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Non�radial oscillations of stars excited by external perturbations� are associated to

the emission of gravitational waves� The characteristic eigenfrequencies of these

oscillations� computed by using the relativistic theory of stellar perturbations� will

be compared with those of black holes�

� Introduction

The study of stellar oscillations started at the beginning of this century� when
Shapley� ������ and Eddington� ������ suggested that the variability observed
in some stars is due to periodic pulsations The subsequent study of this phe�
nomenon� carried out in the framework of the newtonian theory of gravity� has
been a powerful tool in the investigation of stellar structure In General Rel�
ativity� the interest in the theory of stellar pulsations is enhanced by the fact
that a pulsating star emits gravitational waves with frequencies and damping
times each belonging to characteristic �quasi�normal� modes Since the �uid
composing the star and the gravitational 
eld are coupled� the emitted radia�
tion carries information on the structure of the star� and also on the manner in
which the gravitational 
eld couples to matter Conversely� for black holes the
quasi�normal modes are purely gravitational� and the corresponding eigenfre�
quencies depend only on the parameters that identify the spacetime geometry�
mass� charge and angular momentum In sections �� � and � of this lecture� I
shall introduce the basic equations of the theory of stellar perturbations which
has been developed in collaboration with S Chandrasekhar���� under the as�
sumption of no rotation In section � the characteristics of the spectrum of
the quasi�normal modes of stars and black holes� and the information it gives
on the nature and the structure of the source will be discussed
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� The perturbed spacetime

As a consequence of a perturbation� all metric functions change by an in�

nitesimal amount with respect to their unperturbed values� and� if we are
dealing with a star� each element of �uid su�ers an in
nitesimal displace�
ment from its equilibrium position� identi
ed by the lagrangian displacement
�� Consequently� the thermodynamical variables � and p� respectively the
energy�density and the pressure� also change by an in
nitesimal amount Our
analysis will presently be restricted to the study of adiabatic� axisymmetric
perturbations of stars composed by a perfect �uid� and we shall assume that
all perturbed quantities have a time dependence ei�t The perturbed quantities
are determined by solving Einstein�s equations coupled to the hydrodynamical
equations for a star� while for a black hole only Einstein�s equations for the
metric perturbations need to be considered In order to separate the variables�
all tensors can be expanded in tensorial spherical harmonics� and the azimuthal
number m can be set to zero �axisymmetic perturbations� These harmonics
belong to two di�erent classes depending on the way they transform under the
parity transformation � � � � � and � � � � �� In particular those
that transform like ��������� are said to be axial� and those that transform
like ������� are said to be polar Consequently� the perturbed equations
split into two distinct sets the axial and the polar� each belonging to di�erent
parities If we choose the following line�element� appropriate to describe an
axially symmetric� time�dependent spacetimes� a

ds� � e���dt���e���d��q�dx
��q�dx

���dt���e��� �dx����e��� �dx���� ���

we 
nd that the axial equations involve the perturbations of the o��diagonal
components of the metric� ie f	�� 	q� and 	q�g� and that the polar equations
involve the diagonal part of the metric f	
� 	��� 	�� 	��g� coupled to the

thermodynamical variables f	�� 	p� ��g in the case of stars

� A Schroedinger equation for the axial perturbations

The equations for the axial perturbations can be considerably simpli
ed by
introducing� after separating the variables� a new function Z��r�� constructed
from the radial part of the axial metric components� and which satis
es the

aIt may be noted that with our choice of the gauge the number of free functions is

seven� The extra degree of freedom which we allow will be eliminated by imposing boundary

conditions suitable to the problem on hand�
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following Schroedinger�like equation

d�Zax
�

dr��
� �� � V��r��Z

ax
� � �� ���

where r� �
R r
� e

�����dr� For a black hole��

V�BH �r� �
e��

r�
�l�l � ��r � 	Mr�� and e�� � ��

�M

r
� ���

and for a star�

V�Star�r� �
e��

r�
�l�l � ��r � r���� p�� 	m�r��� 
�r � �

p�r
�� p

� ���

Outside the star � and p are zero and eq ��� reduces to eq ���� also known
as the Regge�Wheeler potential

