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I had the priviledge of collaborating with professor Chandrasekhar for
twelve years during which we explored the General Theory of Relativity
and developed a new formulation of the theory of stellar perturbations, the
startling complexity and richness of which I will try to describe in this lecture.

In order to understand the basic ideas underlying our approach, we need

to frame the problem in an hystorical perspective, and start describing some
major results of the theory of perturbations of a Schwarzschild black hole,
which is beautifully illustrated in Chandra’s book The mathematical theory
of black holes” [1].
In 1957 T. Regge and J.A. Wheeler [2] derived the equations governing the
perturbations of a static, spherically symmetric black hole. The separation
of variables was accomplished by expanding the perturbed metric tensor in
tensorial spherical harmonics, and since these harmonics have a different
behaviour under the angular transformation 6 — 7= —0, ¢ — 74 ¢,
the separated equations split in two sets: the polar or even, belonging to the
parity  (—1)*, and the axial or odd, belonging to the parity (—1)¢+1),
Regge and Wheeler reduced the equations describing the azial perturbations
to a single Schroedinger-like equation
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where r, = r + 2Mlog(55 — 1), M is the black hole mass, w is
the frequency and the perturbed functions have been Fourier-expanded. The
theory of perturbations of black holes was born.

Due to the analytical complexity of the polar equations, only much later,
in 1970, F. Zerilli [3] was able to derive also for the polar perturbations a
single Schroedinger-like equation, but with a different potential barrier
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Equations (1) and (2) show that the curvature generated by a point-like
mass appears in the perturbed equations as a potential barrier which ex-
tends throughout spacetime. Consequently, the response of a black hole to
a generic perturbation can be studied by investigating the manner in which
a gravitational wave incident on the black hole is transmitted, absorbed and
reflected by this barrier, a phenomenon with which we are familiar in ele-
mentary quantum theory.

1. The quasi-normal modes of a black hole

In 1970 Vishveshwara [4] had pointed out that the equations governing the
perturbations of a Schwarzschild black hole should allow complex frequency
solutions behaving at radial infinity as pure outgoing waves. W.H. Press [5]
confirmed this idea by numerically integrating the equations, and by showing
that an arbitrary initial perturbation ends in a ringing tail, which indicates
that black holes possess some proper modes of vibration.

Since the oscillations must be damped by the emission of gravitational
waves, these modes were called quasi-normal modes, and they were defined to
be solutions of the perturbed equations belonging to complex eigenfrequen-
cies w = wp+iw;, and satisfying the boundary conditions of a pure outgoing
wave at infinity and of a pure ingoing wave at the horizon. The first con-
dition identifies physically acceptable modes, i.e. those that damp the star
(provided w; > 0). The latter is the requirement that nothing can escape
from the horizon. It should be noted that in scattering theory these bound-
ary conditions associated to a Schroedinger equation with a one-dimensional
potential barrier identify the singularities of the scattering amplitude.

In 1975 S. Chandrasekhar and S. Detweiler [6] computed the complex
eigenfrequencies of the quasi-normal modes of a Schwarzschild black hole.
The first few values for ¢ =2 and (=3 are given in Table 1.

The real part of the frequency is inversally proportional to the mass, while
the damping is proportional to it. If the black hole massis M = nMg, the
oscillation frequency and the damping of the modes can be computed by the



Mw + iMw; Mw + 1 Muw;
f=210.3737+10.0890 | £ =3 | 0.5994+10.0927

0.3467410.2739 0.5826410.2813
0.3011410.4783 0.5517+10.4791
0.2515410.7051 0.5120+10.6903

Table 1: The complex characteristic frequencies of the quasi-normal modes

of a Schwarzschild black hole.

following formulae

c 32.26 nMg n-0.4937 -107°
27n - Mg (Mw) n (Mew)ktz, (Mw)e (Mw) °
(3)

For example, the lowest ¢ = 2 quasi-nomal mode of a black hole of one

Yo

solar mass, and of a supermassive black hole of 10°M; belong, respectively,
to the following frequencies

M =1My, vy =12.06 kHz, 7 =1555-10""s (4)
M =10My, vy=1,21-10"2Hz, T = 55.5s.

The frequencies of oscillation of a black hole depend exclusively on the
parameters that identify the spacetime geometry: the mass, and the angular
momentum or the charge if the black hole is rotating or charged.

In ref. [6] S. Chandrasekhar and S. Detweiler also showed that the trans-
mission and the reflection coefficients associated respectively to the polar
and to the axial potential barriers are equal. This equality can be explained
in terms of a transformation theory which clarifies the relations that exist
between potential barriers admitting the same reflection and absorption co-
efficients (this theory is extensively illustrated in ref. [1]). ' However the
physical reason why this happens is still unclear:

IThe equality of the transmission and reflection coefficients can also be justified by the
following considerations. The perturbations of a Schwarzschild black hole can be described
in terms of the Bardeen-Press equation [7] written for the Weyl scalars W, and Wy,
which represent the ingoing and outgoing radiative part of the gravitational field. The



“In spite of V() and V() appearing so very different, they are iso-
spectral in the sense that the reflection and absorption coefficient for incident
polar and axial gravitational waves are identically the same for all frequencies.
In tracing the origin of this identity, one is led to a ‘transformation theory’
whose significance remains illusive”

(From S. Chandrasekhar “The series Paintings of Claude Monet and the
Landscape of General Relativity” 1992 [8]).

