
- $\beta_h$  setting up to two loops
- $oldsymbol{eta}_h$  vertices in two-loop calculations
- 9 The  $\beta_t$  Scheme
- $\mathbf{10} \hspace{0.1in} eta_t$  up to one loop
- $oldsymbol{10}$   $eta_t$  up to two loops
- 2 WST identities

- The basics
- **The parameter**  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_h$  vertices in one-loop calculations
- $\beta_h$  setting up to two loops
- $\beta_h$  vertices in two-loop calculations
- 9) The  $\beta_t$  Scheme
- $oldsymbol{10}$   $eta_t$  up to one loop
- $oldsymbol{10}$   $eta_t$  up to two loops
- 2 WST identities

- The basics
- The parameter  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_h$  vertices in one-loop calculations
- $\beta_h$  setting up to two loops
- $\beta_h$  vertices in two-loop calculations
- **9** The  $\beta_t$  Scheme
- $\mathbf{10}~eta_t$  up to one loop
- $oldsymbol{10}$   $eta_t$  up to two loops
- 2 WST identities

- The basics
- **The parameter**  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_h$  vertices in one-loop calculations
- $\beta_h$  setting up to two loops
- $\beta_h$  vertices in two-loop calculations
- **The**  $\beta_t$  Scheme
- $\mathbf{O}$   $\beta_t$  up to one loop
- )  $\beta_t$  up to two loops
- 2 WST identities

- The basics
- **The parameter**  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_h$  vertices in one-loop calculations
- $\beta_h$  setting up to two loops
- $\beta_h$  vertices in two-loop calculations
- **The**  $\beta_t$  Scheme
- $\mathbf{0} \ \beta_t$  up to one loop
- $\mathbf{D}$   $\beta_t$  up to two loops
- WST identities

- The basics
- The parameter  $\beta_h$
- $\beta_h$  setting at the lowest order
- $\beta_h$  setting up to one loop
- $\beta_h$  vertices in one-loop calculations
- $\beta_h$  setting up to two loops
- $\beta_h$  vertices in two-loop calculations
- **The**  $\beta_t$  Scheme
- $\beta_t$  up to one loop
- $\mathbf{0}$   $\beta_t$  up to two loops
- WST identities



### Part I

### Prolegomena



Giampiero PASSARINO (Torino) TWO-LOOP Renormalization in the Making

→ < Ē → Ē → 오 < July 12, 2006 5 / 47

▶ ∢ ⊒

### **Motivations**

#### After LEP

After the end of the Lep era it became evident that including estimates of higher order radiative corrections into one-loop calculations for physical (pseudo-)observables could not, anymore, satisfy the need of precision required by the new generation of experiments.

### ILC vs LHC

Admittedly, LHC is an arena for discovery physics, more than anything else: high precision is certainly not needed, at least in its first phase. According to some predestinate design hadron machines are alternating with electron-positron ones and, hopefully, ILC will come into operation; at that moment the highest available theoretical precision will play a fundamental role.

イロン 不得 とくき とくき とうき

#### **Possible landscapes**

As a matter of fact, it is not clear – at this moment – what kind of scenario will follow after the first few months of running at LHC; any evidence of new pysics will favor a striking search for new theoretical models, for their Born predictions, and the hearthquake could be so strong to remove any interest in quantum effects of the standard model. On the contrary, after few months of running, we could be back to the familiar landscape: effects of new physics hidden inside loops.



#### si vis pacem para bellum

We decided to build the environment that allows for a complete two-loop analysis of a spontaneously broken gauge field theory. This construction requires several steps, so it is difficult to caractherize the approach with a single achronimus; there are a lot of analytical aspects in what we are doing, yet the final step (computing arbitrary two-loop diagrams) can only be done with 'the numerical way': we call it the algebraic - numerical approach.



#### What's new?

If one thinks for a while, everything is in the old papers of 't Hooft and Veltman; however, translating few formal properties into a working scheme is far from trivial; most of the times it is not a question of *how do I do it?*, rather it is a question of bookkeeping, namely *can I do it without exhausting the memory of my computer?*, or, *is there any practical way of presenting my results besides making my codes public?*.



