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The spectral properties of the gravitational signals emitted by stars and black holes
in different astrophysical processes are reviewed.

1 Introduction

Stars and black holes emit gravitational waves in a variety of astrophysical
situations. Depending on the features of the signals, these sources can be
classified essentially in three cathegories: i) Sources of continuous radiation,
such as binary systems or rotating stars. ii) “Impulsive” sources. These include
the gravitational collapse of massive stars, the coalescence of compact stars or
black holes, or perturbation processes excited, for example, by the capture
or the scattering of masses by an already formed compact object. In these
cases gravitational waves are emitted as a burst. iii) Stochastic sources. The
cumulative effect of the radiation emitted in gravitational collapses occurring in
galaxies, now and in the past, should present the characteristics of a stochastic
background, the spectral energy density of which would contain information
on the process of galaxy and star formation.

In this lecture I shall discuss these issues, with particular reference to
impulsive and stochastic sources, and I shall show what kind of information
on the generating processes the energy spectrum of the emitted gravitational
radiation may contain.

In view of a possible detection of gravitational waves, the knowledge of the
frequencies at which the radiation will be emitted is crucial. If the source of a
burst of gravitational waves is a star or a black hole, these frequencies are as-
sociated to proper modes of vibration, said quasi-normal modes, because they
are damped by the emission of waves. These modes are central to the theory of
gravitational waves because they play an important role in several dynamical
processes. For example, they are excited when an external agent, such as an
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infalling mass, perturbs the spacetime generated by a compact object; or dur-
ing the last phases of a gravitational collapse and of the coalescence of stars or
black holes, when the newborn object oscillates until its residual mechanical
energy is radiated away in gravitational waves. Numerical studies have shown
that in this stages the dominant contribution to the emitted radiation is due
to the quasi-normal modes. The eigenfrequencies of the quasi-normal modes
can be computed by studying the source-free perturbations of the equilibrium
configuration, and by solving the perturbed equations with boundary condi-
tions appropriate to the nature of the source. I shall describe this approach in
next section.

2 The quasi-normal modes of compact objects.

The equations describing the perturbations of black holes and stars are ob-
tained by writing the Einstein equations, plus the equations of hydrodynamics
for stars, under the assumption that the metric functions and the fluid variables
undergo small changes with respect to their equilibrium values. By retaining
only the first order terms, one obtains a set of linear equations describing the
perturbed configuration. If the black hole or the star are static and spheri-
cally symmetric, the perturbed equations split in two classes depending on the
behaviour of the angular part of the perturbation under the transformation
f — 7—60 and ¢ — 74+ . In particular those that transform like (—1)(”1)
are sald to be AXIAL, and those that transform like (—1)“) are said to be
POLAR. In a suitably choosen TT-gauge the axial and the polar asymptotic
components of the metric tensor are respectively
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The quasi-normal modes are solutions of the perturbed equations belonging to
complex eigenfrequencies ¢ = o¢ + i0 (the imaginary part is the inverse of
the damping time), and satisfying the boundary conditions of a pure outgoing
wave at infinity. This condition identifies physically acceptable modes, i.e.
those that damp the oscillations. In addition, for a black hole one must require
that the solution at the horizon reduces to a pure ingoing wave, corresponding
to the requirement that nothing can escape from the horizon. Conversely, for
a star all perturbed functions must have a regular behaviour at r = 0, and
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match continuously with the exterior perturbation at the surface .

2.1 The quasi-normal modes of black holes

In 1975 S. Chandrasekhar and S. Detweiler ! computed the frequencies and
the damping times of the quasi-normal modes of a Schwarzschild black hole.
Those of a rotating black hole were first determined by Detweiler 234, and sub-
sequently by Leaver ®, Seidel and lyer ® and Kokkotas “. The eigenfrequencies
depend on the parameters that identify the spacetime geometry, i.e. the mass,
the angular momentum and the charge. In particular the frequency of oscilla-
tion of a black hole is directly proportional to its mass M, while the damping
time scales as the inverse of M. For example, for the fundamental ¢ = 2-mode
of a Schwarzschild black hole of mass M = nig

12.1
vo=—*kHz, T7=n-55-10"5s. (2)
n

In ref. 1 S. Chandrasekhar and S. Detweiler also showed that the transmission
and the reflection coefficients for the axial and the polar perturbations of a
Schwarzschild black hole are equal, i.e. the polar and the axial perturbations
are isospectral. This is a definite signature that gravitational waves carry on the
nature of the emitting source. In fact for stars the situation is much different.

