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The steps towards the idea of deconfinement

• 1965, Hagedorn: The observed exponential growth of the

density of new hadron resonances leads to an hypothe-

sis on the existence of an ultimate limiting temperature

TH ∼ 200MeV .

• 1975, Cabibbo and Parisi: The Hagedorn temperature,

instead of being an ultimate limiting temperature, could

correspond to a phase transition leading to quark libera-

tion. Indeed, in the high T phase the coupling should be

small because of asymptotic freedom, perturbative theory

should be at work: deconfinement.

• 1980, Kuti, Polonyi and Szlachanyi: the theoretical an-

swer comes from QCD. The deconfinement phase transi-

tion is observed for the first time in numerical simulations

of lattice gauge theories.

• ???, ???: Nature has still not given any definite answer.

The experimental search for a new deconfined phase of

matter at high temperatures (quark-gluon plasma, or QGP)

is the goal of Heavy Ion Collision experiments: SPS, Cern;

RHIC, Brookhaven; LHC, Cern.



Going to finite density

• Heavy Ion Collisions do not explore just the high T phase

of QCD: in the hot bubble which is formed after the col-

lision there is a net unbalance of matter and antimatter.

That is actually a system at finite temperature and den-

sity. One is thus exploring the whole QCD phase diagram

at finite (high) T and finite (small) chemical potential µ.

• The nature of compact astrophysical objects (like neutron

stars) is also related to the structure of the T − µ phase

diagram: they are described by the low T high µ region

of the diagram.

• Increasing µ and T ' 0, one expects to encounter the

phase transition corresponding to the onset of nuclear

matter (µB ∼ mN ). By further increasing µ, the effec-

tive interaction, regarding only particles around the Fermi

sphere, decreases because of asymptotic freedom. A

new phase transition is thus expected. Perturbative calcu-

lations describe the new phase as a color superconductor.



Sketching the QCD phase diagram

• The high T phase transition and the high µ phase tran-

sition are naturally expected to be connected by a line of

phase transitions: the nature of this line is of fundamental

importance for the experimental search of the transition.

• Various models (NJL models, random matrix models, . . . )

predict the high µ transition to be first order.

• At high T , µ = 0 the answer is still unclear: true phase

transition or crossover?

• First order at high µ and crossover at high T would mean

a second order critical endpoint along the critical line: this

critical endpoint would have very clear experimental sig-

natures (Rajagopal, Shuryak, Stephanov 1998). This is the rea-

son of the big excitement around this possibility.

• Definite answers can only come through a theoretical in-

vestigation of the phase diagram based on QCD first prin-

ciples. The natural tool to do that are numerical lattice

simulations, which however, as we will see, encounter

some difficulties.



1 – QCD at finite temperature and density

The finite temperature QCD partition function, Z(V, T ) =

Tr
(

e−
HQCD

T

)

, can be written as a functional integral over

euclidean space-time with finite temporal extent τ = 1/T

Z =

∫

DADψDψ̄e−
R 1/T
0 dt

R

d3xLQCD

LQCD =
1

4g2
Ga
µνG

a
µν + ψ̄

(

γEµ (∂µ + iAaµT
a) +m

)

ψ

In the time/temperature direction appropriate boundary con-

dition have to be taken:

periodic b.c. for gauge fields

Uµ(t = 0, ~x) = Uµ(t = 1/T, ~x)

antiperiodic b.c. for fermionic fields

ψ(t = 0, ~x) = −ψ(t = 1/T, ~x)



The partition function can be easily discretized on a lattice:

Z =

∫

DUDψDψ̄e−(SG+SF ) =

∫

DUe−SG detM [U ]

Uµ(x) = P exp
“

i
R x+µ̂

x dyνAν(y)
”

is the gauge link variable

SG = β
P

x,µ<ν

“

1 − 1
Nc

TrΠµν(x)
”

is the pure gauge action, β = 2Nc

g2

Πµν(x) = Uµ(x)Uν (x+ µ̂)U†
µ(x+ ν̂)U†

ν (x) is the plaquette variable

SF = ψ̄iMijψj is the fermionic action with M the fermionic matrix, naı̈vely

Sf = 1
2

P

x,µ ψ̄(x)γE
µ

h

Uµ(x)ψ(x+ µ̂) − U
†
µ(x− µ̂)ψ(x− µ̂)

i

+
P

x mψ̄(x)ψ(x)

By integrating the quadratic fermion action over the fermion

fields one obtains a partition function in terms of gauge varia-

bles only.