Thus the axial perturbations of black holes and stars are fully described by
a Schroedinger�like equation with a potential barrier that depends� respectively�
on the black hole mass� and on how the energy�density and the pressure are
distributed inside the star in its equilibrium con
guration It should be stressed
that the axial perturbations of stars are not coupled to any �uid pulsation� they
are pure gravitational perturbations� and do not have a newtonian counterpart�

� The polar perturbations

The expansion in tensorial spherical harmonics �with m � �� shows that the
polar metric functions and the thermodynamical variables have the following
angular dependence

	
 � N��r�Pl�cos ��ei�t 	�� � L��r�Pl�cos ��e
i�t ���

	�� � �T��r�Pl � V��r�Pl�����ei�t 	� � �T��r�Pl � V��r�Pl�� cot ��e
i�t�

	p � ���r�Pl�cos ��ei�t ���� p�e�����r�r� ��e
i�t � U��r�Ple

i�t

	� � E��r�Pl�cos ��ei�t ���� p�e�������r� ��e
i�t � W��r�Pl��e

i�t�

where Pl�cos �� are the Legendre polynomials After separating the variables
the relevant Einstein�s equations become�

�T� � V� �N���r �
�
�
r
� 
�r

�
N� �

�
�
r
� 
�r

�
L� � ��

V��r�r �
�
�
r
� 
�r � ���r

�
V��r �

e���

r�
�N� � L�� � �e������V� � ��

�	�
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�
� �� �� � for BH��

���
where k � l�l � ��� and �n � �l � ���l � ��� After some manipulation�
the hydrodynamical equations and the conservation of barion number give the
following expression for the hydrodynamical quantities

�� � �
�

�
�e���W�����p�N�� E� � Q���

e����

���� p�
���r�Qp�r�U�� ���

U� �
���e���W���r � �Q� ��
�r�

�e���W�� � ����r �Qp�r�N����� p�

��e����� � p� � e����
�r���r � Qp�r��
� ���

where

Q �
��� p�

�p
� � �

��� p�

p

��p
��

�
entropy	const

����

and � is the adiabatic exponent �de
ned in ref ���� equation ���	��
For a black hole� a suitable reduction of eqs �	� and ���� with W�� U����

set equal zero� shows that the new function

Zpol
� �r� �

r

nr � �M
��MV��r�� rL��r�� � ����

satis
es the following wave equation

d�Zpol
� �r�

dr��
� �� � VBH �Zpol

� �r� � �� ����

where

VBH �r� �
��r � �M �

r��nr � �M ��
�n��n� ��r� � �Mn�r� � �M�nr � �M��� ����

Thus� as for the axial perturbations� the equations for the polar perturbations
of a Schwarzschild black hole reduce to a single Schroedinger�like equation�
but with a di�erent potential barrier Equation ���� with the potential ���� is
known as the Zerilli equation��� and it will also governe the metric perturba�
tions in the exterior of a non�rotating star The functions Zax

� and Zpol
�

contain all information on the gravitational waves emerging at in
nity In fact�
it has been shown that the imaginary and the real part of the Weyl scalar ���
which represents the outgoing part of the radiative 
eld �cfr ���� eqs ��� and

����� can be expressed in terms of Zax
� and Zpol

� � respectively
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It is now interesting to see how eqs �	����� and the hydrodynamical
equations ����� can be reduced if the perturbed object is a star One may try
to operate on these equations in a way similar to that used to 
nd equation
����� hoping to 
nd again a Schroedinger�like equation� possibly with some
source in terms of the �uid variables Unfortunately this is not possible� since
the Schroedinger equation for black holes arises by virtue of the equilibrium
equations� that are very di�erent in the case of a star In addition� this fact
was to be expected� as already in newtonian theory the equations for the
polar perturbations are described by a fourth order linear di�erential system
However a remarkable simpli
cation is still possible The 
rst of eqs ��� and
eqs ����� show that the �uid variables �W�� U�� E����� can be expressed
as a combination of the metric perturbations �T�� V�� L�� N�� and their 
rst
derivatives Therefore� after their direct substitution on the right hand side of
the last three eqs ��� we obtain a set of new equations which involves only
the perturbations of the metric functions �T�� V�� L�� N�� The 
nal set is

