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I had the priviledge of collaborating with professor Chandrasekhar for
twelve years during which we explored the General Theory of Relativity
and developed a new formulation of the theory of stellar perturbations� the
startling complexity and richness of which I will try to describe in this lecture�
In order to understand the basic ideas underlying our approach� we need

to frame the problem in an hystorical perspective� and start describing some
major results of the theory of perturbations of a Schwarzschild black hole�
which is beautifully illustrated in Chandra�s book The mathematical theory
of black holes� ����
In ���� T� Regge and J�A� Wheeler �	� derived the equations governing the
perturbations of a static� spherically symmetric black hole� The separation
of variables was accomplished by expanding the perturbed metric tensor in
tensorial spherical harmonics� and since these harmonics have a di
erent
behaviour under the angular transformation � � � � �� � � � � ��
the separated equations split in two sets� the polar or even� belonging to the
parity 
����� and the axial or odd� belonging to the parity 
���������
Regge and Wheeler reduced the equations describing the axial perturbations
to a single Schroedinger�like equation
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where r� � r � 	M log
 r
�M � ��� M is the black hole mass� � is

the frequency and the perturbed functions have been Fourier�expanded� The
theory of perturbations of black holes was born�
Due to the analytical complexity of the polar equations� only much later�

in ����� F� Zerilli ��� was able to derive also for the polar perturbations a
single Schroedinger�like equation� but with a di
erent potential barrier
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Equations 
�� and 
	� show that the curvature generated by a point�like
mass appears in the perturbed equations as a potential barrier which ex�
tends throughout spacetime� Consequently� the response of a black hole to
a generic perturbation can be studied by investigating the manner in which
a gravitational wave incident on the black hole is transmitted� absorbed and
re�ected by this barrier� a phenomenon with which we are familiar in ele�
mentary quantum theory�

�� The quasi�normal modes of a black hole

In ���� Vishveshwara ��� had pointed out that the equations governing the
perturbations of a Schwarzschild black hole should allow complex frequency
solutions behaving at radial in�nity as pure outgoing waves� W�H� Press ���
con�rmed this idea by numerically integrating the equations� and by showing
that an arbitrary initial perturbation ends in a ringing tail� which indicates
that black holes possess some proper modes of vibration�
Since the oscillations must be damped by the emission of gravitational

waves� these modes were called quasi�normal modes� and they were de�ned to
be solutions of the perturbed equations belonging to complex eigenfrequen�
cies � � ���i�i� and satisfying the boundary conditions of a pure outgoing
wave at in�nity and of a pure ingoing wave at the horizon� The �rst con�
dition identi�es physically acceptable modes� i�e� those that damp the star

provided �i � ��� The latter is the requirement that nothing can escape
from the horizon� It should be noted that in scattering theory these bound�
ary conditions associated to a Schroedinger equation with a one�dimensional
potential barrier identify the singularities of the scattering amplitude�
In ���� S� Chandrasekhar and S� Detweiler ��� computed the complex

eigenfrequencies of the quasi�normal modes of a Schwarzschild black hole�
The �rst few values for � � 	 and � � � are given in Table ��
The real part of the frequency is inversally proportional to the mass� while

the damping is proportional to it� If the black hole mass is M � nM�� the
oscillation frequency and the damping of the modes can be computed by the

	



M� � iM�i M� � iM�i
� � 	 �������i������ � � � �������i����	�

�������i��	��� ����	��i��	���
�������i������ �������i������
��	����i������ ����	��i������

Table �� The complex characteristic frequencies of the quasi�normal modes
of a Schwarzschild black hole�
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For example� the lowest � � 	 quasi�nomal mode of a black hole of one
solar mass� and of a supermassive black hole of ��	M� belong� respectively�
to the following frequencies

M � �M�� �� � �	��� kHz� 	 � ���� � ����s 
��

M � ��	M�� �� � �� 	� � ��
��Hz� 	 � ����s�

The frequencies of oscillation of a black hole depend exclusively on the
parameters that identify the spacetime geometry� the mass� and the angular
momentum or the charge if the black hole is rotating or charged�
In ref� ��� S� Chandrasekhar and S� Detweiler also showed that the trans�

mission and the re�ection coe�cients associated respectively to the polar
and to the axial potential barriers are equal� This equality can be explained
in terms of a transformation theory which clari�es the relations that exist
between potential barriers admitting the same re�ection and absorption co�
e�cients 
this theory is extensively illustrated in ref� ����� � However the
physical reason why this happens is still unclear�

�The equality of the transmission and re�ection coe�cients can also be justi�ed by the
following considerations� The perturbations of a Schwarzschild black hole can be described
in terms of the Bardeen�Press equation ��� written for the Weyl scalars �� and ���

which represent the ingoing and outgoing radiative part of the gravitational �eld� The
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�In spite of V ��� and V ��� appearing so very di
erent� they are iso�
spectral in the sense that the re�ection and absorption coe�cient for incident
polar and axial gravitational waves are identically the same for all frequencies�
In tracing the origin of this identity� one is led to a �transformation theory�
whose signi�cance remains illusive�

From S� Chandrasekhar �The series Paintings of Claude Monet and the
Landscape of General Relativity� ���	 �����
Numerical integration of the wave equations 
�� and 
	� with di
erent

sources 
see ref� ��� for an extensive bibliography� have shown that the grav�
itational signal emitted as a consequence of a generic perturbation will� dur�
ing the last stages� decay as a superposition of the quasi�normal modes� In
addition� a newborn black hole generated either by the gravitational collapse
of a massive star or by the coalescence of two compact objects� will oscillate
and emit gravitational waves until its residual mechanical energy is radi�
ated away� and again the dominant contribution is expected to be due to the
quasi�normal modes� Being the axial and polar perturbations isospectral� the
gravitational radiation emitted in these processes will carry a de�nite signa�
ture on the nature of the emitting source� in fact� as we shall later discuss�
the axial and polar perturbations of a star are not isospectral �����

�� A conservation law for the scattering of gravitational
waves by a black hole

One of the major problems in General Relativity is that an energy con�
servation law governing the scattering of gravitational waves by black holes
does not exist in the framework of the exact non linear theory� However�
such law can be derived in perturbation theory both for Schwarzschild � Kerr
and Reissner�Nordstrom black holes� We shall now derive the conservation
law for a Schwarzschild black hole� by following the procedure adopted in ref�
����
Due to the short�range character of the potential barriers of eqs� 
�� and


	�� the asymptotic behaviour of the solution Z at r� � �� is� in

Bardeen�Press equation admits solutions which satisfy the boundary conditions of the
quasi�normal modes	 and since both �� and �� can be expressed as a combination
of the Regge�Wheeler and of the Zerilli functions and their �rst derivatives �
�	 the axial
and the polar perturbations must be isospectral�
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general� a superposition of outgoing and ingoing waves

Zout � e�i�r�� and Zin � e�i�r�� 
��

Consider two solutions of the wave equations� say Z� and Z�� satisfying
respectively the following boundary conditions

r� � �� Z� � e�i�r�� pure outgoing wave 
��

r� ��� Z� � e�i�r� pure ingoing wave�

The pairs 
Z�� Z
�
� � and 
Z�� Z

�
�� � where the � indicates complex

conjugation and � is assumed to be real� will be pairs of independent
solutions of the wave equation� since their Wronskians are di
erent from
zero� In fact� by a direct evaluation� for example� at ��� one �nds �
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Thus� ZR represents a wave of unitary amplitude incident on the po�

tential barrier from �� which gives rise to a re�ected wave of amplitude
R�
�� and to a transmitted wave of amplitude T�
��� Conversely� ZL is
a unitary wave incident from �� which is partially re�ected 
R�
��� and
partially transmitted 
T�
���� Furthermore� by computing the Wronskian of
the two solutions at �� it is easy to verify that
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and since the Wronskian is constant� it follows that
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By a similar procedure applied to ZR we easily �nd

jR�j
� � jT�j
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This means that R� and R� can di
er only by a phase factor and that

jRj� � jT j� � � 
���

holds in general� This equation establishes the symmetry and the unitarity
of the S�matrix� and it expresses the conservation of energy because it says
that if a wave of unitary amplitude is incident on one side of the potential
barrier� it splits into a re�ected and a transmitted wave such that the sum
of the square of their amplitudes is still one�
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The existence of conservation laws for the scattering of gravitational
waves by a black hole raised an interesting question� is it possible to establish
a similar conservation law for the polar perturbations of a static� spherically
symmetric spacetime generated either by an electromagnetic source or by a
non rotating star� That such law should exist was known on a theoretical
ground� A� Ashtekar� J� Friedmann� R�Sorkin and R� Wald had told us that
the existence of a conserved simplectic current can in principle be inferred for
any �eld theory derived from a suitably de�ned Lagrangian action� However�
Chandra wanted to derive the conserved current by using a procedure similar
to that used for Schwarzschild black holes� In that case� the central point of
the derivation was to show that the Wronskian of two independent solutions
of the wave equations is a constant� Conversely� the equations for the polar
perturbations of a star are a fourth order linear di
erential system� what
would be the role played by a Wronskian in this context� The solution of
the problem required a considerable amount of hard work on the equations�
but at the end the result was rewarding� we found that there exists a vector