Numerical integration of the wave equations (1) and (2) with different
sources (see ref. [9] for an extensive bibliography) have shown that the grav-
itational signal emitted as a consequence of a generic perturbation will, dur-
ing the last stages, decay as a superposition of the quasi-normal modes. In
addition, a newborn black hole generated either by the gravitational collapse
of a massive star or by the coalescence of two compact objects, will oscillate
and emit gravitational waves until its residual mechanical energy is radi-
ated away, and again the dominant contribution is expected to be due to the
quasi-normal modes. Being the axial and polar perturbations isospectral, the
gravitational radiation emitted in these processes will carry a definite signa-
ture on the nature of the emitting source; in fact, as we shall later discuss,
the axial and polar perturbations of a star are not isospectral [10].

2. A conservation law for the scattering of gravitational
waves by a black hole

One of the major problems in General Relativity is that an energy con-
servation law governing the scattering of gravitational waves by black holes
does not exist in the framework of the exact non linear theory. However,
such law can be derived in perturbation theory both for Schwarzschild , Kerr
and Reissner-Nordstrom black holes. We shall now derive the conservation
law for a Schwarzschild black hole, by following the procedure adopted in ref.
[1].

Due to the short-range character of the potential barriers of eqs. (1) and
(2), the asymptotic behaviour of the solution 7 at r. = H+oo is, in

Bardeen-Press equation admits solutions which satisfy the boundary conditions of the
quasi-normal modes, and since both ¥, and W, can be expressed as a combination
of the Regge-Wheeler and of the Zerilli functions and their first derivatives [1], the axial
and the polar perturbations must be isospectral.



general, a superposition of outgoing and ingoing waves
Lot ~ € and Din ~ €T (5)

Consider two solutions of the wave equations, say Z; and Z;, satistying
respectively the following boundary conditions

—IWT

ry — 400 Z — e , pure outgoing wave (6)

+iwrs

Ty — —00 Jy— e pure ingoing wave.

The pairs  (Zy,77) and  (Zy,73), where the * indicates complex
conjugation and w is assumed to be real, will be pairs of independent
solutions of the wave equation, since their Wronskians are different from
zero. In fact, by a direct evaluation, for example, at 4oo0, one finds ?

re — +oo, [Z1,77] = —2iw, re — —00, [Zy, 73], = +2iw.

(7)

Therefore, we can write 7Z; as a linear combination of (72, 73) and

Tk

viceversa:

Zi = Aw)Zs + B(w) 73, (8)
Zy =C(w)Z + D(w)Z;.

We now divide 73 by D(w) and define

7y .

Zp = D(w) = Rl(w)Zl + Z17 (9)

where Ry(w) = %(%, and similarly
A .

ZL == B(w) == RQ(CU)ZQ + Z27 (10)
where  Ry(w) = %. Zr and  Zp have the following asymptotic
behaviour

Ty (w)etiwrs r. — —00
ZR — {e—|—iw7’* +R1(W>€_iWT* r. — 400 (11)

2[A,B], =A, -B—A-B,
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Tg(w)e_i‘”* r. — +o00
where we have set Ti(w) = ﬁ, and Ty(w) = %.

Thus, Zpr represents a wave of unitary amplitude incident on the po-
tential barrier from +4oco which gives rise to a reflected wave of amplitude
Ri(w) and to a transmitted wave of amplitude 7Ti(w). Conversely, Zj is
a unitary wave incident from —oo which is partially reflected (Rz(w)) and
partially transmitted (73(w)). Furthermore, by computing the Wronskian of
the two solutions at 4oo it is easy to verify that

(Z1, Zr]. = —2iwTy(w) r, — 400 (12)

Tk

(71, ZR), = —2iwT(w) T, — —00,

Tk

and since the Wronskian is constant, it follows that

Ti(w) = Tr(w) = T(w). (13)
Similarly
(2. Z;],, = 2iw(|[Ba(w)* = 1) re — —o0 (14)
[ZL,ZE]T* = —2iw|Ty(w)|? r, — 400,
and consequently
|Bsl* + | T = 1. (15)

By a similar procedure applied to Zr we easily find
|Ba|* + |Th|* = 1. (16)
This means that FR; and Ry can differ only by a phase factor and that
B> +|T)* =1 (17)

holds in general. This equation establishes the symmetry and the unitarity
of the S-matrix, and it expresses the conservation of energy because it says
that if a wave of unitary amplitude is incident on one side of the potential
barrier, it splits into a reflected and a transmitted wave such that the sum
of the square of their amplitudes is still one.