Dynamical fermion contributions are encoded in the fermion

determinant detM [U ] which appears after integration.

T =
1

τ
=

1

Nta(β,m)

a → 0 as β → ∞, so T is a monotonic increasing func-

tion of β, and sometimes β is plotted in the phase diagram

instead of T (but be careful around phase transitions!).



The thermal expectation value of a generic operatorO is writ-

ten as

〈O〉 =

∫

DU detM [U ] e−Sg [U ]O[U ]
∫

DU detM [U ] e−Sg [U ]
(1)

if detM [U ] e−Sg[U ] > 0 this has a probabilistic interpreta-

tion and Monte Carlo methods can be applied to numerically

determine it: only few gauge field configurations give sensi-

ble contribution to the functional integral and one looks for a

good algorithm to sample them (importance sampling).

The reality of the fermion determinant is guaranteed by γ5

hermiticity

γ5M
†γ5 = M =⇒ (detM)∗ = detM



Finite density can be introduced in the grand canonical for-

malism by adding a finite chemical potential

Z(µ) = Tr
(

e−
HQCD−µN

T

)

where N =
∫

d3xψ†ψ =
∫

d3xψ̄γ0ψ is the quark (bary-

onic) number operator. In the euclidean functional integral

formulation the fermionic part of LQCD is modified as follows:

ψ̄ (γµ(∂µ + iAµ) +m)ψ → ψ̄ (γµ(∂µ + iAµ) +m+ µγ0)ψ

The naı̈ve discretization

∫

d4xψ̄γ0ψ → a4
∑

ψ̄γ0ψ

leads to an UV diverging contribution ∼ µ2

a2 for the internal

energy density at T = 0.

The correct way to discretize Z(µ) on the lattice is to con-
sider µ as being part of the covariant derivative, like the tem-
poral component of a U(1) imaginary background field
P. Hasenfratz F. Karsch, Phys. Lett. B125 (1983) 308

J.B. Kogut et al., Nucl. Phys. B225 (1983) 93

R. V. Gavai Phys. Rev. D32 (1985) 519



This is implemented on the lattice by modifying the temporal

gauge links appearing in the fermion matrix:

Ut → eaµUt (2)

U−t → e−aµU−t =⇒ (U−t)
† 6= Ut (3)

The hermiticity properties of the fermion matrix in general are

lost and the residual surviving symmetry is

(detM(µ))∗ = detM(−µ)

which means that detM is in general complex, so that Monte

Carlo evaluations of thermal expectation values at finite µ are

unfeasibile.

This is usually known as the sign problem and is common to

several fermion systems with a net unbalance between parti-

cles and holes. In the case of gauge theories it can be easily

understood in terms of the introduction of an imaginary U(1)

background field.



2 – Trying to evade the sign problem

The importance of studying the QCD phase diagram from first

principles lattice gauge theory simulations has been worth a

lot of efforts from different groups in trying to evade the sign

problem.

Most methods try to extract information from simulations where

the sign problem is absent.

The rest of this talk is devoted to a (surely incomplete) review

of the different methods explored and of the results obtained

up to now.

As we will see, the battle is still far to be won, but things have

been moving a lot in the last few years, mostly in the region

of small µ and high T , which is the one relevant for heavy ion

collisions.



Reweighting

Gauge configurations sampled at µ = 0 can in principle be

used to obtain expectation values at µ > 0, using the follow-

ing identity:

〈O〉 =

∫

DU detM(µ) e−Sg [U ]O[U ]
∫

DU detM(µ) e−Sg [U ]

=

∫

DU detM(0)det M(µ)
det M(0) e

−Sg [U ]O[U ]
∫

DU detM(0) det M(µ)
det M(0) e

−Sg [U ]
=

〈

O det(M(µ))
det(M(0))

〉

µ=0
〈

det(M(µ))
det(M(0))

〉

µ=0

The method, proposed in the 80’s by the Glasgow group, fails

(the onset of nuclear matter at T = 0 is not observed at the

correct value µ = mN/3). The failure can be related to two

major problems:

• Bad sampling: configurations sampled ad µ = 0 give

poor sampling of the integral at µ 6= 0. That means that

the two statistical ensembles corresponding to µ 6= 0 and

µ = 0, being related to different physical situations, may

have very poor overlap.

• Large errors coming from the oscillating factor detM(µ)
detM(0)

:

the sign problem comes back, 〈detM(µ)/ detM(0)〉 ∼ 0

at large µ’s, the statistics required for a given accuracy

grow exponentially with the volume



Multiparameter reweighting

An improvement consists in reweighting both in β and µ in-

stead that only in µ.