2.2 The polar quasi-normal modes of a non-rotating star

We shall consider in the following adiabatic perturbations of stars composed
by a perfect fluid. Let us analyze firstly the polar perturbations, which also
exist in newtonian theory. Inside the star they are described by a set of linear
equations that couple the perturbations of the fluid and the metric variables.
However, it is possible to rearrange these equations and derive a set of equa-
tions that describe exclusively the metric perturbations. The thermodynamical
variables can be obtained in terms of these by simple algebraic relations®. This
decoupling is possible in general, and requires no assumption on the equation
of state of the fluid.

In newtonian theory, the classification of the polar modes is based on the
behaviour of the perturbed fluid, thus, it is interesting to see whether this
classification survives in the relativistic approach which, conversely, focuses on
the gravitational field.

An inspection of the newtonian hydrodynamical equations shows that
when a star is perturbed each element of fluid moves under the competing
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action of two restoring forces

ov  bp

1

7 Vpo p Vép + 6f of = —Véo, (3)
where 8¢ 1s the variation of the gravitational potential. Thus, the modes
of oscillations are classified according to the restoring force that is prevailing:
the g-modes, or gravity modes, when the force is due to the eulerian change in
the density 6p, and the p-modes, when it is due to a change in pressure. (This
classification scheme was introduced by Cowling, 19429). The two classes of
modes occupy well defined regions of the spectrum, and they are separated by
the f-mode that is the generalization of the only possible mode of oscillation
of an incompressible homogeneous sphere '°. The characteristic of this mode
is that the corresponding eigenfunction has no nodes inside the star.

The relativistic approach is completely different from the newtonian ap-
proach. As mentioned earlier, the equations used to find the oscillation frequen-
cies involve only the perturbations of the gravitational field, and the algorithm
used to find them is the following. By integrating the perturbed equations
for different values of the real frequency o, one constructs the function
[@?(0) + B%(0)], that is the squared amplitude of the stationary wave prevail-
ing at infinity. It can be shown'! that, under the hypothesis that the imaginary
part of an eigenfrequency is much smaller than the real part, the values of the
frequency where [a?4 #?] has a minimum correspond to the real part of the
frequencies of the quasi-normal modes. The imaginary part, i.e. the inverse of
the damping time, can be obtained from the width of the parabola which fits
the curve near each minimum.

For example, let us consider a star with a non-barotropic polytropic equa-
tion of state with n = 3, v = 5/3, €g/po = 5.35 - 10° (the non-barotropic
character of the equation of state is clear when we note that the chosen value of
the adiabatic exponent v is different from 4/3). The ratio between the central
energy density ey and pressure py has been chosen to coincide with that at
the centre of the sun '2. In figure 1 we show a graph of the resonance curve
log(a? 4+ 3%) as a function of the frequency. Although the identification of the
different classes of modes can be traced back to the hydrodynamical equations
that generalize eqs. (3) in the relativistic case, it is impressive to see how the
distinction between the g-modes and the p-modes, separated by the fmode,
graphically emerges from this plot, which is based on the behaviour of the
metric functions at infinity. Thus, in the relativistic approach the information
on the different kind of fluid modes is coded in the gravitational field. Typical
values of the frequency of the f-mode for neutron stars are vy ~1— 2kHz,
and for the damping times 7; ~ 0.1 — 0.5s.
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Figure 1: The resonance curve log(oz2 + 52), is plotted versus the real frequency o, for

¢ = 2. o is measured in unities of 50_1/2, where ¢g is the energy density at the centre of
the star.