The existence of conservation laws for the scattering of gravitational
waves by a black hole raised an interesting question: is it possible to establish
a similar conservation law for the polar perturbations of a static, spherically
symmetric spacetime generated either by an electromagnetic source or by a
non rotating star? That such law should exist was known on a theoretical
ground: A. Ashtekar, J. Friedmann, R.Sorkin and R. Wald had told us that
the existence of a conserved simplectic current can in principle be inferred for
any field theory derived from a suitably defined Lagrangian action. However,
Chandra wanted to derive the conserved current by using a procedure similar
to that used for Schwarzschild black holes. In that case, the central point of
the derivation was to show that the Wronskian of two independent solutions
of the wave equations is a constant. Conversely, the equations for the polar
perturbations of a star are a fourth order linear differential system: what
would be the role played by a Wronskian in this context? The solution of
the problem required a considerable amount of hard work on the equations,
but at the end the result was rewarding: we found that there exists a vector
E which satisfies the following equation [11]

d o __ _ 2 __ 3 _
8:1;°YE =0, a=(z"=ra’=9). (18)

The vanishing of the ordinary divergence implies that, by Gauss’s theorem,

the flux of E across a closed surface surrounding the star is a constant.

In order to write explicitely the components of the vector E (I shall
omit the details of its derivation) we write the metric of a generic static,
spherically symmetric spacetime in the following form

ds* = e*(dl)? — *2(dr)? — "2 df* + e*Vdp?, (19)

where the metric functions depend only on r and ). We shall restrict
to the case when this metric represents the spacetime generated by an un-
perturbed star composed by a perfect fluid, though in ref. [11] we derived
a similar conservation law also for charged solutions of Einstein’s equations.
The axisymmetric perturbations of the spacetime (19) can be described by
the line-element

ds? = e*(dt)? — e*(dp — qadr® — q3df — wdt)? — e*2(dr)? — e*2(dh)?. (20)

It should be noted that the number of unknown functions in eq. (20) is seven,
one more than needed. However, this extra degree of freedom disappears



when the boundary conditions of the problem are fixed. As a consequence
of a generic perturbation, the metric functions will experience small changes
with respect to their unperturbed values, which we assume to be known

v — v+ v, oy — o + Sz, (21)
Y — P+ 61, ft3 — i3 + O,
w — ow, G2 — 6qy 3 — 0qs.

Since each element of fluid in the interior of the star undergoes an infinitesi-
mal displacement from its equilibrium position, identified by the lagrangian
displacement 5: the energy density and the pressure will change by an
infinitesimal amount

e — €+ de, p — p+ Op. (22)

Under the assumption of axisymmetric perturbation, all perturbed quantities
depend on #,r and f. If we now write Einstein’s equations supplemented
by the hydrodynamical equations and the conservation of barion number,
expand all tensors in tensorial spherical harmonics and Fourier-expand the
time dependent quantities, we find that, as for black holes, the equations
decouple into two sets, the polar and the azxial, but with a major difference:
the polar perturbations involve the same metric variables (6w, dpuz, 8¢, du3)
as for black holes, but now they are coupled to the thermodynamical variables

bv be
pta op
o= (23)
opuz €o

Conversely the azial perturbations [éw, d¢q,d¢3] do not induce motion in
the fluid except for a stationary rotation. However, we shall see that the fluid
plays a role, though different from that played in the polar case. In terms
of the perturbed metric and fluid variables the F,-component of the polar
vector E is

By = r"e"™"2 sin O[3, 6p13)0 4 [690, 6472 — [60,26 (¢ + p1a)”™ — c.c] + (24)
H8p28(th + 1) — .l + [2[(e + POt + s — pi2)” = 6ple” 26 — c.c},

and the Fs-component can be obtained by interchanging 2 with 3.



Equation (24) includes, as expected, Wronskians of the polar functions
[Ops, 6p3]a and  [6v, 610%]2, and it reduces to the Wronskian of the solutions
of the Zerilli equation as indicated in section 2, when the source terms ¢ and
p are zero. We derived a similar expression for E when the source is an
electromagnetic field. G. Burnett and R. Wald [12] subsequently showed that
in the Einstein-Maxwell case our conservation law can be obtained by con-
structing a simplectic current associated to the perturbed equations derived
from a Lagrangian variational principle.

The conserved current E represents the flux of gravitational energy
which develops through the stars and propagates outside. Indeed, it can also
be derived from the second variation of the Einstein pseudo-tensor %" [13],
[14]. The reason for choosing the Einstein pseudo-tensor is that among the
infinite number of pseudo-tensors that can be defined for the gravitational
field, all differing by a divergenceless term, t%  is the only one the second
variation of which retains the divergence-free property, provided only the
equations governing the static spacetime and its linear perturbations are
satisfied. This property derives from the fact that the Einstein pseudo-tensor
is a Noether operator for the gravitational field.

In addition, Raphael Sorkin pointed out that the contribution of the
source should be introduced not by adding the second variation of the stress-
energy tensor of the source T*”, but through a suitably defined Noether
operator, the form of which he derived for the electromagnetic case. This
operator does not coincide with  T" . but it gives the same conserved
quantities. It should be mentioned that the Noether operator to be added to
the Einstein pseudo-tensor when the source is a fluid has been derived only
much recently by Vivek Iyer [15].