#### layout

First we will deal with general aspects of a spontaneously broken gauge theory; the treatment of tadpoles, everybody knows how to do it, yet general results are never presented in a way that everybody can use them. Secondly, there is the need for a proper diagonalization, order-by-order, of the neutral sector of a theory of fundamental interactions: once again, we need a comprehensive collections of results which allows for practical applications.



#### Counterterms?

Then, there is the perennial question, with or without counter-terms? In a way, it is a fake question. The two approaches are fully equivalent and we will discuss the transition from bare parameters to renormalized ones. Finally we discuss the ultimate step in any renormalization procedure: the transition from renormalized parameters to a set of physical (pseudo-)observables.



Perhaps, one should try to make a clear vocabulary of renormalization in QFT; a renormalization procedure is designed to bring you from a Lagrangian to theoretical predictions; it includes,

- regularization (nowadays dimensional regularization is easy to understand),
- a renormalization scheme and
- an input parameter set.

#### Comments

- The scheme, being a transitory step, is almost irrelevant; it can be on-mass-shell or MS or complex poles, but unless you do something illegal (resummations that are not allowed or similar things) it really does not matter.
- One can define MS quantities as convenient landmarks but it is the last step that matters, at least as long as we have a convenient subtraction point (which we miss in QCD). Renormalized quantities should always be expressed in terms of a set of physical quantities.
- One may indulge to the introduction of an MS running e.m. coupling constant (importing from QCD to QED, which sounds strange anyway) but, finally, only cross sectios matter.

(日)

#### **Steps**

- All the Green functions of the theory have to be made finite, up to two-loops, by introduction of counter-terms and all counter-terms are of non logarithmic nature, to respect unitarity.
- Renormalized Ward-Slavnov-Taylor identities must be satisfied.
- All ultraviolet finte parts must be classified and an algorithm has to be designed for their evaluation at any scale.

Of course, there are preliminar steps – not always the easy ones – but it is only the full control on the multi-scale level that pays off.



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Part II Higgs tadpoles



Giampiero PASSARINO (Torino) TWO-LOOP Renormalization in the Making

July 12, 2006 15 / 47

### the basics

The minimal Higgs sector of the Standard Model (SM) is given by the Lagrangian

$$\mathcal{L}_{\mathsf{S}} = -(D_{\mu}\boldsymbol{K})^{\dagger}(D_{\mu}\boldsymbol{K}) - \mu^{2}\boldsymbol{K}^{\dagger}\boldsymbol{K} - (\lambda/2)(\boldsymbol{K}^{\dagger}\boldsymbol{K})^{2}, \tag{1}$$

where the covariant derivative is given by

$$D_{\mu}K = \left(\partial_{\mu} - \frac{i}{2}gB_{\mu}^{a}\tau^{a} - \frac{i}{2}g'B_{\mu}^{0}\right)K,$$
(2)

 $g'/g = -\sin\theta/\cos\theta$ ,  $\tau^a$  are the standard Pauli matrices,  $B^a_{\mu}$  is a triplet of vector gauge bosons and  $B^0_{\mu}$  a singlet. For the theory to be stable we must require  $\lambda > 0$ . We choose  $\mu^2 < 0$  in order to have spontaneous symmetry breaking (SSB). The scalar field in the minimal realization of the SM is

$$\mathbf{K} = \frac{1}{\sqrt{2}} \begin{pmatrix} \zeta + i\phi_0 \\ -\phi_2 + i\phi_1 \end{pmatrix},\tag{3}$$

TWO-LOOP Renormalization in the Making

The parameter *v* is *not* a new parameter of the model; its value must be fixed by the requirement that  $\langle H \rangle_0 = 0$  [i.e.  $\langle K \rangle_0 = (1/\sqrt{2})(v, 0)$ ], so that the vacuum doesn't absorb/create Higgs particles. To see how this works at the lowest order, consider the part of  $\mathcal{L}_S$  containing the Higgs field:

$$-(1/2)(\partial_{\mu}H)^{2} - (\mu^{2}/2)(H+v)^{2} - (\lambda/8)(H+v)^{4}.$$
 (4)

These terms generate vertices that imply absorption of H in the vacuum, namely those linear in H,

$$\left[-\mu^2 \mathbf{v} - (\lambda/2) \mathbf{v}^3\right] \mathbf{H},\tag{5}$$

which correspond to the vertex H — This vertex gives a non-zero value to the diagrams with one ingoing H line, and thus a non-zero VEV. We will set it to zero, i.e.  $v = (-2\mu^2/\lambda)^{1/2}$  (or v = 0, but then, no SSB).