E which satis�es the following equation ����

�

�x�
E� � �� � � 
x� � r� x� � 
�� 
���

The vanishing of the ordinary divergence implies that� by Gauss�s theorem�
the �ux of 
E across a closed surface surrounding the star is a constant�
In order to write explicitely the components of the vector 
E 
I shall

omit the details of its derivation� we write the metric of a generic static�
spherically symmetric spacetime in the following form

ds� � e��
dt�� � e���
dr�� � e���d�� � e��d��� 
���

where the metric functions depend only on r and 
� We shall restrict
to the case when this metric represents the spacetime generated by an un�
perturbed star composed by a perfect �uid� though in ref� ���� we derived
a similar conservation law also for charged solutions of Einstein�s equations�
The axisymmetric perturbations of the spacetime 
��� can be described by
the line�element

ds� � e��
dt��� e��
d�� q�dr
�� q�d���dt��� e���
dr��� e���
d���� 
	��

It should be noted that the number of unknown functions in eq� 
	�� is seven�
one more than needed� However� this extra degree of freedom disappears
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when the boundary conditions of the problem are �xed� As a consequence
of a generic perturbation� the metric functions will experience small changes
with respect to their unperturbed values� which we assume to be known

� �� � � ��� �� �� �� � ���� 
	��

� �� � � ��� �� �� �� � ����

� �� ��� q� �� �q� � q� �� �q��

Since each element of �uid in the interior of the star undergoes an in�nitesi�
mal displacement from its equilibrium position� identi�ed by the lagrangian
displacement 
�� the energy density and the pressure will change by an
in�nitesimal amount

� �� �� ��� p �� p � �p� 
		�

Under the assumption of axisymmetric perturbation� all perturbed quantities
depend on t� r and �� If we now write Einstein�s equations supplemented
by the hydrodynamical equations and the conservation of barion number�
expand all tensors in tensorial spherical harmonics and Fourier�expand the
time dependent quantities� we �nd that� as for black holes� the equations
decouple into two sets� the polar and the axial� but with a major di
erence�
the polar perturbations involve the same metric variables 
��� ���� ��� ����
as for black holes� but now they are coupled to the thermodynamical variables�����
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Conversely the axial perturbations ���� �q�� �q�� do not induce motion in
the �uid except for a stationary rotation� However� we shall see that the �uid
plays a role� though di
erent from that played in the polar case� In terms
of the perturbed metric and �uid variables the E��component of the polar
vector 
E is
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and the E��component can be obtained by interchanging 	 with ��
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Equation 
	�� includes� as expected� Wronskians of the polar functions
����� ������ and ���� ������ and it reduces to the Wronskian of the solutions
of the Zerilli equation as indicated in section 	� when the source terms � and
p are zero� We derived a similar expression for 
E when the source is an
electromagnetic �eld� G� Burnett and R� Wald ��	� subsequently showed that
in the Einstein�Maxwell case our conservation law can be obtained by con�
structing a simplectic current associated to the perturbed equations derived
from a Lagrangian variational principle�
The conserved current 
E represents the �ux of gravitational energy

which develops through the stars and propagates outside� Indeed� it can also
be derived from the second variation of the Einstein pseudo�tensor t��E �����
����� The reason for choosing the Einstein pseudo�tensor is that among the
in�nite number of pseudo�tensors that can be de�ned for the gravitational
�eld� all di
ering by a divergenceless term� t��E is the only one the second
variation of which retains the divergence�free property� provided only the
equations governing the static spacetime and its linear perturbations are
satis�ed� This property derives from the fact that the Einstein pseudo�tensor
is a Noether operator for the gravitational �eld�
In addition� Raphael Sorkin pointed out that the contribution of the

source should be introduced not by adding the second variation of the stress�
energy tensor of the source T ��� but through a suitably de�ned Noether
operator� the form of which he derived for the electromagnetic case� This
operator does not coincide with T ��� but it gives the same conserved
quantities� It should be mentioned that the Noether operator to be added to
the Einstein pseudo�tensor when the source is a �uid has been derived only
much recently by Vivek Iyer �����

The existence of a conservation law for a spacetime with a perfect �uid
source suggested to Chandra that the non�radial oscillations of stars should
be reformulated as a problem in scattering theory�
�In general relativity� any distribution of matter 
or more generally energy

of any sort� induces a curvature of the spacetime � a potential well� Matter
implies gravity and gravity implies matter� Therefore� instead of picturing
the non�radial oscillations of a star as caused by some unspeci�ed external
perturbation� we can picture them as caused by incident gravitational ra�
diation� Viewed in this manner� the re�ection and absorption of incident
gravitational waves by black holes and the non�radial oscillations of stars�
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become di
erent aspects of the same basic theory� But how di
erent � as we
shall see��
After completing the �rst paper on the �ux integral� Chandra and I

started to work on the perturbed equations� and reduced them to an in�
teresting form ����� fairly di
erent from that obtained by Thorne and his
collaborators� who �rst developed the theory of stellar perturbations in gen�
eral relativity in ���� �����

�� The polar equations

If one expands the perturbed metric tensor and the stress�energy tensor
of the �uid in tensorial spherical harmonics� under the hypothesis of axisym�
metric perturbations the polar metric functions and the thermodynamical
variables turn out to have the following angular dependence
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where Pl
cos �� are the Legendre polynomials� After separating the variables
the relevant Einstein�s equations become
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l � ��� and 	n � 
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l � 	�� After some reduction� the
hydrodynamical equations and the conservation of barion number provide
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the following expressions for the �uid variable �
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and � is the adiabatic exponent�
Outside the star� the source vanishes and the polar equations can be

reduced to the Zerilli equation 
	�� with the following identi�cation
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A remarkable simpli�cation of eqs� 
	�� is possible� Equation 	�a� and
eqs� 
	�� show that the �uid variables �W�� U�� E�� �� can be expressed
as a combination of the metric perturbations �T�� V�� L�� N�� and their �rst
derivatives� Therefore� after their direct substitution on the right hand side
of the last four eqs� 
	�� a set of new equations which involves exclusively
the perturbations of the metric functions �T�� V�� L�� N�� can be derived�
The �nal set is�������������
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�We restrict our analysis to adiabatic perturbations of �uid stars�
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and V� and T� have been replaced by X� and G� de�ned as���
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Equations 
��� describe the perturbations of the gravitational 
eld in the in�
terior of the star� with no reference to the motion of the �uid�
Once these equations have been solved� the �uid variables can be obtained
in terms of the metric functions from eqs� 	�a� and eqs� 
	��� This fact
is remarkable� it shows that all the information on the dynamical evolu�
tion of a perturbed star is encoded in the gravitational �eld� a result which
expresses the physical content of Einstein�s theory of gravity� Moreover� it
should be stressed that the decoupling of the equations governing the metric
perturbations from those governing the hydrodynamical variables is possible
in general� and requires no assumptions on the equation of state of the �uid�
Thus� if one is interested exclusively in the study of the emitted gravitational
radiation� one can solve the system 
��� and disregard the �uid behaviour�
Equations 
��� have to be integrated for each value of the frequency from

r � �� where all functions must be regular� up to the boundary of the
star� There� the spacetime becomes vacuum and sperically symmetric� and
the perturbed metric functions and their �rst derivatives must be matched
continuously with the functions that describe the polar perturbations of a
Schwarzschild black hole 
for a detailed discussion of the boundary conditions
see refs� ���� and ������
It was subsequently shown by J�R�Ipser and R�H�Price ���� that the equa�

tions describing the polar gravitational perturbations decoupled from the
�uid variables can be reduced to a fourth�order system�

�� A Schroedinger equation for the axial perturbations

The equations for the axial perturbations are much simpler than the polar
ones� Their radial behaviour is completely described by a function Z�
r��
which satis�es the following Schroedinger�like equation
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where r� �
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Outside the star � and p vanish and eq� 
��� reduces to the Regge�Wheeler
potential barrier 
��� It should be stressed that the potential depends on
how the energy�density and the pressure are distributed inside the star in its
equilibrium con�guration�
Since an axial gravitational wave incident on a star does not induce �uid