The existence of a conservation law for a spacetime with a perfect fluid
source suggested to Chandra that the non-radial oscillations of stars should
be reformulated as a problem in scattering theory.

“In general relativity, any distribution of matter (or more generally energy
of any sort) induces a curvature of the spacetime — a potential well. Matter
implies gravity and gravity implies matter. Therefore, instead of picturing
the non-radial oscillations of a star as caused by some unspecified external
perturbation, we can picture them as caused by incident gravitational ra-
diation. Viewed in this manner, the reflection and absorption of incident
gravitational waves by black holes and the non-radial oscillations of stars,



become different aspects of the same basic theory. But how different — as we
shall see!”

After completing the first paper on the flux integral, Chandra and I
started to work on the perturbed equations, and reduced them to an in-
teresting form [16], fairly different from that obtained by Thorne and his
collaborators, who first developed the theory of stellar perturbations in gen-
eral relativity in 1967 [17].

3. The polar equations

If one expands the perturbed metric tensor and the stress-energy tensor
of the fluid in tensorial spherical harmonics, under the hypothesis of axisym-
metric perturbations the polar metric functions and the thermodynamical
variables turn out to have the following angular dependence

§v = Ny(r)Pi(cos )™ dpte = Ly(r)Pi(cos G)em (25)
5,&3 = [Tg(T)P[ + W(T)PI7979]Gth 577/) = [Tg(T)P[ + W(T)Pl,é’ cot (9]€th,

§p = y(r) P(cos O)e™! 2(e+ p)e" T & (r, G)em = Ug(r)PleM

Sc¢ = Ey(r)Pi(cos 0)et 2(e + p)e’ T &q(r, G)em = Wg(r)Plﬁem,

where Py(cos ) are the Legendre polynomials. After separating the variables
the relevant Einstein’s equations become

Cl) (Tg — ‘/g + Lg) == —Wg (26)
d 1 2
b) %‘F (;—1/77«)‘| (2Tg—k%)—;Lg:—Ug
1 2 1 2 /1
o) e PN+ (- ) @I =V == (S o) L] +
2 r r r\r
1

1
5 |:—r—2(2nTg + kNg) + w2e—2y(2T£ — k‘/g)] = Hg

1 1
&) (T Vit N = (=) No— (4w ) Le =0,
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2 e
6) w,r,r + (; + Ve — ,UZ,T) Ve,r + (Ng + Lg) + w2€2M2_2yw = 07

P2

where k=1[+1), and 2n = ([—1)({+42). After some reduction, the

hydrodynamical equations and the conservation of barion number provide

10



the following expressions for the fluid variable 2

1 e

I, = ——w?e W, — N, E, = QIl . —Op,
¢ we Wi — (e +p) Ny, = QI + 2 —|—p)<6’ Qp,)Us,
(27)

(WP W), 4 (Q + Dy (WP Wa) + 2, — Qp,)Nil(e + p)
U£ — ” (28)
[wXe=?(e 4+ p) + e 2w, (e, — Qp,y )]
where ( ) ( ) o
et+p €e+p) op
_— _— S 2

Q ~p 9 > P (86 )entropy:const ( 9)

and ~ is the adiabatic exponent.
Outside the star, the source vanishes and the polar equations can be
reduced to the Zerilli equation (2), with the following identification

ZF(r) = e BMVi(r) = rLi(r)). (30)

A remarkable simplification of eqs. (26) is possible. Equation 26a) and
eqs. (27) show that the fluid variables [Wy, Uy, Ey, 1] can be expressed
as a combination of the metric perturbations [T, V;, Ly, N;] and their first
derivatives. Therefore, after their direct substitution on the right hand side
of the last four eqs. (26) a set of new equations which involves exclusively

the perturbations of the metric functions [Ty, Vi, Ly, N;| can be derived.
The final set is

Xpgw + (24 v — pas) Xop + 222 (N + Ly) + w2027 X, = 0,

(r*Ge)y = nvp (Ne = Le) + 2(e*2 — 1)(Ne + Lz) + (v, — pag) Xey + w2e227)r X,
—v, Ngr = —Gg—l—l/ [Xgr—l-l/ (Ng Lﬁ)]‘l‘ (62M2 —1)(Ng—TXg7T —Tng)

—e22 (4 p)Ny + L2 e ) Ny 4+ Ly + 2Gy + L[rXo, + (20 + 1) X}
Lir(1= D) + L [(——z/ )= (E+v,) D]+ Xop + X, (——z/ ) + DNi+
+Ni (D =2 = F) + (L4 Ev,) [Ny = Lo+ 2Ge + L (r X, + X)) = 0,

(31)
where o
A= §w26_2y7 B = ﬁ(e,r — Qpﬂ°)7
. - . w26_2y(6+p)
D 1 — (A-l—B) =1 wze_zy(6+p)+e—2ug l/,r(E,r—Qp,r)7 (32)
E=D(@Q-1)-Q,
F __ € r—Qp ro__ 2[5,T_Qp,7"](5+p)

2(A—|—B) T 2wPe 2 (edp)te 21 (e, —Qp,r)

3We restrict our analysis to adiabatic perturbations of fluid stars.