From the knowledge of the eigenfrequencies of the polar quasi-normal
modes one can derive interesting information. N. Andersson and K. Kokkotas
14 have determined the frequency and the damping time of the f-mode for sev-
eral equations of state proposed in the literature for neutron stars. They fit
the data with the following relations

M M M\?
vy = 0.39+44.45 (ﬁ) rf:o.1—<E)+2.69 (E) ;4

where M and R are expressed in km, v; in kHz and 7 in ms.
These two relations provide an estimate both for M and R, good within 5% if
compared with the true values.

In addition to the g-,f- p-modes, that exist also in newtonian theory, in
general relativity there exists a new family of modes that are essentially space-
time modes, since the corresponding motion of the fluid is negligible'®>. They
are called w-modes, and are characterized by high frequencies v, ~ 8—12kH z,
and short damping times 7, & 0.02 —0.1ms.

A further relation is provided by N. Andersson and K. Kokkotag'® for
the damping time of the lowest w-mode computed for the same neutron stars
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models

1 M
— =0.104—0.063 (E) . (5)

Twg

2.3 The axial quasi-normal modes of a non-rotating star

The radial evolution of the axial perturbations of stars i1s described by a
Schroedinger-like equation with a potential barrier that depends on the dis-
tribution of energy and pressure in the interior of the star in the equilibrium
configuration®. The azxial perturbations are not coupled to the oscillations of
the fluid, and do not have a newtonian counterpart. Consequently, the axial
quasi-normal modes are pure spacetime modes, and they belong to two cathe-
gories:
w-modes - highly damped and with properties similar to the polar w-modes,
s-modes - slowly damped'® and related to the shape of the potential barrier.
These modes appear if the star is extremely compact. For example, the poten-
tial well in the interior of homogeneous stars becomes deeper as the value of
(R/M) decreases and the star shrinks. When the ratio (R/M) is sufficiently
small, (Ri3M,) the potential barrier outside the star has a maximum, and
the potential well in the interior may become deep enough to allow for the
existence of one or more quasi-stationary states, i.e. of quasi normal modes.
It is interesting to see explicitely to what extent the s-modes are slowly
damped compared to the w-modes. As an illustrative example, in table 1 we
show the characteristic frequencies and damping times of the first ¢ =2, s-
and w-axial modes of homogenoeus stars, with M = 1.35M, and different
values of R/M. Tt should be stressed that the modes that one finds when
the radius of the star approaches the limiting value R/(2M) = 9/8, are not
related to the quasi-normal modes of a Schwarzschild black hole, because the
boundary conditions are different. Moreover, the progressive increasing of the
damping time for these modes means that they are more effectively trapped
by the curvature of the star.

3 The excitation of the quasi-normal modes

It is now interesting to ask whether the quasi-normal modes can be excited
in some astrophysical situations. For example one can compute the energy
spectrum of the gravitational radiation emitted when a mass mg << M 1s
captured by a star or by a black hole of mass M, and compare the results'®.
The difficulty in the case of a star 1s that we do not know how the mass
mg interacts with the fluid in the interior, and therefore the integration of
the equations must be stopped when mg reaches the surface of the star.



Table 1: The characteristic frequencies and damping times of the first £ = 2, s-and w-azial
modes of homogenoeus stars, with M = 1.35Ma, and different values of R/M.

s-modes w-modes
% vs 1in kHz T, 1n 8 vy 1In kHz Ty IN 8
2.4 8.6293 1.52-10-3 11.1738 1.70- 1074
2.3 5.6153 0.54 11.1084 3.02-107%
2.28 4.4333 10.8 10.4128 5.45-10~%
2.26 2.6041 5.38 - 103 10.7852 7.60-10~1