Z(µ, β) =

Z

DUe
−Sg(β0) det M(0)



e
−Sg(β)+Sg(β0) det M(µ)

detM(0)

ff

,

Configurations sampled at a transition point can be used to

reconstruct the integral functional at a different transition point

in the T − µ plane: overlap is greatly enhanced.

Residual problems at large volumes and large densities, where

the overlap decreases and the sign problem worsens.

Taylor expansion

For small densities, physical quantities can be naturally ex-

panded as a Taylor series in µ around µ = 0. The coef-

ficients of the series can obtained as expectation values of

local operators at µ = 0. For instance consider the quark

density n(µ):

n(µ) = n1 µ+ n3 µ
3 + O(µ5)

the first coefficient n1 is nothing but the quark number sus-

ceptibility computed at µ = 0. The method is naturally well

suited only for the region of small µ and high T .



Using an imaginary chemical potential

Consider a purely imaginary chemical potential, µ = iµI

Ut → eiaµIUt U−t → e−iaµIU−t = (eiaµIUt)
†

this is like adding a constant and real U(1) background field.

detM [U ] > 0 , Monte Carlo simulations are feasible.

Analytic continuation to real µ

Away from critical points Z(T, µ) is a regular function of µ2.

Results at µI can be used to fit the expected dependence, as

continued from real values of µ. Actually this is a continuation

from negative to positive values on the real µ2 axis rather

than a continuation in the complex plane. The critical line

itself can be continued.

Reconstruction of the canonical partition function

Z(iµI) can be used to reconstruct the canonical partition

function Z(n) at fixed quark number n (Roberge, Weiss, 1986)

Z(n) = Tr
(

(e−
HQCD

T δ(N − n)
)

=

1

2π
Tr

(

e−
HQCD

T

∫ 2π

0

dθeiθ(N−n)

)

=
1

2π

∫ 2π

0

dθe−iθnZ(iθT )

where θ = µI/T . As n grows e−iθn oscillates more and

more rapidly and the integration error grows exponentially.



Other theories without the sign problem

QCD at finite isospin density

Remember (detM(µ))∗ = detM(−µ), that means that
a theory with a finite isospin density µis (i.e. µu = −µd =
µis/2) has no sign problem (assuming mu = md)

detM(µ) detM(−µ) = detM(µ)(detM(µ))∗ = | detM(µ)|2 > 0

This is like ignoring the determinant phase, detM(µ) =

| detM(µ)|eiθ (phase quenched QCD). Of course it is ex-

pected to give interesting results as long as the phase is not

relevant (small µis, indeed for µis > mπ/2 unphysical pion

condensation happens).

QCD with two colours

Nc = 2 is a special case of gauge theory: the fundamental

representation for quarks is real (σ2Uµσ2 = U∗
µ).

=⇒ Traces over closed loops are always real

=⇒ Gauge invariant quantities like detM [U ], being ex-

pressible in terms of traces over closed loops, are real.

Of course QCD with 2 colours is also very different from real

QCD in many respects (baryons ∼ mesons, for instance ...)



The Density of States Method

This is a general method which has been proposed for sev-
eral physical problems affected by a sign problem (like QCD
with a θ-term)
Bhanot, Bitar, Salvador (1987), Karliner, Sharpe, Chang (1988), Azcoiti, Di Carlo,

Grillo (1990), Luo (2001), Ambjorn et al (2002)

It consists in re-expressing 〈O〉 as

〈O〉 =

∫

dx〈O[U ]f [U ]〉xρ(x)
∫

dx〈f [U ]〉xρ(x)

where ρ(x) is the density of states relative to some operator
φ (plaquette, quark number density, . . . ) constrained to x

ρ(x) ≡ Zφ(x) =

∫

DUg[U ]δ(φ− x)

For instance g[U ] = | detM [U ]|e−Sg [U ] and f [U ] = eiθ.

The method is well suited if in the range of x relevant for ρ(x)

the sign problem is mild (i.e. one has not 〈eiθ〉x ∼ 0): this is

of course more and more difficult as the volume increases.



3 – Overview of numerical results

3.1 – Multiparameter reweighting

(Z. Fodor and S.D. Katz, 2002)

from Z. Fodor, S. D. Katz, JHEP 0203 (2002) 014

• The method has been used to determine the critical line in the T −µ

plane and the equation of state for the case of nf = 2+1 dynamical

flavours.