11



and V, and 71, have been replaced by X, and G, defined as

Xe=nV,
Gy = v, (=X, = 1)+ (e — Dln(Ne+ 7))+ ] (33

—|—%(Ng + Lg) — 62“2(6 + p)Ng + %wzez(“r”) [Lg — Tg + 2nn_+1X£]

Fquations (31) describe the perturbations of the gravitational field in the in-
terior of the star, with no reference to the motion of the fluid.
Once these equations have been solved, the fluid variables can be obtained
in terms of the metric functions from eqs. 26a) and eqs. (27). This fact
is remarkable: it shows that all the information on the dynamical evolu-
tion of a perturbed star is encoded in the gravitational field, a result which
expresses the physical content of Finstein’s theory of gravity. Moreover, it
should be stressed that the decoupling of the equations governing the metric
perturbations from those governing the hydrodynamical variables is possible
in general, and requires no assumptions on the equation of state of the fluid.
Thus, if one is interested exclusively in the study of the emitted gravitational
radiation, one can solve the system (31) and disregard the fluid behaviour.

Equations (31) have to be integrated for each value of the frequency from
r = 0, where all functions must be regular, up to the boundary of the
star. There, the spacetime becomes vacuum and sperically symmetric, and
the perturbed metric functions and their first derivatives must be matched
continuously with the functions that describe the polar perturbations of a
Schwarzschild black hole (for a detailed discussion of the boundary conditions
see refs. [16] and [18]).

[t was subsequently shown by J.R.Ipser and R.H.Price [19] that the equa-
tions describing the polar gravitational perturbations decoupled from the
fluid variables can be reduced to a fourth-order system.

4. A Schroedinger equation for the axial perturbations

The equations for the axial perturbations are much simpler than the polar
ones. Their radial behaviour is completely described by a function — Z,(r),
which satisfies the following Schroedinger-like equation

d* 7,
dr?

*

+ [w? = Vi(r)])Z = 0, (34)

12



where 7. = [5 e7"T#2dr, and

621/

Vi(r) = [l + )r + (e — p) — 6m(r)], v, = ——2

. 35
T'3 ’ 6_I_p ( )

Outside the star € and p vanish and eq. (35) reduces to the Regge-Wheeler
potential barrier (1). It should be stressed that the potential depends on
how the energy-density and the pressure are distributed inside the star in its
equilibrium configuration.

Since an axial gravitational wave incident on a star does not induce fluid
motion, for a long time these perturbations have been considered as trivial.
But this is not true if we adopt the scattering approach: the absence of fluid
motion simply means that an incident axial wave experiences a potential
scattering as it does in the case of a Schwarzschild black hole. There is
however an important difference. The Schwarzschild potential vanishes at
the black hole horizon, and it has a maximum at r,,,, ~ 3M. Conversely,
due to the centrifugal contribution Q?Tll the potential barrier of a perturbed
star tends to infinity at r = 0. In addition, for a Schwarzschild black hole
the Schroedinger-like equation describes a problem of scattering by a one-
dimensional potential barrier, whereas in the case of a star it describes the
scattering by a central potential.

Being the axial perturbations described by a Schroedinger equation, the
axial component of the energy flux can be derived from the Wronskians of
independent solutions, as in the black hole case. However, due to the different
boundary conditions, the evaluation of this flux requires the application of
the Regge theory of potential scattering in a central field. This theory can be
generalized to be applicable also to the polar perturbations, and to explicitely
compute the energy flux associated to the vector E [20].

5. The quasi normal modes of a star

In our approach the non-radial oscillations of stars are thought to be in-
duced by the incidence of polar or axial gravitational waves on the spacetime
curvature generated by the star. In this view, a resonant scattering occurs
when the star is in a quasi-stationary state that decays, i.e. when it oscillates
in a quasi-normal mode.

The quasi-normal modes are solutions of the axial and polar equations
that satisfy the following boundary conditions. As in the black hole case, at

13



radial infinity only pure outgoing waves must prevail, whereas the pure ingo-
ing wave condition at the black hole horizon is replaced by the requirement
that all perturbed functions have a regular behaviour at r = 0. Further-
more, they must match continuously with the exterior perturbation at the
surface of the star. Both the polar and the axial quasi-normal modes sat-
isfy the same boundary conditions, but the underlying scattering problem
is much different in the two cases. In fact, since a polar perturbation ex-
cites the fluid motion, the amount of radiation which leaks out of the star
depends on the exchange of energy between the fluid and the gravitational
field, whereas the scattering of axial gravitational waves is a pure scattering
by a spherically symmetric, static potential.