As a consequence of this truncation, the computed energy spectrum may be
quite distorted with respect to the true spectrum, but still it will provide an
indication on whether the modes are excited or not. In figure 2 the energy
spectrum emitted in the axial perturbations when a mass mg is captured by
a Schwarzschild black hole or by a star are plotted versus the frequency. myg
starts its flight from radial infinity with a given angular momentum L = L/M,
and the mass of the black hole and of the star are chosen in such a way that the
frequencies of their lowest quasi-normal mode, if expressed in physical units,
coincide. This means that, for example, if the mass of the staris Mg = 1.8 M),
that of the black hole will be  Mpy = 2.07Mg. The star is supposed to be
homogeneous, with energy density ¢, and with R/M = 2.3. This star
possesses only two s-modes and several w-modes. Figure 2 shows that the
energy spectra emitted by a black hole and by a star are morphologically very
different and contain a clear signature on the nature of the source. For a black
hole, figure 2a, there is only one peak at approximately the frequency of the
lowest quasi-normal mode. The reason why the contribution of the different
modes is not distinguishable is that, being the damping time of each mode very
short, the width associated to each peak is large and its contribution cannot
be isolated from the others, so that the result is the envelope. In the case of a
star, figure 2b gives a clear indication that both s-modes are excited, though
we cannot say anything definite about the relative height of the two peaks
because of the truncation of the signal, as explained before. The two peaks
are so well resolved because the damping times of the corresponding modes
are quite large. A zoom of the spectrum at higher frequencies given in figure
3c, shows that also the w-modes of this star are excited.
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Figure 2: The energy spectra emitted by a black hole (a) and by a homogeneous star (b,c)

are plotted versus a normalized frequency. (%)BH = MBngSBH, and (%)S =
Ssmge_1/2.
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4 A stochastic background

The evolution of sufficiently massive stars leads to gravitational collapse and to
the emission of bursts of gravitational radiation. If the rate of star formation is
sufficiently high, the cumulative effect of these processes produces a stochastic
background of gravitational waves, the spectral features of which depend on
how the process of galaxy and star formation took place.

A possible scenario for galaxies and stars formation, proposed by A.Di
Fazid'” and A. Di Fazio and Yu. Izotov'®, is the following. After radiation
decoupled from matter, gravitational instabilities caused the formation of self-
gravitating gaseous clouds, with primordial chemical composition. Being un-
stable, they collapsed and underwent fragmentation. This process recurred in-
side the newly formed structures originating generations of smaller fragments,
up to when the first protostars were formed. The subsequent evolution of these
protostars produced an intense burst of gravitational collapses, the biggest in
the history of the universe, since at that time the gas available to form stars
was much more than it is today. The resulting normalized mass distribution
functions for galaxies, ¥g(M), and for stars, Wg(m), can be modeled as
follows

2
M—1.87 1— (%) 3

V(M)

= = , Ya(M)YdM = 1.
fAM M_1'87\/1 _ (MJ,‘Z”L)E dM AM
(6)

where AM is the protogalaxy mass range [8-10°My < M < 5-1012Mg],
and

=177 1 (m;zn)%
Ps(m) = , [AMe < m < 100Mp).

a1 71 (2
(7)

In the framework of this scenario we have computed'® the rate of gravitational
collapses associated to the first big burst of star formation, the expected spec-
tral energy density and the strain amplitude. In our calculation we have made
the simplifying assumption that all galaxies were formed at some redshift zgp.
The rate of gravitational collapses can be obtained by integrating the following
expression

dm

dNg
_ 8
(1 + ZS)Atburst’ ( )

over the allowed range of masses for galaxies and stars. In eq. (8) Afpyrsr is
the time interval during which the first burst of primordial collapses occurred,

dR =
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zg 18 the redshift of star formation which is related to zgp, and dNg is
the number of protostars, with mass in the range [m, m + dm], which form
in primordial galaxies i.e.