• By analyzing the finite size scaling behaviour of the Lee-Yang zeroes

information can be obtained about a possible critical point in theT−µ

plane: Lee-Yang zeroes in the complex β plane approach the real

axis for a phase transition, like 1/V for first order.

– numerically expensive, needs exact evaluation of detM [U ] on

each configuration. Limited to small volumes

– simulations with quark masses about 3 times the physical values

and lattice sizes up to 83 × 4 indicate µE ∼ 700 MeV

– simulations with quark masses around the physical values and lat-

tice sizes up to 123 × 4 indicate µE ∼ 360 MeV



Doubts have been recently cast on the validity of this re-

sults from several points of view:

– Ejiri (2005):the Lee-Yang zeroes analysis is based on the ef-

fect of an oscillating term associated with a complex coupling in

the partition function. In presence of another oscillating factor (the

phase of the determinant) the analysis may be wrong. Ejiri sug-

gests to look for the second zero associated to first order.

– Splittorf (2005): the critical points found by Fodor and Katz lie

dangerously close to the pion condensation line for QCD at finite

isospin density: that means in a region where the sign problem is

surely relevant, i.e. eiθ is strongly oscillating.

– Systematic effects related to finite volume should also

be properly taken into account, the largest spatial sizes

used are always ∼ 2m−1
π : is the infinite volume limit of

Lee-Yang zeroes reliable? But going to larger volumes

may be difficult.



3.2 – Taylor series

The Bielefeld-Swansea group has performed computa-

tions up to the 6th order in µ for the theory with 2 flavour,

using a 163 × 4 lattice and the p4 − improved action

– Below Tc various physical quantities (pressure, quark condensate,

. . . ) are in agreement with a hadron resonance gas (HRG) model

(i.e. a model of Hagedorn like gas of non interacting resonances).

– They determine the pseudo-critical line by looking at susceptibili-

ties and look for a critical point by studying the convergence radius

of the series: ρ = limn→∞ ρn ≡ limn→∞

√

∣

∣

∣

cn

cn+2

∣

∣

∣
They find

no clear evidence of it.

– They also determine the expansion for the variance of the phase of

detM , σ(θ), obtaining indications on which region of the phase

diagram is seriously affected by the sign problem (that’s where

reweighting surely fails).
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Gupta and Gavai have determined the baryon number

susceptibility up to 6th order in the Taylor expansion for

two flavor QCD. They use a standard staggered quark ac-

tion and lattice sizes up to 243 × 4.

They search for a critical end-point by looking at the con-

vergence radius of the series

ρ = lim
n→∞

ρn ≡ lim
n→∞

√

∣

∣

∣

∣

cn
cn+2

∣

∣

∣

∣

.

They estimate TE/Tc ' 0.95(2), µEB/T
E ' 1.1(2).

– strong volume dependence: more terms are needed to

estimate ρ as V increases.

– enough terms in the series to estimate ρ?



3.3 – Imaginary chemical potential

Phase structure in the T − iµI plane:

Roberge and Weiss have shown that Z(iµI) is always periodic in µI/T

with period 2π/Nc and they have predicted

• smooth, analytic periodic behaviour at low T, as predicted from a

weak coupling calculation

• non-analytic periodic behaviour at high T, as predicted from a weak

coupling calculation, with phase transitions at µI

T
= 2π

Nc
(k + 1/2)

The high temperature RW phase transition can be understood as follows:

• in the quenched theory there is spontaneous breaking of the center

Z3 symmetry in the high T phase with 3 degenerate vacua

• fermions break Z3 explicitly and select the true vacuum at high T

• µI couples to the Polyakov line thus rotating, like an external field,

the fermion contribution: which vacuum is selected depends on µI

0
µ2

10

T

Tc

TE



Simulations with imaginary chemical potential have been per-

formed using staggered fermions in the theory with 2 and 3

flavours (P. De Forcrand & O. Philipsen, 2002, 2003) and in

theory with 4 flavours (M. D’E. & M.P. Lombardo, 2003, 2004).

Recently results have been obtained also with Wilson fermions

(H. S. Chen and X. Q. Luo, arXiv:hep-lat/0411023).

Simulations have also been done in the theory with gauge

group SU(2) (P. Giudice and A. Papa, Phys. Rev. D69

(2004) 094509): in this case both real µ and imaginary µ

can be simulated =⇒ direct test of analytic continuation.