In studying the theory of stellar perturbations in the framework of Gen-
eral Relativity, one encounters new phenomena that do not have a newtonian
counterpart. A first example is the existence of new families of modes of vi-
bration, which are modes of the radiative field. They appear because the
spacetime is not symply a medium in which gravitational waves propagate:
it has its own dynamics and spectrum, as it is clearly shown by the exis-
tence of the quasi-normal modes of black holes. Spacetime modes exist also
for stars but, due to the different boundary conditions, their spectrum will
be much different from that of black holes. One of these new families are
the highly damped polar and axial w-modes, discovered by K.Kokkotas and
B.Schutz [21]. Actually it was later shown that there exist two families of
such modes [22], but we shall not go into such a detail in the present con-
text. The w-modes are modes of vibration in which the motion of the fluid is
barely excited, if not excited at all as in the axial case. In an article appeared
in Physics World in 1991, Bernard Schutz makes an interesting analogy that
vividly illustrates the nature of these modes [23]:

“Consider a violin played in an infinitely large room. The air by itself
does not have conventional outgoing-wave modes: any sound waves are com-
ing in from somewhere and going out somewhere else. But put a violin string
in the room, and there appears a family of modes with purely outgoing sound
waves that exchange a small amount of energy with the string, and die away
very fast. These modes are strongly damped, and the weaker the coupling
of the string to the air, the faster they damp away, so that in the limit of a
vacuum around the string, they go away entirely.”

Typical values of the lowest w-mode range between ~ 8 —12kHz, (the

14



vy in kHz Tin s vy in kHz Tin s
3.6293 1.52-1073 | 2.28 | 4.4333 10.8
- - 6.0168 2.50 - 1071
- - 7.5462 1.44 -1072
- - 8.9891 1.83-1073

Nkl
o [

2.3 | 5.6153 0.54 2.26 | 2.6041 5.38 - 10°
7.5566 1.16 - 1072 3.5427 1.69 - 102
9.3319 1.02-107° 4.4802 1.22 - 10

- - 5.4127 1.37-107!

Table 2: The characteristic frequencies and damping times of the ( = 2
s-modes of homogenoeus stars, with M = 1.35Mg and increasing compact-
ness.

frequency of the w-modes increases with the order of the mode), and the
corresponding damping times are = 0.02 — 0.1ms.

Chandra and I brought to light a further family of spacetime modes [24].
Contrary to the w-modes they are slowly damped, and therefore I shall call
them the s-modes. They exist only for the axial perturbations and their
appearence is related to the depth of the potential well inside the star, as the
following illustrative example shows. Let us compare the shape of the axial
potential barriers generated by homogeneous stars of increasing compactness,
i.e. of decreasing ratio %. It should be reminded that homogeneous stars
can exist only if their radius R exceeds gRS, or equivalently, if % > 2.25.
In figure 1 it is shown how the potential well inside the star becomes deeper
as the value of % decreases and the star shrinks. In the exterior the
potential coincides with the Regge-Wheeler potential that has a maximum
at ra~3M. When (R/M) < 2.6 the potential well in the interior becomes
deep enough to allow the existence of one or more quasi-normal modes. In
table 2 the characteristic frequencies and damping times of the (=2 s-
modes of homogenoeus stars with M = 1.35M; and different values of
R/M are listed.

It should be stressed that the modes that one finds when the radius of

the star approaches the limiting value, are not related to the quasi normal
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modes of a Schwarzschild black hole, because both the boundary conditions
and the underlying scattering process are different. Moreover, the progressive
increasing of the damping time for these modes means that they are more
effectively trapped by the curvature of the star.

The existence of the s-modes was proved by using homogeneous stars as a
model, and we have seen that they appear only if % is sufficiently close to
the limiting value 2.25. It would be interesting to understand whether this
constraint on % derives from the particular choice of the model we have
used, or whether it could be relaxed by the use of a different equation of state.
And further, is the existence of the s-modes related to some characteristic
property of the equation of state, as, for example, on how stiff this equation
18?7

To answer these questions, in collaboration with Maria Alessandra Papa
[25] we have studied the quasi-normal modes of polytropic stars having at
the center a very small core with the equation of state of stiff matter ¢ = p.

We chose this model because, as firstly suggested by Zeldovich [26], the
equation € = p represents the most extreme equation of state for high
density matter compatible with the requirements of special relativity. For
example, the Tsuruta-Cameron [27] equation of state has this asymptotic
behaviour near the center of the star. Furthermore, we wanted to understand
whether the presence of a stiff core would give any particular signature to
the spectrum of the gravitational waves the star emits.

We determined the equilibrium configurations of such stars, and the range
in which the radius of the stiff core can vary in order the star to be stable.
The main characteristics of the models we have studied are summarized in
tables 3 and 4. It should be noted that since the core is extremely small,
neither the mass nor the radius change significantly as a function of R,
(they change at most by a few percents), when it varies in the stability range.
Typical values of R and M for these stars are given in table 4. From
table 3 we see that as the polytropic index of the envelope decreases, the
core is allowed to occupy a larger fraction of the star. Moreover the ratio
% decreases and the star becomes smaller and more compact. We did not
consider values of n lower than 0.5 because the star would become too
small and the stiff core too big, and we did not want to deal with extreme
situations.