イロン 不得 とくき とくき とうき

### **Definitions and Lagrangian**

In h.o. of perturbation theory there are more complicated diagrams contributing to  $\langle H \rangle_0$ . The parameter *v* must then be readjusted to make  $\langle H \rangle_0 = 0$ . First of all, let's introduce

- the new bare parameters M (the W mass),
- $M_{H}$ , the mass of the physical Higgs particle and
- $\beta_h$  (the tadpole constant) according to the following definitions:

$$\begin{cases} M = gv/2 \\ M_{H}^{2} = \lambda v^{2} \\ \beta_{h} = \mu^{2} + \frac{\lambda}{2}v^{2} \end{cases} \implies \begin{cases} v = 2M/g \\ \lambda = (gM_{H}/2M)^{2} \\ \mu^{2} = \beta_{h} - \frac{1}{2}M_{H}^{2} \end{cases}$$
(6)

. . . . . .

The new set of (bare) parameters is therefore

$$\{g, g', M, M_H, \beta_h\}$$
 (instead of  $\{g, g', \mu, \lambda, v\}$ ).

Remember that  $\beta_h$  (like v) is not an independent parameter. In terms of these parameters the interaction part of the scalar Lagrangian becomes

$$egin{aligned} &\mathcal{L}_{\mathcal{S}}^{\prime} = -\mu^{2}\mathcal{K}^{\dagger}\mathcal{K} - (\lambda/2)(\mathcal{K}^{\dagger}\mathcal{K})^{2} = -eta_{h}\Big[rac{2M^{2}}{g^{2}} + rac{2M}{g}\mathcal{H} & \ &+ rac{1}{2}\left(\mathcal{H}^{2} + \phi_{0}^{2} + 2\phi_{+}\phi_{-}
ight)\Big] & \ &+ rac{M_{\mu}^{2}M^{2}}{2g^{2}} - rac{1}{2}M_{\mu}^{2}\mathcal{H}^{2} - grac{M_{\mu}^{2}}{4M}\mathcal{H}\left(\mathcal{H}^{2} + \phi_{0}^{2} + 2\phi_{+}\phi_{-}
ight) & \ &- g^{2}rac{M_{\mu}^{2}}{32M^{2}}\left(\mathcal{H}^{2} + \phi_{0}^{2} + 2\phi_{+}\phi_{-}
ight)^{2}, \end{aligned}$$

with  $\phi_{\pm} = (\phi_1 \mp i\phi_2)/\sqrt{2}$ .

L

### $\beta_h$ setting at the lowest order

Let's now set  $\beta_h$  such that the VEV of *H* remains zero to each order of PT. At the lowest order, the only diagram contributing to  $\langle H \rangle_0$  is

originated by the term in  $\mathcal{L}'_{S}$  linear in H,  $-(2\beta_{h}M/g)H$ . Therefore, at the lowest order we will simply set  $\beta_{h} = 0$ .



### $\beta_h$ setting up to one loop

Define

$$\beta_h = \beta_{h_0} + \beta_{h_1} g^2 + \beta_{h_2} g^4 + \cdots$$
 (10)

The lowest-order  $\beta_h$  setting of the previous section amounts to  $\beta_{h_0} = 0$ . At the one-loop level, two types of diagrams contribute to the Higgs VEV up to  $\mathcal{O}(g)$ :

$$T_0: \qquad --- \bullet \quad + \quad T_1: \quad --- (11)$$

where the empty blob on the r.h.s. symbolically indicates all the one-loop diagrams containing a scalar field (H,  $\phi_{\pm}$ ,  $\phi_{0}$ ), a gauge field (Z,  $W_{\pm}$ ), a Faddeev–Popov ghost field ( $X_{+}$ ,  $X_{-}$ ,  $X_{z}$ ), or a fermionic field.