dNS = No\Ifg(M)dM . NS(M)1/)5(m)dm, (9)

where Ny and Ng(M) are respectively the total number of protogalaxies
and the number of stars in each protogalaxy. We have found that the rate of
gravitational collapses that led to black hole formation is #7 10° events per
second, depending on the values of the parameters present in our calculation,
ie.
- The value of the Hubble constant, which we write as Hy = 50 sﬁ’;c - h.
- The fraction of barion mass which goes into galaxies, 0.5<ng S1.
- The uncertainty on the value of the time interval a star stays in the main
sequence before collapsing or exploding as a supernova, 75 ~ [2 — 3] My
(for stars with masses in the range 25Mg Sm<100Mg. )
- The redshift at which galaxy formation occurred, which we assume to be
Since the sources are isotropically distributed, and due to the high rate and
to the short duration of the signal generated in each event (typically a few
milliseconds at the emission), the assumption that the gravitational radia-
tion produced in these processes has the character of an isotropic, continuous
stochastic background, is justified. We have considered only the collapses of
those stars that gave birth to a black hole because, in this case, the energy
spectra available in the literature present, quite independently from the initial
conditions, some common features that can easily be modeled. As a model for
a single event we have used the energy spectrum computed by R.F.Stark and
T.Pirar?', who integrated by a fully relativistic computer code the equations
governing the evolution of a rigidly rotating, axisymmetric polytropic config-
uration, with adiabatic index 5 = 2. The collapse was ignited by a pressure
reduction to a chosen fraction f, of its equilibrium central pressure. The
efficiency of the process was always Ag% <7-107%

The spectral energy-density of the stochastic background is given by

dE

ltot(aay): dtdei/ :/f(a,m,l/)~d§)‘%, (10)

where  f(a,m,v) is the energy spectrum of the single event. Tt is related to

the strain amplitude Sh(v) (expressed in \/% ) by the equation

Liot(a,v) = g_yzsh(y) [ﬂ] . (11)



In Fig. 3 we plot the spectral amplitude Sp(a,v) as a function of the
frequency of observation v, for different values of the redshift of galaxy
formation, and the function Qg(a,v) = %E—il/?Sh(a, v), related toit. In that
picture all formed black holes have been assumed to have the same, and quite
low, angular momentum a = 0.5. (The maximum value, reported in ref. 2! is
derit = 1.240.2). Depending on the value of the redshift of galaxy formation,
Sh(a,v) reaches its maximum values respectively in the following regions

zarp =4 240Hz <v < 370H=z
2gr =6 195Hz <v < 295Hz
zgr =8 166Hz <v < 255Hz

These data do not significantly change if we change the value of the Hubble

constant. For example if we assume Hy = 3381@”20 for zgp =6 we find

that 175Hz < v < 270Hz. The amplitude of +/Sp(a,v) scales as +/Hy.

5 Concluding Remarks

Many are the problems related to the emission of gravitational waves from
astrophysical sources that remain to be investigated and clarified. For exam-
ple, our knowledge on the information that the energy spectrum emitted by
compact sources carries on the internal structure of the source is still very
limited. Furthermore, we have indications on how the rotation of a star affects
its emission 22 if the rotation is slow, but much remains to be understood in
the case of fast rotation. Lastly, we have a very poor understanding of the
gravitational collapse, for which a fully relativistic numerical approach seems
to be unavoidable. However, apart from the difficulties of modeling the physics
of such catastrophic events, the computer codes designed to study the problem
suffer of several problems related to the strongly non-linear regime in which
they are forced to operate. Thus, there is a strong need to support the non-
linear numerical approach with other techniques and semi-analytical methods
that will be of great help in testing and interpreting the numerical results. In
this respect, the theory of perturbations is far from being cut out of the future.

The preliminary results presented in this paper on the stochastic back-
ground of gravitational waves are only a first step towards the comprehension
of a phenomenon of extreme complexity, since it is intimately related to the
theory of galaxy and star formation, which is subject of debate among cos-
mologists. We plan to repeat our calculations in the framework of alternative
theories, in order to predict from the spectral properties of the resulting grav-
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Figure 3: The spectral amplitude Sh(a,v), and the spectral energy density expressed in

units of the critical density, Qg(a,v), are plotted versus the frequency of observation, for
a = 0.5 and for three different values of the redshift of galazy formation zgp. In these
calculations we have assumed h =1, na = 0.8, Tms = 3Myears.

1/2
Sh(a,v) is proportional to (hﬂﬁf—) / , and Qg(a,v) ~ ZJ;S—
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itational background, those features that may discriminate among different
galaxy formation scenarios.
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