Contrary to our expectations, we found that the depth of the potential
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Figure 1: The potential barrier of the axial perturbations of homogeneous

stars is plotted for different values of the ratio % ranging from 2.8 to 2.26.
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n Rcore R

R M
1.5 | 0.25% - 0.50% | 4.21167 -4.21170

1.0 | 1.29% - 2.78% | 3.2649 - 3.2645
0.5 | 5.68% - 11.22% 2.843 - 2.836

Table 3: Parameters of the structure of a polytropic star with an € =p core
and different values of the polytropic index in the envelope. In order the star
to be stable, the radius of the core must range in the interval given in column

2. In column 3 the corresponding range of variation of % is given.

pe =5-10%g/em? | p. = 10'%g/em?
n ]\14\46 R in km ]\14\46 R in km
1.5 25 15.8 1.8 11.2
1.0 | 2.0 9.9 1.5 7.0
0.5 1.6 6.9 1.2 4.9

Table 4: Typical values of mass and radius for two values of the central
density. As the core radius varies in the allowed range given in Table 3, M
and R change by at most a few percents.

well inside the star does not significantly increase as the ratio % decreases,
and that these stars do not possess axial slowly damped modes. This result
suggests that the appearence of the s-modes in the spectrum of the axial per-
turbations is more likely to be due to the incompressibility of the equation of
state rather than to its stiffness. However, this point remains to be clarified,
as well as whether it is the core or the envelope which play a fundamental
role in this respect.

The influence of a small stiff core on the spectrum of the polar modes
is much more significant. In order to locate the frequencies of the quasi-
normal modes, one usually plots a “resonance curve” [a?(w) + #*(w)], that
represents the amplitude of the standing wave at radial infinity obtained by
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numerically integrating the perturbed equations for real frequency. It can
be shown that the values of frequency at which this curve exhibits a sharp
minimum correspond to the real part of a quasi-normal modes, provided the
imaginary part of the corresponding eigenfrequency is small enough (w; <<
wo.) The damping time associated to a mode is related to the curvature of the
parabola that fits the curve near a minimum: smoother minima correspond
to shorter damping times [28]. It should be noted that this algorithms is
designed to determine essentially the slowly damped modes. In figure 2 the
resonance curve is shown for an n = 1.5 polytropic star with % =
4.2, as a function of the frequency. By analyzing the behaviour of the
thermodynamical variables in correspondence of the frequencies of the quasi-
normal modes, one can easily identify the g-, f-and p-modes that one defines
in newtonian theory according to the Cowling classification [29], [30]. In
figure 3 we plot the resonance curve for an n = 1.5 polytropic star having
in its center a very tiny stiff core extending only up to the 0.30% of the total
radius, and with the same ratio % =4.2.

Compared to the case illustrated in figure 2, the structure of the spectrum
becomes incredibly rich, and in particular a large number of g-modes appear
that were not present in the fully polytropic star. In addition, smoother
mimima are present, indicating that the composite star possesses both slowly-
damped and highly-damped modes. This example powertully illustrate how
the spectrum of the quasi-normal modes of a star carry relevant informa-
tion on its internal structure and on the manner in which the fluid and the
gravitational field couple at supernuclear regimes.

There are further information that one can derive from the knowledge of
the frequencies and damping times of the quasi-normal. In newtonian theory
the frequency of the f-mode scales with the mean density of the star. In

This relation has been generalized by N. Andersson and K. Kokkotas [31] who
have determined both the frequency and the damping time of the f-mode for
several equations of state proposed in the literature for neutron stars. They

geometric units

find the following relations

M
wr = 0.39 + 44.45 (ﬁ) (37)
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Figure 2: The resonance curve o + 3% of a fully polytropic star, is plotted
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Figure 3: The resonance curve of the same polytropic star with a stiff core

in its center.



M MN?
7 =0.1-— (E) +2.69 (ﬁ) :

where M and R are expressed in km, wy in kHz and 74 in ms.
These two relations provide an estimate both for M and R, good within 5%
if compared with the true values. It should be noted that the frequency of
the f-mode ranges in the interval =~ 1 —2kHz, and the damping time is
~ 0.1 — 0.5s. A further relation is provided by the damping time of the
lowest w-mode computed for the same models

! 0.104 — 0.063 M 38
Two ' (R) ' (38)

Andersson and Kokkotas have also studied how the axial quasi-normal
modes are excited when an initial Gaussian pulse is scattered by the potential
barrier of the axial perturbations of homogeneous stars. Their simulation
shows that, in principle, the various modes can be excited. However, it would
be interesting to know how the different modes are excited in some realistic
situations. For example during the last stages of the gravitational collapse,
when the newborn star wildly oscillate releasing gravitational waves, or when
a mass, smaller than the star mass, is scattered or captured by the big one