As an example, consider only the r.h.s. diagram containing the *H* field: if this were the only  $T_1$  diagram, in order to have  $\langle H \rangle_0 = 0$  it should cancel with thel.h.s. one  $(T_0)$ , i.e.

$$(2\pi)^{4}i\left(-\beta_{h}\frac{2M}{g}\right) - g\frac{3M_{H}^{2}}{4M}i\pi^{2}A_{0}(M_{H}) = 0, \qquad (12)$$

where  $i\pi^2 A_0(m) = \mu^{4-n} \int d^n q / (q^2 + m^2 - i\epsilon)$ . The solution of this equation is  $\beta_{h_0} = 0$  and

$$\beta_{h_1}^{(H)} = \frac{1}{(2\pi)^4 i} \left( \frac{T_1}{2Mg} \right) = -\frac{1}{16\pi^2} \left[ \frac{3M_H^2}{8M^2} A_0(M_H) \right].$$
(13)

Of course,  $\beta_{h_1}^{(H)}$  is just the contribution to  $\beta_{h_1}$  arising from the one-loop tadpole diagram containing the *H* field.

・ロット (四) ・ (日) ・ (日) ・ (日)

The complete expression for  $\beta_{h_1}$  in the  $R_{\xi}$  gauge is

$$\beta_{h_{1}} = -\frac{1}{16\pi^{2}} \Big[ \frac{3}{2} A_{0}(M) + \frac{3}{4c^{2}} A_{0}(M_{0}) + M^{2} + \frac{M_{0}^{2}}{2c^{2}} + \frac{M_{H}^{2}}{8M^{2}} \Big( A_{0}(\xi_{Z}M_{0}) + 2A_{0}(\xi_{W}M) \Big) + + \frac{3M_{H}^{2}}{8M^{2}} A_{0}(M_{H}) - \sum_{f} \frac{m_{f}^{2}}{M^{2}} A_{0}(m_{f}) \Big],$$
(14)

where  $M_0 = M/c$  and  $m_f$  are the Z and fermion masses, and  $c = \cos \theta$ .

Giampiero PASSARINO (Torino) TWO-LOOP Renormalization in the Making

• • • • • • • • • • • •

### $\beta_h$ vertices in one-loop calculations

Beyond the lowest order,  $\beta_h$  is *not* zero and the Lagrangian  $\mathcal{L}_S^l$  contains the following vertices involving a  $\beta_h$  factor:



(as usual, the combinatorial factorials for identical fields are included.

Note that only scalar fields appear in the  $\beta_h$  vertices. These  $\beta_h$  vertices must be included in the relevant one-loop calculations. Consider, for example, the Higgs self-energy at the one-loop level. The diagrams contributing to this  $\mathcal{O}(g^2)$  quantity are

$$H \longrightarrow H + H \longrightarrow H, \quad (19)$$

where the empty blob on the r.h.s. represents all the one-loop contributions (two possible topologies). The l.h.s. diagram containing a two-leg  $\beta_h$  vertex shouldn't be forgotten and plays an important role in the Ward identities (see later). One should also include diagrams containing tadpoles:



but these diagrams add up to zero as a consequence of our choice for  $\beta_h$ .



### $\beta_h$ setting up to two loops

Up to terms of  $\mathcal{O}(g^3)$ ,  $\langle H \rangle_0$  gets contributions from the following diagrams:





2 July 12, 2006 27 / 47

< ∃ >

• • • • • • • • • •

The coefficients in parentheses indicate the combinatorial factors of each diagram when all fields are identical. By virtue of our previous choice for  $\beta_{h_0}$  and  $\beta_{h_1}$ , all the *reducible* diagrams add up to zero:  $T_4 = T_5 = T_6 = T_7 = 0$ . The equation

$$\sum_{i=0}^{3} T_{i} = 0$$
 (22)

provides then  $\beta_{h_2}$ :

$$\beta_{h_2} = \frac{1}{(2\pi)^4 i} \left( \frac{T_2 + T_3}{2Mg^3} \right).$$
 (23)

• • • • • • •

### $\beta_h$ vertices in two-loop calculations

As we described for calculations at the one-loop level, two-leg  $\beta_h$  vertices Eq.(16), Eq.(17),Eq.(18)) should be included in all the appropriate diagrams at the two-loop level, while all graphs (up to two loops) containing tadpoles will add up to zero as a consequence of our choice for  $\beta_{h_0}$ ,  $\beta_{h_1}$  and  $\beta_{h_2}$ . Note that two-leg  $\beta_h$  vertices will also appear in  $\mathcal{O}(g^4)$  self-energies of fields which do not belong to the Higgs sector; for example, in diagrams like these



which are representative of the only two irreducible  $\mathcal{O}(g^4) Z$  self-energy topologies containing  $\beta_h$  vertices (excluding tadpoles, of course).