A generalization of the imaginary chemical potential method

has been recently proposed (V. Azcoiti, G. Di Carlo, A. Galante,

V. Laliena, JHEP 1204:010 and hep-lat/0503010 ).

The following results regard four staggered flavours of bare

mass a · m = 0.05 on a 164 × 4 lattice. T = 1/(Nta),

with Nt = 4 in our case, =⇒ θ = µI/T = 4aµI .

At µ = 0, a strong first order phase transition is present at

βc ' 5.04. A first order transition line is therefore expected

in the whole T − µ plane.

Despite being unphysical, Nf = 4 is a test ground for compar-
ison among several methods, since an exact algorithm exists.



Chiral condensate
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We display in the figure our results for the chiral condensate. The green

vertical dashed lines correspond to θ = π
3 and θ = π.

Symmetries of 〈ψ̄ψ〉: it must be periodic 2π
3 in θ = NtaµI and, like

the partition function, an even function of µI −→ we expect symmetry

around all points θ = nπ/3. This is verified in our data.

For β < βc, 〈ψ̄ψ〉 is continuous in µI . At β = 5.065 there is a

critical value aµI ' 0.17 above which the theory has a transition to a

spontaneously broken chiral symmetry phase: we are crossing the chiral

critical line. At β = 5.085 this happens at aµI ' 0.22 and as we

increase µI , we observe a transition back to the chirally restored phase

at aµI ' 0.30, which is the symmetric point with respect to θ = π
3 .

At β = 5.10 we do not cross, when changing µI , the chiral critical line,

but the RW critical lines.



Imaginary part of the baryon density
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Overview of the results for the baryon density as a function of µI : the be-

havior is smooth in the hadronic phase, shows the expected discontinuity

associated with the chiral/deconfining transition in the intermediate region

Tc < T < TE , and increases rapidly in the quark gluon plasma phase.

Below: a fit of the results for T < TC according to the hadron resonance

gas (HRG) model.
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Below: testing the strongly interacting Quark-Gluon plasma (sQGP) right

above Tc (T = 1.095Tc)
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Phase diagram
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This is a sketch of the phase diagram in the β–µI plane, as emerges

from our data.

Since the temperature T = 1
Nta(β) is a monotonic increasing function

of β, this is analogous to the T –µI phase diagram.

The red points correspond to our determinations of the chiral critical line,

obtained either changing β at fixed µI or changing µI at fixed β.

The rest of the chiral critical line has been obtained by interpolating our

determinations and by extending to the whole range of µI by exploiting

the symmetries of the partition function (periodicity and symmetry under

µI → −µI ).



Analytic continuation of the critical line
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On the left we show our determinations of Tc(µI)/Tc(0) for the chiral

critical line. We have tried a quadratic fit to our data. Our best fit is

Tc(µI)

Tc(0)
= 1 + 0.074(5)

(

µI

Tc

)2

(4)

with a χ2/d.o.f. = 0.9. Our data are not precise enough to permit a

determination of the quartic and higher order terms.

The analytic continuation of our fitted chiral critical line into the T – real

chemical potential plane is shown on the right hand side.

The critical temperature Tc(µ) to be expected in Heavy Ion

Experiments (µ/T ≤ 0.1) is shifted by less than 0.1% with

respect to the zero density value Tc(µ = 0)



De Forcrand and Philipsen have simulated both Nf = 2

(2002) and Nf = 3 (2003)
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from Ph. de Forcrand and O. Philipsen, hep-lat/0307020

In the case Nf = 3 they have also tried to locate a possible critical

endpoint in the T − µ plane by looking at the dependence of the critical

mass mc on the imaginary chemical potential µI .

However recent numerical evidence (talks at latest summer conferences)

with an exact algorithm (RHMC) indicates absence of a critical end point

(see also results at finite isospin density by Kogut and Sinclair).
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Recently results have been obtained also with 4 flavours of

Wilson fermions by H. S. Chen and X. Q. Luo, arXiv:hep-

lat/0411023

A good agreement emerges between the Wilson fermions

critical line (solid band) and the staggered fermions results

(dotted line, by M. D’E., Lombardo), , even if the coincidence of

the two lines at µ = 0 has been put in by hand.



A generalization of the imaginary chemical potential method

has been proposed by

V. Azcoiti, G. Di Carlo, A. Galante, V. Laliena, JHEP 1204:010

and hep-lat/0503010

Apart from an imaginary chemical potential, they also put a

variable prefactor in front of the temporal covariant derivative

in the fermion matrix. The determinant is still real and posi-

tive. An extension to lower temperatures should be possible.