[32], [33].
6. Slowly rotating stars

The theory of stellar perturbations developed for static stars can be gen-
eralized to the case when the star is rotating so slowly that the distortion
from spherical symmetry is quadratic in the angular velocity (), and may
be ignored [34]. The unperturbed configuration is described by the following
metric [35],[36]

ds? = 2(d1)? — e (dp — wdl)? — ¥ (dr)? — ¥ (dh)?, (39)

where v, ), pia, us differ from those of a static star by quantities of order 2,
while w (that is zero in the non-rotating case) is a first order quantity in .
The equations governing v, 1, uy, pi3 are given in sections 3. The equation for
w is

4 4
W rr + ;w,r - (,UQ + V),T (w,r + _w) — 07 (40)

7
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where

w = —w. (41)

In the vacuum outside the star, yz + v = 0 and the solution of eq. (40)
reduces to @ = Q —2Jr™? where J is the angular momentum of the star.
In ref. [34] we showed that the axial perturbations of a slowly rotating star
couple to the polar perturbations, and viceversa.

The way this coupling works for the axial perturbations is illustrated by
the following equation *

5 {der; +w7) - er—yu(z + e 413 (e—p) — 6m(r)]le} Cri(p)  (42)

3
(=2

o0

= (= S S0 )

(=2

where

S) =@ (W0 + NP+ 517 + 20V P 4 2uViP Pl ] + 20 WP (Q — Dy, P,

(43)
and @) has been defined in eq. (29). = cosf, and Cl:_%(,u) and  P(p)
are respectively the Gegenbauer and the Legendre polynomials.

Eq. (42) holds from the center of the star up to radial infinity, provided

outside the star e,p and W are set to zero. As described in previous sec-
tions, if the star does not rotate the axial and the polar perturbations are
described by two distinct sets of equations: eqs. (31) for the polar variables
NP, LYV WP etc., and eqgs. (34) for the axial function Z}. If the rotation
is switched on (@ # 0), the axial function of first order in Q, 7}, couple
as indicated in eq. (42) with the polar functions (WP, N2, LYV,°) of zero
order in (), i.e. evaluated in the case of no rotation.
It should be noted that the coupling function is the quantity @ which is
responsible for the dragging of inertial frames in the Lense-Thirring effect.
Thus, rotating stars extert not only a dragging of the bodies, but also of the
waves, and consequently an incoming polar gravitational wave can convert,
through the fluid oscillations it excites, some of its energy into outgoing axial
waves.

*The equations describing the coupling of the polar with the axial perturbations were
subsequently determined by Y.Kojima [37].
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I would like to stress that this phenomenon is a purely relativistic effect
with no counterpart in newtonian theory.

Equation (42) is not yet separated. When the angular dependence is re-
moved, one finds that the axial and the polar perturbations couple according
to the following rules:

- The Laporte rule - the polar modes belonging to even { can couple only
with the axial modes belonging to odd (, and conversely.

- The selection rule - [ =m + 1, or [=m —1.

- The propensity rule [38] - the transition [ — [+ 1 is strongly favoured over
the transition [ — [—1. This derives from the manner in which the behaviour
of the axial function is affected by the polar source near the origin.

As a consequence of this coupling, new families of modes are likely to
emerge. For example, in ref. [34] we studied the axial perturbations of a
slowly rotating polytropic star with polytropic index n = 1.5, and we
showed that if one scatters an ¢ = 2 polar gravitational waves on the
potential barrier of eq. (42), for some value of the frequency of the incident
wave the m = 3 axial perturbation induced by the coupling behaves as a
pure outgoing wave at radial infinity. These “induced” axial resonances are
characterized by damping times considerably longer than those of the polar
modes of order zero in ) (up to hundred times).

7. Concluding remarks

The existence of an energy conservation law governing the non-radial
oscillations of a spherical star, which was derived in analogy with the conser-
vation law governing the scattering of gravitational waves by a Schwarzschild
black hole, provides an additional constraint to the theory and allows to re-
cast the problem of stellar perturbations as a problem in scattering theory.
The scattering approach proves extremely powertull in enlighthening some
aspects of the theory that where obscured in previous formulations. The
existence of the slowly-damped axial modes in ultra-compact stars, the cou-
pling between the polar and axial perturbations in slowly-rotating stars and
the resonances induced by this coupling naturally emerge in this framework,
though they could have also been discovered by other approaches.

The scattering approach is applicable also when the star is newtonian,
i.e. when its equilibrium configuration is built in the Newtonian framework
and the curvature it generates is very shallow. Indeed we showed that the
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frequencies of oscillation of a newtonian star can be determined by integrating
the polar equations in the limit of small curvature, under the condition that
no radiation emerges, as in the case of the dipole oscillations [39].

At the end of this lecture I would like to add to the scientific illustration
of my work with Chandra some personal recollection on our collaboration. It
developed over twelve years, and it was certainly based on reciprocal respect,
esteem, trust and common scientific interests. But the real engine was Chan-
dra’s genuine enthusiasm for science which he was able to communicate to
me by making me feel that, no matter how difficult a problem was, together
we could make it. I am grateful to Chandra for his precious gift of sharing
with me his patrimony of knowledge, experience, craftsmanship, fruits of a
life entirely dedicated to science.
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