### **Definitions and Lagrangian**

We will now consider a slightly different strategy to set the Higgs VEV to zero. Instead of using Eq.(6), the " $\beta_h$  scheme", we will define the new bare parameters M' (the W mass),  $M'_{H}$  (the mass of the physical Higgs particle) and  $\beta_t$  (the tadpole constant) according to the following " $\beta_t$  scheme":

$$\begin{cases} M'(1+\beta_{t}) = gv/2\\ (M'_{H})^{2} = \lambda (2M'/g)^{2}\\ 0 = \mu^{2} + \frac{\lambda}{2} (2M'/g)^{2} \end{cases} \Longrightarrow \begin{cases} v = 2M'(1+\beta_{t})/g\\ \lambda = (gM'_{H}/2M')^{2}\\ \mu^{2} = -\frac{1}{2}(M'_{H})^{2} \end{cases}$$
(24)

The new set of bare parameters is therefore

 $\{\boldsymbol{g}, \boldsymbol{g}', \boldsymbol{M}', \boldsymbol{M}'_{\!_{H}}, \beta_t\}$  instead of  $\{\boldsymbol{g}, \boldsymbol{g}', \mu, \lambda, \nu\}.$  (25)

Remember that  $\beta_t$  (like v and  $\beta_h$ ) is not an independent parameter. Note that, contrary to  $\beta_h$ , the parameter  $\beta_t$  appears in the Higgs doublet K via  $\zeta = H + v$ , with  $v = 2M'(1 + \beta_t)/g$  [Eq.(24)]. As a consequence, all three terms of the scalar Lagrangian  $\mathcal{L}_S$  [Eq.(1)] depend on it. In particular, the interaction part of the scalar Lagrangian becomes



$$\mathcal{L}_{S}^{\prime} = -\mu^{2} \mathcal{K}^{\dagger} \mathcal{K} - (\lambda/2) (\mathcal{K}^{\dagger} \mathcal{K})^{2}$$

$$= (1 + \beta_{t})^{2} \left(1 - \beta_{t} (2 + \beta_{t})\right) \frac{M_{H}^{\prime 2} M^{\prime 2}}{2g^{2}}$$

$$- \beta_{t} (\beta_{t} + 1) (\beta_{t} + 2) \frac{M_{H}^{\prime 2} M^{\prime}}{g} H$$

$$- \frac{1}{2} M_{H}^{\prime 2} H^{2} - \frac{1}{4} M_{H}^{\prime 2} \beta_{t} (\beta_{t} + 2) \left(3H^{2} + \phi_{0}^{2} + 2\phi_{+}\phi_{-}\right)$$

$$- g (1 + \beta_{t}) \frac{M_{H}^{\prime 2}}{4M^{\prime}} H \left(H^{2} + \phi_{0}^{2} + 2\phi_{+}\phi_{-}\right)$$

$$- g^{2} \frac{M_{H}^{\prime 2}}{32M^{\prime 2}} \left(H^{2} + \phi_{0}^{2} + 2\phi_{+}\phi_{-}\right)^{2},$$
(26)
(26)

while the term involving the covariant derivatives,  $-(D_{\mu}K)^{\dagger}(D_{\mu}K)$ , results in the same (lengthy)  $\beta_t$ -independent expression of the  $\beta_h$  scheme *plus* the following  $\beta_t$ -dependent terms