����������
���������
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where ������

�����

A � �
�

�e���� B �
e������r
����p� ���r �Qp�r��

D � �� A
��A�B� � �� ��e��� ���p�

��e��� ���p��e������r���r�Qp�r�
�

E � D�Q � �� �Q�

F � ��r�Qp�r
��A�B� � �
��r�Qp�r����p�

���e��� ���p��e������r���r�Qp�r�
�

����

and V� and T� have been replaced by X� and G� de
ned as��
�
X� � nV�
G� � 
�r�

n��
n
X� � T���r �

�
r�
�e��� � ���n�N� � T�� �N��
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Equations ���� describe the perturbations of the gravitational 
eld in the in�
terior of the star� with no reference to the motion of the �uid Once these
equations have been solved� the �uid variables can be obtained in terms of
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the metric functions from the 
rst of eqs ��� and eqs ����� This fact is
remarkable� it shows that all the information on the dynamical evolution of a
physical system is encoded in the gravitational 
eld� a result which expresses
the physical content of Einstein�s theory of gravity Moreover� it should be
stressed that the decoupling of the equations governing the metric perturba�
tions from the equations governing the hydrodynamical variables is possible
in general� and requires no assumptions on the equation of state of the �uid
Thus� if we are interested exclusively in the study of the emitted gravitational
radiation� we can solve the system ���� and disregard the �uid behaviour

Equations ���� have to be integrated for each value of the frequency from
r � �� up to the boundary of the star There the spacetime becomes a vacuum
sperically symmetric spacetime� and the perturbed metric functions match
continuously with the metric functions that describe the polar perturbations
of a Schwarzschild black hole� ie eqs ���������� Thus the boundary conditions
appropriate to the problem are

i� all functions are regular at r � �� ����

ii� 	p � � at the boundary of the star

iii� all functions and their 
rst derivatives are continuous at the

boundary of the star

� The characteristic frequencies of the quasi�normal modes

The concept of quasi�normal modes plays a central role in the theory of per�
turbations of stars and black holes In newtonian theory the oscillations of
a perturbed star can be decomposed into normal modes� ie solutions of the
perturbed equations that satisfy the boundary conditions ���� i�� ii�� and that
correspond to a discrete set of real eigenfrequencies Their relativistic general�
ization are the quasi�normal modes� and in this case the characteristic frequen�
cies are complex� since the imaginary part is the inverse of the damping time
associated to the emission of gravitational waves Although the completeness
of the quasi�normal modes has never been proved� numerical simulations show
that an initial perturbation will� during the very last stages� decay as a super�
position of these pure modes� and that a large fraction of the radiation will
be emitted at the corresponding frequencies The boundary conditions that
identify the quasi�normal modes of a star are that� in addition to ����� at radial
in
nity only pure outgoing waves must prevail The role of the equations in the
interior of the star is that of providing the initial conditions for the integration
of the Zerilli or the Regge�Wheeler equation in the exterior Since a polar
perturbation excites the �uid motion� the amount of energy which leaks out of

	



Table �� The complexcharacteristic frequencies of the quasi�normalmodes of a Schwarzschild

black hole�

M� � iMi M� � iMi
� � � ������i����� � � � ������i�����

���	��i����� ����	�i�����
������i����� ������i�����
������i����� ������i�	���

the star in the form of gravitational waves depends on the exchange of energy
between the �uid and the gravitational 
eld Conversely� an axial perturbation
does not excite any �uid motion� and the boundary conditions depend only on
the shape of the potential of the wave�equation� ie on how the energy�density
and the pressure are distributed in the equilibrium con
guration Thus� the
eigenfrequencies of the axial quasi�normal modes carry information essentially
on the structure of the star� and the polar� in addition� elucidate the manner
in which the �uid and the gravitational 
eld couple at supernuclear regimes