motion� for a long time these perturbations have been considered as trivial�
But this is not true if we adopt the scattering approach� the absence of �uid
motion simply means that an incident axial wave experiences a potential
scattering as it does in the case of a Schwarzschild black hole� There is
however an important di
erence� The Schwarzschild potential vanishes at
the black hole horizon� and it has a maximum at rmax � �M� Conversely�
due to the centrifugal contribution ������

r�
the potential barrier of a perturbed

star tends to in�nity at r � �� In addition� for a Schwarzschild black hole
the Schroedinger�like equation describes a problem of scattering by a one�
dimensional potential barrier� whereas in the case of a star it describes the
scattering by a central potential�
Being the axial perturbations described by a Schroedinger equation� the

axial component of the energy �ux can be derived from the Wronskians of
independent solutions� as in the black hole case� However� due to the di
erent
boundary conditions� the evaluation of this �ux requires the application of
the Regge theory of potential scattering in a central �eld� This theory can be
generalized to be applicable also to the polar perturbations� and to explicitely
compute the energy �ux associated to the vector 
E �	���

�� The quasi normal modes of a star

In our approach the non�radial oscillations of stars are thought to be in�
duced by the incidence of polar or axial gravitational waves on the spacetime
curvature generated by the star� In this view� a resonant scattering occurs
when the star is in a quasi�stationary state that decays� i�e� when it oscillates
in a quasi�normal mode�
The quasi�normal modes are solutions of the axial and polar equations

that satisfy the following boundary conditions� As in the black hole case� at

��



radial in�nity only pure outgoing waves must prevail� whereas the pure ingo�
ing wave condition at the black hole horizon is replaced by the requirement
that all perturbed functions have a regular behaviour at r � �� Further�
more� they must match continuously with the exterior perturbation at the
surface of the star� Both the polar and the axial quasi�normal modes sat�
isfy the same boundary conditions� but the underlying scattering problem
is much di
erent in the two cases� In fact� since a polar perturbation ex�
cites the �uid motion� the amount of radiation which leaks out of the star
depends on the exchange of energy between the �uid and the gravitational
�eld� whereas the scattering of axial gravitational waves is a pure scattering
by a spherically symmetric� static potential�
In studying the theory of stellar perturbations in the framework of Gen�

eral Relativity� one encounters new phenomena that do not have a newtonian
counterpart� A �rst example is the existence of new families of modes of vi�
bration� which are modes of the radiative �eld� They appear because the
spacetime is not symply a medium in which gravitational waves propagate�
it has its own dynamics and spectrum� as it is clearly shown by the exis�
tence of the quasi�normal modes of black holes� Spacetime modes exist also
for stars but� due to the di
erent boundary conditions� their spectrum will
be much di
erent from that of black holes� One of these new families are
the highly damped polar and axial w�modes� discovered by K�Kokkotas and
B�Schutz �	��� Actually it was later shown that there exist two families of
such modes �		�� but we shall not go into such a detail in the present con�
text� The w�modes are modes of vibration in which the motion of the �uid is
barely excited� if not excited at all as in the axial case� In an article appeared
in Physics World in ����� Bernard Schutz makes an interesting analogy that
vividly illustrates the nature of these modes �	���
�Consider a violin played in an in�nitely large room� The air by itself

does not have conventional outgoing�wave modes� any sound waves are com�
ing in from somewhere and going out somewhere else� But put a violin string
in the room� and there appears a family of modes with purely outgoing sound
waves that exchange a small amount of energy with the string� and die away
very fast� These modes are strongly damped� and the weaker the coupling
of the string to the air� the faster they damp away� so that in the limit of a
vacuum around the string� they go away entirely��

Typical values of the lowest w�mode range between � �� �	kHz� 
the

��



R
M

�� in kHz 	 in s R
M

�� in kHz 	 in s
	�� ���	�� ���	 � ���� 	�	� ������ ����

� � ������ 	��� � ����

� � �����	 ���� � ����

� � ������ ���� � ����

	�� ������ ���� 	�	� 	����� ���� � ���

������ ���� � ���� ����	� ���� � ���

������ ���	 � ���� �����	 ��		 � ���

� � ����	� ���� � ����

Table 	� The characteristic frequencies and damping times of the � � 	
s�modes of homogenoeus stars� with M � ����M� and increasing compact�
ness�

frequency of the w�modes increases with the order of the mode�� and the
corresponding damping times are � ���	 � ���ms�
Chandra and I brought to light a further family of spacetime modes �	���

Contrary to the w�modes they are slowly damped� and therefore I shall call
them the s�modes� They exist only for the axial perturbations and their
appearence is related to the depth of the potential well inside the star� as the
following illustrative example shows� Let us compare the shape of the axial
potential barriers generated by homogeneous stars of increasing compactness�
i�e� of decreasing ratio R

M
� It should be reminded that homogeneous stars

can exist only if their radius R exceeds 

�
Rs� or equivalently� if

R
M
� 	�	��

In �gure � it is shown how the potential well inside the star becomes deeper
as the value of R

M
decreases and the star shrinks� In the exterior the

potential coincides with the Regge�Wheeler potential that has a maximum
at r � �M� When 
R�M� � 	�� the potential well in the interior becomes
deep enough to allow the existence of one or more quasi�normal modes� In
table 	 the characteristic frequencies and damping times of the � � 	 s�
modes of homogenoeus stars with M � ����M� and di
erent values of
R�M are listed�
It should be stressed that the modes that one �nds when the radius of

the star approaches the limiting value� are not related to the quasi normal

��



modes of a Schwarzschild black hole� because both the boundary conditions
and the underlying scattering process are di
erent� Moreover� the progressive
increasing of the damping time for these modes means that they are more
e
ectively trapped by the curvature of the star�
The existence of the s�modes was proved by using homogeneous stars as a

model� and we have seen that they appear only if R
M
is su�ciently close to

the limiting value 	�	�� It would be interesting to understand whether this
constraint on R

M
derives from the particular choice of the model we have

used� or whether it could be relaxed by the use of a di
erent equation of state�
And further� is the existence of the s�modes related to some characteristic
property of the equation of state� as� for example� on how sti
 this equation
is�
To answer these questions� in collaboration with Maria Alessandra Papa

�	�� we have studied the quasi�normal modes of polytropic stars having at
the center a very small core with the equation of state of sti
 matter � � p�
We chose this model because� as �rstly suggested by Zeldovich �	��� the

equation � � p represents the most extreme equation of state for high
density matter compatible with the requirements of special relativity� For
example� the Tsuruta�Cameron �	�� equation of state has this asymptotic
behaviour near the center of the star� Furthermore� we wanted to understand
whether the presence of a sti
 core would give any particular signature to
the spectrum of the gravitational waves the star emits�
We determined the equilibrium con�gurations of such stars� and the range

in which the radius of the sti
 core can vary in order the star to be stable�
The main characteristics of the models we have studied are summarized in
tables � and �� It should be noted that since the core is extremely small�
neither the mass nor the radius change signi�cantly as a function of Rcore


they change at most by a few percents�� when it varies in the stability range�
Typical values of R and M for these stars are given in table �� From
table � we see that as the polytropic index of the envelope decreases� the
core is allowed to occupy a larger fraction of the star� Moreover the ratio
R
M

decreases and the star becomes smaller and more compact� We did not
consider values of n lower than ��� because the star would become too
small and the sti
 core too big� and we did not want to deal with extreme
situations�
Contrary to our expectations� we found that the depth of the potential

��



Figure �� The potential barrier of the axial perturbations of homogeneous
stars is plotted for di�erent values of the ratio R

M
ranging from ��	 to �����

��



n Rcore

R
R
M

��� ��	�! � ����! ��	���� ���	����
��� ��	�! � 	���! ��	��� � ��	���
��� ����! � ���		! 	���� � 	����

Table �� Parameters of the structure of a polytropic star with an � � p core
and di�erent values of the polytropic index in the envelope� In order the star
to be stable� the radius of the core must range in the interval given in column
�� In column � the corresponding range of variation of R

M
is given�

�c � � � ����g�cm� �c � ���	g�cm�

n M
M�

R in km M
M�

R in km

��� 	�� ���� ��� ���	
��� 	�� ��� ��� ���
��� ��� ��� ��	 ���

Table �� Typical values of mass and radius for two values of the central
density� As the core radius varies in the allowed range given in Table �� M
and R change by at most a few percents�

well inside the star does not signi�cantly increase as the ratio R
M
decreases�

and that these stars do not possess axial slowly damped modes� This result
suggests that the appearence of the s�modes in the spectrum of the axial per�
turbations is more likely to be due to the incompressibility of the equation of
state rather than to its sti
ness� However� this point remains to be clari�ed�
as well as whether it is the core or the envelope which play a fundamental
role in this respect�

The in�uence of a small sti
 core on the spectrum of the polar modes
is much more signi�cant� In order to locate the frequencies of the quasi�
normal modes� one usually plots a �resonance curve� ���
�� � ��
��� � that
represents the amplitude of the standing wave at radial in�nity obtained by