$$\beta_{t} \times \left[ igsM' \left( \phi^{-} W_{\mu}^{+} - \phi^{+} W_{\mu}^{-} \right) \left( A_{\mu} - \frac{s}{c} Z_{\mu} \right) - \frac{gM'}{2} H \left( 2W_{\mu}^{+} W_{\mu}^{-} + \frac{Z_{\mu} Z_{\mu}}{c^{2}} \right) - \frac{M'^{2}}{2} \left( \beta_{t} + 2 \right) \left( 2W_{\mu}^{+} W_{\mu}^{-} + \frac{Z_{\mu} Z_{\mu}}{c^{2}} \right) + \frac{M'}{c} Z_{\mu} \partial_{\mu} \phi_{0} + M' W_{\mu}^{+} \partial_{\mu} \phi_{-} + M' W_{\mu}^{-} \partial_{\mu} \phi_{+} \right],$$
(28)

where, as usual,  $W^{\pm}_{\mu} = (B^1_{\mu} \mp iB^2_{\mu})/\sqrt{2}$ ,  $s = \sin \theta$ ,  $c = \cos \theta$ , and

July 12, 2006 33 / 47

$$\left(\begin{array}{c} Z_{\mu} \\ A_{\mu} \end{array}\right) = \left(\begin{array}{c} c & -s \\ s & c \end{array}\right) \left(\begin{array}{c} B_{\mu}^{3} \\ B_{\mu}^{0} \end{array}\right).$$
(29)

Where else, in the SM Lagrangian, does the parameter  $\beta_t$  appear? Wherever  $\nu$  does — as it can be readily seen from Eq.(24). Let's quickly discuss the other sectors of the SM: Yang–Mills, fermionic, Faddeev–Popov (FP) and gauge-fixing. The pure Yang–Mills Lagrangian obviously contains no  $\beta_t$  terms.

The gauge-fixing part of the Lagrangian,  $\mathcal{L}_{gf}$ , cancels in the  $R_{\xi}$  gauges the gauge–scalar mixing terms  $Z-\phi_0$  and  $W^{\pm}-\phi^{\pm}$  contained in the scalar Lagrangian  $\mathcal{L}_S$ . These terms are proportional to gv/2, i.e., in the  $\beta_t$  scheme, to  $M'(1 + \beta_t)$ .



### gauge-fixing

The gauge-fixing Lagrangian  $\mathcal{L}_{gf}$  is matter of choice: we adopt the usual definition

$$\mathcal{L}_{gf} = -\mathcal{C}_{+}\mathcal{C}_{-} - \frac{1}{2}\mathcal{C}_{Z}^{2} - \frac{1}{2}\mathcal{C}_{A}^{2}, \qquad (30)$$

$$\mathcal{C}_{A} = -\frac{1}{\xi_{A}}\partial_{\mu}A_{\mu}, \quad \mathcal{C}_{Z} = -\frac{1}{\xi_{Z}}\partial_{\mu}Z_{\mu}^{0} + \xi_{Z}\frac{M'}{c}\phi_{0}, \quad \mathcal{C}_{\pm} = -\frac{1}{\xi_{w}}\partial_{\mu}W_{\mu}^{\pm} + \xi_{w}M'\phi_{\pm}$$
(31)



► < ∃ ►</p>

(that is, no  $\beta_t$  terms), thus canceling the  $\mathcal{L}_S g$ -independent gauge–scalar mixing terms proportional to M', but not those proportional to  $M'\beta_t$  [appearing at the end of Eq.(28)], which are of  $\mathcal{O}(g^2)$ . Clearly, this gauge fixing Lagrangian is *different* from the usual one of the  $\beta_h$  scheme because M and M' are not the same  $[M = M'(1 + \beta_t)]$ .

Alternatively, one could choose  $M'(1 + \beta_t)$  instead of M' in eq. (31), thus canceling all  $\mathcal{L}_S$  gauge–scalar mixing terms, both proportional to M' and  $M'\beta_t$ , but introducing then other new two-leg  $\beta_t$  vertices. In this latter case, the gauge fixing Lagrangian is indeed identical to the one of the  $\beta_h$  scheme. We will not follow this latter approach. Of course it's only matter of choice, but the explicit form of  $\mathcal{L}_{gf}$  determines the FP ghost Lagrangian.



The parameter  $\beta_t$  shows up also in the FP ghost sector. The FP Lagrangian depends on the gauge variations of the chosen gauge-fixing functions  $C_A$ ,  $C_Z$  and  $C_{\pm}$ . If, under gauge transformations, the functions  $C_i$  transform as

$$C_i \rightarrow C_i + (M_{ij} + gL_{ij}) \Lambda_j,$$
 (32)

with  $i = A, Z, \pm$ , FP ghost Lagrangian is given by

$$\mathcal{L}_{FP} = \bar{X}_i \left( M_{ij} + g L_{ij} \right) X_j. \tag{33}$$

< □ > < □ > < □ > < □ > < □</pre>



With the choice for  $\mathcal{L}_{gf}$  given in eq. (30) [and the relation  $gv/2 = M'(1 + \beta_t)$ ] it's easy to check that the FP ghost Lagrangian contains the  $\beta_t$  terms

$$\mathcal{L}_{FP} = -(M')^{2} \beta_{t} \left( \xi_{W} \bar{X}^{+} X^{+} + \xi_{W} \bar{X}^{-} X^{-} + \xi_{Z} \bar{X}_{Z} X_{Z} / c^{2} \right) + \cdots, \quad (34)$$

where the dots indicate the usual  $\beta_t$ -independent terms. Had we chosen  $\mathcal{L}_{gf}$  with  $M'(1 + \beta_t)$  instead of M' in eq. (31), additional  $\beta_t$  terms would now arise in the FP Lagrangian.



< 同 > < 三 > < 三 >

In the fermionic sector, the parameter  $\beta_t$  appears in the mass terms:

$$\frac{V}{\sqrt{2}}\left(-\alpha\bar{u}u+\beta\bar{d}d\right) = -\left(1+\beta_t\right)\left(m_u\bar{u}u+m_d\bar{d}d\right)$$
(35)

 $[v = 2M'(1 + \beta_t)/g]$ ,  $\alpha$  and  $\beta$  are the Yukawa couplings, and  $m_u$ ,  $m_d$ are the masses of the fermions. The rest of the fermion Lagrangian does not contain  $\beta_t$ , as it doesn't depend on v. In the  $\beta_t$  scheme, contrary to the  $\beta_h$  one, we have (many) two- and three-leg  $\beta_t$  vertices containing also fields outside the scalar sector. Note that three-leg  $\beta_t$ vertices introduce a fourth irreducible topology for  $\mathcal{O}(g^4)$  self-energy diagrams containing  $\beta_t$  vertices, namely:

### $\beta_t$ up to one loop

Define

$$\beta_t = \beta_{t_0} + \beta_{t_1} g^2 + \beta_{t_2} g^4 + \cdots$$
 (36)

As we did for  $\beta_h$ , we will now set the parameter  $\beta_t$  such that the VEV of the Higgs field *H* remains zero to each order of perturbation theory. At the lowest order, the only diagram contributing to  $\langle H \rangle_0$  is the same one depicted in (Eq.(9)), originated by the term in  $\mathcal{L}'_S$  linear in *H*,  $-\beta_t(\beta_t + 1)(\beta_t + 2)(M'^2_H M'/g)H$ . Therefore, at the lowest order we can simply set  $\beta_t = 0$ , i.e.  $\beta_{t_0} = 0$ . Up to one loop, the diagrams  $T'_0$  and  $T'_1$  contributing to the Higgs VEV are analogous to  $T_0$  and  $T_1$  appearing in (Eq.(11)), so that  $\beta_{t_1}$  can be set in analogy with  $\beta_{b_1}$ :

$$\beta_{t_1} = \frac{1}{(2\pi)^4 i} \left( \frac{T_1'}{2M' g M_H'^2} \right).$$
 (

Note that  $T'_1$  and  $T_1$  have the same functional form, but depend on different mass parameters; moreover, one gets  $\beta_{t_1} = \beta_{h_1}/M_{H_1}^2 \pm \mathcal{O}(g^2)$ .

### $\beta_t$ up to two loops

The two-loop  $\beta_t$  fixing slightly differs from the  $\beta_h$  one. Up to terms of  $\mathcal{O}(g^3)$ ,  $\langle H \rangle_0$  gets contributions from the following diagrams:



plus *reducible* diagrams (analogous to those appearing in  $T_4$ – $T_7$  of section 2.4) which add up to zero because of our choice for  $\beta_{t_0}$  and  $\beta_{t_1}$ .