For a black hole� the quasi�normal modes are de
ned to be solutions of
the wave�equations that satisfy the boundary conditions of a pure outgoing
wave at in�nity and of a pure ingoing wave at the horizon �no radiation can
emerge from the horizon� The corresponding frequencies are characteristic of
many di�erent processes involving the dynamical perturbations of black holes�
and are the same both for the polar and for the axial perturbations� ie the
two potential barriers ��� and ���� are isospectral� In ���� Chandrasekhar
and Detweiler�� computed the 
rst few eigenfrequencies of a Schwarzschild
black hole� and subsequently Leaver �� determined the next values with very
high accuracy He showed that� for a given �� M� decreases with the
order of the mode� and approaches a non�zero constant value� while Mi
increases� ie the damping time decreases In Table � we show the 
rst four
values� respectively for � � � and � � �� For example� remembering that
�M� � ���� � ���cm and assuming that the black hole mass is M � nM��
the conversion to physical unities gives the following values of the frequency
and damping time


� �
c

��n �M��M��
�

����	

n
�M��kHz� � �

nM�

�Mi�c
�
n � ������ � ����

�Mi�
s�

����

In order to compare the frequencies at which black holes and stars emit
gravitational waves� we shall 
rst consider� as an example� the polar perturba�
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Table �� Parameters of the three models of polytropic stars used to compute the polar

eigenfrequencies

� in gr�cm� M
M�

R in km �M
R

� � ���� ��		 ��	� ����
	 � ���� ��� ���� ����
��� �� 	�	� ����

Table �� The characteristic frequencies and damping times of the � � � s and w polar

modes of polytropic stars� compared with the �rst three eigenfrequencies of a Schwarzschild

black hole with the same mass

s�modes w�modes black hole
�M
R


� in kHz � in s 
� in kHz � in s 
� in kHz � in s
���� ���		 ���	 �����	 ���� � ���� ����	 ���� � ����

	���� �	�� ������ ���� � ���� ����	 ���� � ����

������ ���� ������ ���	 � ���� �	��	 ���� � ����

���� ���		 ��	� ����	� ��	� � ���� ����� ���� � ����

��	�� �	�� ������ ���� � ���� ����� ���� � ����

���		� ���� �	���� ���� � ���� ����� ���� � ����

���� ����� ��	� ������ 	��� � ���� ����� ���� � ����

����� ���� �	��	� ���� � ���� �	��� ���� � ����

������ ���� ������ ���� � ���� ����� ���� � ����

tions of three models of star with a polytropic equation of state

p � K���
�

m � m � �� K � ��� km� ����

identi
ed by di�erent values of the central density The corresponding mass�
radius and surface gravity are given in Table � The polar quasi�normal modes
of a star belong essentially to two di�erent classes
i� slowly�damped modes� or s�modes�
ii� highly�damped modes� or w�modes�
and the values of the 
rst three eigenfrequencies of the � � � s��� and w�

modes� are shown in Table �� compared with the polar eigenfrequencies of a
Schwarzschild black hole having the same mass

The damping time � indicates how fast the energy is dissipated in the
form of gravitational waves� and since the � �s associated to the w�modes
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are of the same order of magnitude both for stars and black holes� �note also
that they both decrease with the order of mode�� it is natural to interpret
the w�modes as being essentially modes of the gravitational 
eld However�
since the boundary conditions to be imposed at the surface of the star and
at the black hole horizon are di�erent� the real part of the eigenfrequency�

�� will� in general� be di�erent� higher for a star than for a black hole with
the same mass� and increasing with the order of mode rather than decreasing
The s�polar modes have a di�erent physical origin They are essentially �uid
pulsations whose energy is dissipated in the form of gravitational radiation at
a rate which depends on how strong is the coupling between the �uid and the
gravitational 
eld Thus� the values of the damping times are considerably
longer that those of the w�modes The frequency of the fundamental mode is
smaller than that of a black hole with the same mass� and increases with the
compactness of the star� because the time scale of these processes is related to
the speed of acoustic waves in the �uid