��



numerically integrating the perturbed equations for real frequency� It can
be shown that the values of frequency at which this curve exhibits a sharp
minimum correspond to the real part of a quasi�normal modes� provided the
imaginary part of the corresponding eigenfrequency is small enough 
�i ��
���� The damping time associated to a mode is related to the curvature of the
parabola that �ts the curve near a minimum� smoother minima correspond
to shorter damping times �	��� It should be noted that this algorithms is
designed to determine essentially the slowly damped modes� In �gure 	 the
resonance curve is shown for an n � ��� polytropic star with R

M
�

��	� as a function of the frequency� By analyzing the behaviour of the
thermodynamical variables in correspondence of the frequencies of the quasi�
normal modes� one can easily identify the g�� f�and p�modes that one de�nes
in newtonian theory according to the Cowling classi�cation �	��� ����� In
�gure � we plot the resonance curve for an n � ��� polytropic star having
in its center a very tiny sti
 core extending only up to the ����! of the total
radius� and with the same ratio R

M
� ��	�

Compared to the case illustrated in �gure 	� the structure of the spectrum
becomes incredibly rich� and in particular a large number of g�modes appear
that were not present in the fully polytropic star� In addition� smoother
mimima are present� indicating that the composite star possesses both slowly�
damped and highly�damped modes� This example powerfully illustrate how
the spectrum of the quasi�normal modes of a star carry relevant informa�
tion on its internal structure and on the manner in which the �uid and the
gravitational �eld couple at supernuclear regimes�
There are further information that one can derive from the knowledge of

the frequencies and damping times of the quasi�normal� In newtonian theory
the frequency of the f�mode scales with the mean density of the star� In
geometric units

�f �

s
	�
� � ��

	� � �

�
M

R�

�
� 
���

This relation has been generalized by N� Andersson and K� Kokkotas ���� who
have determined both the frequency and the damping time of the f�mode for
several equations of state proposed in the literature for neutron stars� They
�nd the following relations

�f � ���� � �����

s�
M

R�

�

���

��



Figure 	� The resonance curve �� � �� of a fully polytropic star� is plotted
versus the real frequency �� for � � 	� � is measured in unities of �

��
�
� �

�

Figure �� The resonance curve of the same polytropic star with a sti
 core
in its center�
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	f � ��� �
�
M

R

�
� 	���

�
M

R

��

�

where M and R are expressed in km� �f in kHz and 	f in ms�
These two relations provide an estimate both for M and R� good within �!
if compared with the true values� It should be noted that the frequency of
the f�mode ranges in the interval � � � 	kHz� and the damping time is
� ��� � ���s� A further relation is provided by the damping time of the
lowest w�mode computed for the same models

�

	w�

� ����� � �����
�
M

R

�
� 
���

Andersson and Kokkotas have also studied how the axial quasi�normal
modes are excited when an initial Gaussian pulse is scattered by the potential
barrier of the axial perturbations of homogeneous stars� Their simulation
shows that� in principle� the various modes can be excited� However� it would
be interesting to know how the di
erent modes are excited in some realistic
situations� For example during the last stages of the gravitational collapse�
when the newborn star wildly oscillate releasing gravitational waves� or when
a mass� smaller than the star mass� is scattered or captured by the big one
��	�� �����

�� Slowly rotating stars

The theory of stellar perturbations developed for static stars can be gen�
eralized to the case when the star is rotating so slowly that the distortion
from spherical symmetry is quadratic in the angular velocity "� and may
be ignored ����� The unperturbed con�guration is described by the following
metric ���������

ds� � e��
dt�� � e��
d�� �dt�� � e���
dr�� � e���
d���� 
���

where �� �� ��� �� di
er from those of a static star by quantities of order "��
while � 
that is zero in the non�rotating case� is a �rst order quantity in "�
The equations governing �� �� ��� �� are given in sections �� The equation for
� is

��r�r �
�

r
��r � 
�� � ���r

�
��r �

�

r
�
�
� �� 
���
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where
� � "� �� 
���

In the vacuum outside the star� �� � � � � and the solution of eq� 
���
reduces to � � "� 	Jr��� where J is the angular momentum of the star�
In ref� ���� we showed that the axial perturbations of a slowly rotating star
couple to the polar perturbations� and viceversa�
The way this coupling works for the axial perturbations is illustrated by

the following equation �

�X
l
�

�
d�Z�

l

dr�
�

� ��Z�
l �

e��

r�
�l
l� ��r � r�
�� p� � �m
r��Z�

l



C
�

�

�

l��
�� 
�	�

� re������
�� ����
�X
l
�

S�
l 
r� ���

where

S�
l � ��r�
	W

�
l �N�

l � �L
�
l � 	nV

�
l Pl�� � 	�V

�
l Pl����� � 	�W

�
l 
Q� ����rPl���


���

and Q has been de�ned in eq� 
	��� � � cos �� and C
�

�

�

l��
�� and Pl
��
are respectively the Gegenbauer and the Legendre polynomials�
Eq� 
�	� holds from the center of the star up to radial in�nity� provided

outside the star �� p and W are set to zero� As described in previous sec�
tions� if the star does not rotate the axial and the polar perturbations are
described by two distinct sets of equations� eqs� 
��� for the polar variables
N�
l � L

�
l V

�
l �W

�
l etc�� and eqs� 
��� for the axial function Z�

� � If the rotation
is switched on 
� �� ��� the axial function of �rst order in "� Z�

� � couple
as indicated in eq� 
�	� with the polar functions 
W �

l � N
�
l � L

�
lV

�
l � of zero

order in "� i�e� evaluated in the case of no rotation�
It should be noted that the coupling function is the quantity � which is
responsible for the dragging of inertial frames in the Lense�Thirring e
ect�
Thus� rotating stars extert not only a dragging of the bodies� but also of the
waves� and consequently an incoming polar gravitational wave can convert�
through the �uid oscillations it excites� some of its energy into outgoing axial
waves�

�The equations describing the coupling of the polar with the axial perturbations were
subsequently determined by Y�Kojima �����

		



I would like to stress that this phenomenon is a purely relativistic e
ect
with no counterpart in newtonian theory�
Equation 
�	� is not yet separated� When the angular dependence is re�

moved� one �nds that the axial and the polar perturbations couple according
to the following rules�
� The Laporte rule � the polar modes belonging to even � can couple only
with the axial modes belonging to odd �� and conversely�
� The selection rule � l � m� �� or l � m� ��
� The propensity rule ��	� � the transition l� l� � is strongly favoured over
the transition l� l��� This derives from the manner in which the behaviour
of the axial function is a
ected by the polar source near the origin�
As a consequence of this coupling� new families of modes are likely to

emerge� For example� in ref� ���� we studied the axial perturbations of a
slowly rotating polytropic star with polytropic index n � ���� and we
showed that if one scatters an � � 	 polar gravitational waves on the
potential barrier of eq� 
�	�� for some value of the frequency of the incident
wave the m � � axial perturbation induced by the coupling behaves as a
pure outgoing wave at radial in�nity� These �induced� axial resonances are
characterized by damping times considerably longer than those of the polar
modes of order zero in " 
up to hundred times��

	� Concluding remarks

The existence of an energy conservation law governing the non�radial
oscillations of a spherical star� which was derived in analogy with the conser�
vation law governing the scattering of gravitational waves by a Schwarzschild
black hole� provides an additional constraint to the theory and allows to re�
cast the problem of stellar perturbations as a problem in scattering theory�
The scattering approach proves extremely powerfull in enlighthening some
aspects of the theory that where obscured in previous formulations� The
existence of the slowly�damped axial modes in ultra�compact stars� the cou�
pling between the polar and axial perturbations in slowly�rotating stars and
the resonances induced by this coupling naturally emerge in this framework�
though they could have also been discovered by other approaches�
The scattering approach is applicable also when the star is newtonian�

i�e� when its equilibrium con�guration is built in the Newtonian framework
and the curvature it generates is very shallow� Indeed we showed that the

	�



frequencies of oscillation of a newtonian star can be determined by integrating
the polar equations in the limit of small curvature� under the condition that
no radiation emerges� as in the case of the dipole oscillations �����
At the end of this lecture I would like to add to the scienti�c illustration

of my work with Chandra some personal recollection on our collaboration� It
developed over twelve years� and it was certainly based on reciprocal respect�
esteem� trust and common scienti�c interests� But the real engine was Chan�
dra�s genuine enthusiasm for science which he was able to communicate to
me by making me feel that� no matter how di�cult a problem was� together
we could make it� I am grateful to Chandra for his precious gift of sharing
with me his patrimony of knowledge� experience� craftsmanship� fruits of a
life entirely dedicated to science�
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