Note the new diagrams in  $T'_3$ , with three-leg  $\beta_t$  vertices, not present in the  $\beta_h$  case ( $T_3$ ). The parameter  $\beta_{t_2}$  can be set in the usual manner, requiring

$$\sum_{i=0}^{3} T'_{i} = 0, \qquad \Longrightarrow \qquad \beta_{t_{2}} = \frac{1}{(2\pi)^{4}i} \left( \frac{T'_{2} + T'_{3}}{2M'g^{3}M'^{2}_{H}} \right) - \frac{3}{2}\beta^{2}_{t_{1}}. \tag{38}$$

Note that  $T'_{1,2}$  and  $T_{1,2}$  have the same functional form (but depend on different mass parameters) while  $T'_3$  and  $T_3$  are different also in form.

# A comment on WST identities and mass renormalization

Consider the (doubly-contracted) WST identity relating the *Z* self-energy  $\Pi_{\mu\nu,ZZ}(p)$ , the  $\phi_0$  self-energy  $\Pi_{\phi_0\phi_0}(p)$ , and the *Z*- $\phi_0$  transition  $\Pi_{\mu,Z\phi_0}(p)$ :

$$\rho_{\mu}\rho_{\nu}\Pi_{\mu\nu,zz}(\rho) + M_{0}^{2}\Pi_{\phi_{0}\phi_{0}}(\rho) + 2i\rho_{\mu}M_{0}\Pi_{\mu,z\phi_{0}}(\rho) = 0.$$
(39)

Both in  $\beta_h$  and  $\beta_t$  schemes, each of the three terms in Eq.(39) contains tadpoles diagrams, but they add up to zero, within each term.

・ 同 ト ・ ヨ ト ・ ヨ ト

For example, at the one-loop level, the first term in Eq.(39) contains the tadpoles diagrams



which cancel each other. In the  $\beta_h$  scheme at the one-loop level, only the second term of the identity (Eq.(39)) includes a diagram with a two-leg  $\beta_h$  vertex (Eq.(17)); in higher orders, two-leg  $\beta_h$  vertices will appear in all three terms. In the  $\beta_t$  scheme, all three terms of Eq.(39) contain the two-leg  $\beta_t$  vertices already at the one-loop level. Similar comments are valid for the WST identity involving the *W* self-energy.

### Renormalization

Concerning renormalization, the constraint imposed on  $\beta_h$  (or  $\beta_t$ ) in the previous sections is the renormalization condition to insure that  $\langle 0|H|0\rangle = 0$ , also in the presence of radiative corrections. In particular, the renormalized  $\beta_{h,t}$  parameters are  $\beta_{h,t}^{(R)} = \beta_{h,t} + \delta\beta_{h,t} = 0$ . The equivalent of Eq.(6)) and Eq.(24) for the renormalized parameters are just the same equations with  $\beta_h^{(R)} = \beta_t^{(R)} = 0$ .



In the  $\beta_h$  scheme, the one-loop renormalization of the *W* and *Z* masses involves the diagrams

$$(a) \xrightarrow{\frown} (b) \xrightarrow{\frown} (c) \xrightarrow{\bullet} (41)$$

(Diagrams (a) have two possible loop topologies.)

Both (*a*) and (*b*) are gauge-dependent, but their sum is gauge-independent on-shell. However, as we choose the  $\beta_h$  tadpole (*c*) to cancel (*b*), the mass counterterm contains only (*a*) and is therefore gauge-dependent.



A (1) > A (1) > A

On the contrary, in the  $\beta_t$  scheme, the one-loop renormalization of the W and Z masses involves the diagrams

(a) 
$$-\bigcirc -$$
 (c)  $- \bullet -$  (b)  $- \bigcirc -$  (d)  $- \bullet -$  (42)

Once again, both (*a*) and (*b*) diagrams are gauge-dependent, their sum is gauge-independent on-shell, and the  $\beta_t$  tadpole (*d*) is chosen to cancel (*b*). But, the mass counterterm is now gauge-independent, as it contains both (*a*) and the two-leg  $\beta_t$  vertex diagram (*c*) (which is missing in the  $\beta_h$  case).