Let us now consider the axial perturbations Since they do not excite any
motion in the �uid� one may expect that slowly damped axial quasi�normal
modes should not exist However� this is not the case for the following reason
The slowly damped quasi�normal modes associated to the Schroedinger�like
equation ��� with the potential barrier ���� are the equivalent of the quasi�
stationary states that one encounters in quantum mechanics in the study of
the emission of ��particles by a radioactive nucleus� also described by a
Schroedinger equation In that case � is replaced by the energy E and the
potential barrier is suitable for the problem on hand The boundary conditions
for the two problems are the same� regularity of the wave function at the center�
and pure outgoing waves emerging at in
nity In a quasi�stationary state E
is allowed to be complex� �E is the energy of the ��particle� and �E is
the inverse of the mean life�time ��� of the particle �the inverse of the damping
time in our context� It is known from atomic physics that a quasi�stationary
state will exist if the potential barrier has a minimum followed by a maximum�
and if the potential well is su�ciently deep For a star� the potential barrier
should be considered in two regions� the interior r � r�� where it depends
on � and p� and the exterior r � r�� where it reduces to the barrier of
a Schwarzschild black hole which has a maximum at r � �M� If the radius
of the star is smaller than �M and if the star is very compact� the potential
well in the interior may be deep enough to allow the existence of one or more
quasi�normal s�mode This conjecture can easily be proved� and in Table � we
show the eigenfrequencies of the 
rst four s� and w�modes�� computed for the
very simple models of homogenous stars with decreasing values of the ratio
R�M� ie increasing compactness It emerges that if R�M � ��� the depth

�



Table 	� The characteristic frequencies and damping times of the �rst four � � �� s and

w axial modes of homogenoeus stars� with M � ���
M�� and di�erent values of R�M �

The data are compared with the eigenfrequencies of a black hole with the same mass�

s�modes w�modes black hole
R
M


� in kHz � in s 
� in kHz � in s 
� in kHz � in s
�� �	��� ���� � ���� ������ ���� � ���� ����� ���� � ����

� � ������ ���� � ���� ����� ���� � ����

� � ������ ���� � ���� ����� ���� � ����

� � ��			� ���� � ���� 	���� ���� � ����

�� �	��� ��� ������ ���� � ����

���		 ���	 � ���� ������ ���� � ����

����� ���� � ���� ������ ���� � ����

� � ������ ���	 � ����

��� ����� ��� ������ ���� � ����

	��	� ���� � ���� ������ ���� � ����

���	� ���� � ���� ������ ���� � ����

����� ���� � ���� ������ ��	� � ����

��	 �	��� ���� � ��� ������ ��	� � ����

����� ��	� � ��� ��	��� ���� � ����

����� ���� � ��� ��	��� ���� � ����

����� ���� � ���� ������ ���	 � ����

of the potential well in the interior is not su�cient to allow the existence of an
s�mode� and only the w�modes survive However� if R�M � ���� the s�modes
appear� and their number is 
nite and increases with the compactness of the
star� as well as the damping times

The spectrum of the quasi�normal modes� whose main properties we have
described� gives important information on the nature of the perturbed source�
�� If the axial and the polar spectra coincide� the source is a black hole This
is a very strong signature In a suitably choosen TT�gauge the axial and the
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polar part of the metric tensor are respectively

hax�� �

	
BBBB


�t� �r� ��� ���
� � � �
� � � �
� � hax�� hax�	
� � hax	� hax		

�
CCCCA � hpol�� �

	
BBBB


�t� �r� ��� ���
� � � �

� hpolrr hpolr� �

� hpol�r hpol�� �
� � � �

�
CCCCA �

����
thus� the detection of these two components of the emitted radiation will pro�
vide a direct evidence of the existence of black holes
�� If the source is a star� the presence of the s�modes in the axial spectrum
indicates that the star has a very compact core� while their number is directly
related to the value of the ratio R�M� The question whether stars with a core
compact enough to allow the existence of axial s�modes can exist in nature is
open� and it will probably receive an answer when axial gravitational waves
will be observed