Much more numerically expensive (2 parameters)



P. Giudice and A. Papa (2004) have tested the imaginary

chemical potential method with Nc = 2.

Values for the chiral condensate and for the Polyakov line

measured at real µ agree with those extrapolated from ima-

ginary µ.
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3.4 – Results at finite isospin density

Kogut and Sinclair with Nf = 2 (2002) and Nf = 3 stag-

gered fermions. They use the standard non exact molecular

dynamics algorithm.

They obtain nice agreement with other methods for the critical

line at small chemical potential.

In the three flavor case, after a careful extrapolation in the

finite step of molecular dynamics, they obtain no evidence for

a critical endpoint

This result is being confirmed by De Forcrand and Philipsen

by using an exact algorithm



3.5 – Canonical simulations

Z(n) =
1

2π

∫ 2π

0

dθe−iθnZ(iθT )

The method has been applied to the 2D Hubbard model
Dagotto et al. (1990), Alford et al. (1999)

Earlier simulations for QCD were tried by
A. Hasenfratz and D. Toussaint (1992)

Recently renowed interest:

de Forcrand, Kratochvila with staggered fermions

Alexandru et al with Wilson fermions

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

0 0.1 0.2 0.3 0.4 0.5 0.6

β 
=

 6
/g

2

a µ

QGP

Reliability?

µ/T=1

V ➚

F(B=1)/3
F(B=2)/6

D’Elia-Lombardo, Nf=4
Fodor-Katz, Nf=4, 44

Ch. Schmidt, 44

From de Forcrand, Kratochvila, hep-lat/0409072

Numerical difficulties increase as n is increased: reasonable

thermodynamical limit still possible?



4 – Some other open issues

How the dynamics of the high density phase transition (T '

0) resemble those of the well studied high temperature phase

transition (µ = 0)?

• what is the fate of topological excitations at high densi-

ties?

• what is the fate of the candidate confinement mechanism

through the high density phase transition?



The issue of topology has been addressed for the theory with
Nc = 2 obtaining preliminary results which indicate a sup-

pression of the topological susceptibility χ = 〈Q2〉/V at the
high density phase transition, analogous to the suppression
taking place through the high T transition.
B. Allés, M. D’E., M.P. Lombardo, M. Pepe, Nucl.Phys.Proc.Suppl.94 (2001)
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The issue of the fate of the dual superconductivity mech-
anism through the high density phase transition has been
addressed, very preliminarly, in the crude approximation of
static quarks, i.e. in the double limitmq → ∞, µ → ∞ with
exp(µ)/mq fixed. M. D’E. and M. Ferrari, in progress

If dual superconductivity disappears at high density through a mechanism

analogous to what happens in usual superconductors when a strong mag-

netic field is forced through the medium, then the static quark approxima-

tion should not harm too much.
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The sharp negative peak of ρ hints at the possible disappearance of dual

superconductivity in coincidence with the phase transition (peak of the

plaquette susceptibility).



5 – Conclusions and perspectives

• The study of the QCD phase diagram is of fundamental

importance in several fields (Early Universe, H.I. Colli-

sions, Neutron Stars, . . . )

Lattice QCD simulations are the candidate first principles

tool, but the sign problem makes life difficult.

• Recent efforts by several groups using different methods

are giving consistent information on the phase diagram,

starting from the region high T and low µ, which is the

one relevant for the experimental search for deconfined

states of matter in Heavy Ion Experiments.

Progress is not very fast, but steady.

• Is there any critical end point in the T − µ plane?

– The assumption behind the ansatz for a critical end

point is that at µ = 0 there is a crossover instead of

a phase transition. This however is not a well estab-

lished fact and the presence of a true phase transition

(first order?) is not excluded (D’Elia, Di Giacomo, Pica

2005, see Di Giacomo’s lectures at this School).

– Evidence for a critical endpoint inNf = 2+1 obtained

by multiparameter reweighting has been recently ques-

tioned (Ejiri, Splittorf)



– Evidence with Nf = 2 obtained by Taylor expansion

is unclear (Gavai and Gupta see the critical point, the

Bielefeld and Swansea groups do not)

– Recent data for Nf = 3 seem to disprove the pres-

ence of a critical endpoint in that case (Kogut and Sin-

clair at finite isospin density, de Forcrand and Philipsen

within the imaginary chemical potential method)

• A lot of other important issues (fate of confinement mecha-

nisms and topology at high density) are still open.

• We are still waiting for a real breakthrough opening the

possibility of exploring by numerical simulations the whole

T − µ plane.