Can the quasi�normal modes be excited In the case of black holes we
know they can in a variety of situations� for example when a gravitational
wave�packet is scattered on the potential barrier� or when a mass m� �� M
is captured by the black hole In this case� the integration of the Zerilli and
the Regge�Wheeler equations with the source term given by the stress�energy
tensor of the infalling mass allows to compute the waveform and the energy
emitted in these processes It has been shown �see ref ���� for an extensive
bibliography on the subject� that the burst of gravitational waves ends in a
ringing tail emitted when the particle coaleshes into the black hole � � �
r
M

� ����� This part of the signal can be 
tted with a linear superposition of
quasi�normal modes For a particle falling radially the total radiated energy

is !E � ����
�
m�

�

M


� which can be increased by up to a factor of �� if the

particle has an initial angular momentum
In the case of a star it has been shown �see K Kokkotas� paper in this

volume� that both the s� and thew�axial modes can be excited if a gravitational
wave�packet is scattered by the potential barrier� but much remains to be done
in more realistic situations like the capture of infallingmasses For a star� these
kind of calculations are complicated by the fact that we do not know how the
mass m� interacts with the �uid composing the star after it crosses the
surface A preliminary integration of the axial�� and the polar equations�� with
a source due to an infalling mass� and performed by truncating the integration
when m� reaches the surface of the star� shows that indeed both the s� and
the w�axial modes are excited� and that a considerable fraction of the emitted
energy goes into the w�modes Further work on this subject is in progress

��



I would like to conclude this lecture by stressing an interesting aspect of the
theory of perturbations� although it is based on the simplifying assumption
that the perturbations of the physical quantities are small with respect to
their unperturbed values� nevertheless� the results that one obtains by using
this assumption are� to some extent� general For example� in ���� Stark
and Piran����� computed the energy spectrum emitted when an axisymmetric
distribution of rotating polytropic �uid collapses to form a black hole� and they
showed that it is very similar to that one obtains by integrating the Zerilli or
the Regge�Wheeler equations when a mass falls in In particular� the relevant
contribution to the emitted energy is given at those frequencies at which the
newborn black hole oscillate� namely at the frequencies of the quasi�normal
modes

References

� H ShapleyAp J ��� ��� ������
� AS EddingtonMNRAS ��� � ������
� SChandrasekhar� V Ferrari Proc� R� Soc� Lond� A��	� ��� ������
� SChandrasekhar� V Ferrari Proc� R� Soc� Lond� A���� ��� ������
� SChandrasekhar� V Ferrari Proc� R� Soc� Lond� A���� ��� ������
	 SChandrasekhar� V Ferrari Proc� R� Soc� Lond� A���� ��� ������
� SChandrasekhar� V Ferrari� R Winston Proc� R� Soc� Lond� A����

	�� ������
� SChandrasekhar� V Ferrari Proc� R� Soc� Lond� A���� ��� ������
� V Ferrari Phil� Trans� R� Soc� Lond� A���� ��� ������

�� TRegge� JA Wheeler Phys� Rev� ��	� ��	� ������
�� FJ ZerilliPhys� Rev� D�� ���� ������
�� SChandrasekharThe mathematical theory of black holesOxford� Clare�

don Press ������
�� SChandrasekhar� SLDetweilerProc� R� Soc� Lond� A���� ��� ������
�� EW LeaverProc� R� Soc� Lond� A���� ��� ������
�� V Ferrari� F Perrotta in preparation
�	 KD Kokkotas� BF Schutz Proc� Mon� Not� R� Astron�Soc� ���� ���

������
�� KD KokkotasMon� Not� R� Astron� Soc� �
	� ���� ������
�� VFerrari Proceedings of the �th Marcel Grossmann Meeting ed by

Ru�ni R " Kaiser M� World Scienti
c Publishing Co Pte Ltd� ����
�� A Borrelli� V Ferrari in preparation
�� RF Stark� T PiranPhys� Rev� Lett� �� n� 	� ��� ������
�� RF Stark� T Piran Proceedings of the 	th Marcel Grossmann Meeting

��



ed by R Ru�ni Elsevier Science Publishers BV ��� ���	

��


