
Numerical Methods for Lattice QCD I

Stefan Schaefer

John von Neumann Institute for Computing, DESY

VII Parma International School of Theoretical Physics

1 / 39

Numerical Methods for Lattice QCD

Definition

Using a discrete space-time QCD can be defined.
! Del Debbio’s lectures

Computational method

Path integral! high dimensional integral
Computation of integrals by Monte Carlo.

E.g. hadron masses, decay constants, . . .

Algorithms

Many calculations computationally very expensive.
Massively parallel computers employed.

Need to work on simulation setup, algorithms,. . .
Many choices.
Physics understanding$ Numerical setup.

2 / 39

Algorithms in Lattice QCD

Field update

Integral over field variables! sum over field configurations
How to efficiently generate these fields.
Transformation of action into form amenable
to numerical treatment.
Numerical solution of differential eq.

Solution of Dirac equation

Needed in field update and fermionic observables.
Out-of-the-box algorithms, e.g., the conjugate gradient,
perform badly
! Need to take physics into account

3 / 39

Outline

Monday

Introduction

Markov Chain Monte Carlo

The HMC algorithm

Tuesday

MD integrators

Fermions in QCD simulations

Mass preconditioning

Other fermion methods (RHMC, DD-HMC)

4 / 39

Outline

Wednesday

Solution of the Dirac equation

Preconditioning

Local deflation

Thursday

Methods to compute hadron observables

Autocorrelations

General reading

M. Lüscher
Computational strategies in lattice QCD
Les Houches 2009, arXiv:1002.4232

5 / 39

Goal

µU (x)x

a

q()

Computation of path integral

hAi =
1

Z

Z Y

x,µ

dUx,µe
�S[U]

A[U]

with
Z =

Y

x,µ

dUx,µe
�S[U]

One SU(3) integration variable for each link.
6 / 39

Goal

µU (x)x

a

q()

hAi =
1

Z

Z Y

x,µ

dUx,µe
�S[U]

A[U]

One SU(3) integration variable for each link.

128⇥ 643 lattice! 1.3 · 108 links

Classical numerical quadrature would need
N

#variables function evaluations

7 / 39

Monte Carlo

General idea of Monte-Carlo integration

1

b� a

Z b

a

dx f (x) ⇡
1

N

NX

i=1

f (xi)

with randomly chosen points xi in the integration region

good idea, if f (x) approximately constant
) small fluctuations in f (xi).
For a given realization of the N points xi, this is an unbiased

estimator of the integral

a bx x x x x x31 2 5 64 a bx x x x x x31 2 5 64

8 / 39

Error of a MC simulation

F̃j =
1

N

NX

i=1

f (xj

i
)

Index j labels the repetition of the “experiment”.

Unbiased = gives correct result on average

F = hhF̃ii

hh · ii average over realizations of the xi

Typical deviation!variance of this estimator.

hh(F̃ � F)2
ii =

1

N2

X

ik

hhF̃iF̃kii � F
2

=
1

N
(
X

i

hhF̃
2

i ii � F
2) = var(F)/N

Error decreases as 1/
p

N

9 / 39

Note of caution

This theoretical analysis assumes knowlege of two quanitites

F̄ =
Z

dx f (x) and var(f) =
Z

dx (f (x)� F̄)2

What you get from the Monte Carlo are estimators of these
quantities.

The analysis is correct for N !1;1 is a large number.

These estimators might have significant errors, which are hard
to get from the MC. You might also just have been unlucky.

To a certain extend, practical Monte Carlo is an art and

requires careful inspection of the results.

10 / 39

Importance sampling

Estimator correct up to
p

var(f)/N ! reduce variance.

1

�

Z b

a

dx f (x) =
1

�

Z b

a

P(x)dx
f (x)
P(x)

=

"
1

N

NX

i=1

f (xi)
P(xi)

#
(1 + O(N�1/2))

with points xi chosen according to P. � = b� a

Choose points accoring to probablity distribution similar to
function to be integrated

Optimal, if distribution / |f (x)| . . . need
R

dx|f (x)|

a bx2 5x xx x x61 43

11 / 39

Markov Chain Monte Carlo

Problem of “straight” Monte Carlo is to find a
normalized probability density P(x)

Solution

Use a method which only needs relative probabilites

Construct a sequence of points

x1 ! x2 ! x3 ! · · ·! xN

using a transition probability T(xi+1 xi)

Analysis using arguments of a N sets of such chains.

12 / 39

Properties of T

For any given pair of points x1 and x2

T(x2 x1)

with the following properties

(A) Stability

P(x0) =
R

dx T(x0 x) P(x)

(B) Normalization

R
dx

0
T(x0 x) = 1

(C) Ergodicity

T(x0 x) > 0 for each pair x, x
0

No reference to absolute normalization of P

13 / 39

Analysis of MCMC

For the sake of simplicity, consider discrete state space.

Integrals! sums.

Example for a single variable with three possible values:

P(x)

x

T(x0 x) is a matrix acting in the space of states.
For the example a 3⇥ 3 matrix, because x can take 3 values.

A probability distribution is a normalized vector in this space.

14 / 39

Analysis of MCMC

Imagine having an ensemble of points xi distributed according
to P(x).

Condition (A) reads
P = T P

! P is eigenvector of T with eigenvalue 1.

Theorem of Frobenius–Perron

For a matrix with the properties A–C the following holds

• There is exactly one eigenvalue � = 1.

• All eigenvalues � have |�|  1.

15 / 39

Convergence of Markov Process

Given any starting distribution P0 repeated application of T

leads to exponential convergence to desired distribution

T
n
P0 =

NX

i=0

�n

i
(i, P0) i

=
NX

i=0

e
log |�i| n (i, P0)

�i

|�i|
 i

/ P + O(e�n/⌧1)

⌧i = 1/ log |�i| are the exponential autocorrelation times

A nicer interpretation in terms of single exponentials can be
given with detailed balance, see later.

16 / 39

Practical MCMC

Start with one (or a few) points

Distribution/evolution of x ! distribution/evolution of f (x)

Averages of Monte Carlo time

hf i =
1

N

NX

i=1

f (xi)

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

A

τ

Cut away first thermalization phase. 17 / 39

Time evolution

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

A

τ

hf i =
1

N

NX

t=1

f (xi)(1 + O(1/
p

N))

At the beginning large contributions from i>0.

Formally 1/N, but large coefficient, best discarded.

A valid simulation must have n� 1/⌧1

needs to be determined from the simulation
18 / 39

Autocorrelations

There is a price to pay:
Subsequent points xi/configurations are in general not
independent.

hhf (xi)f (xi+1)ii 6= 0

This needs to be taken into account in the analysis of the data.

It also can make simulations exceedingly expensive.

 4.2

 4.4

 4.6

 4.8

 0 2000 4000 6000

t 0

τ[MD time]

19 / 39

Construction of T

Constructing a valid T seems a daunting task.
Metropolis–Hastings method Metropolis et al’53

• Symmetric proposal (trans. prob. w/ P0(x) =const)

W(x0 x) = W(x x
0)

• Acceptance step

Pacc(x0, x) = min[1,
P(x0)
P(x)

]

Next point is x
0 with propability Pacc, else x

20 / 39

Metropolis

Start at point x

Pick new point with probability W(x0, x)

x

x’P (x’,x)acc

Compute acceptance probability of proposal x
0

Make a decision where to continue

x

x’

acc

x

x’

accP (x’,x) 1−P (x’,x)

T(x0 x) = W(x0 x)Pacc(x0, x) + �xx0

X

x̃

(1� Pacc(x̃, x))W(x̃ x)

21 / 39

Proof

T(x0 x) = W(x0 x)Pacc(x0, x) + �xx0 [
X

x̃

(1� Pacc(x̃, x))W(x̃ x)]

(A) Stability

X

x

P(x) T(x0 x)

=
X

x

W(x0 x)P(x)Pacc(x0, x) + P(x0)
X

x̃

�
[1� Pacc(x̃, x)]W(x̃ x)

�

=
X

x

W(x x
0)P(x0)Pacc(x, x

0) + P(x0)[1�
X

x̃

Pacc(x̃, x)]W(x̃ x) = P(x0)

(B) Normalization

X

x0

T(x0 x) = 1

22 / 39

Practical implementation

We want to generate the sequence

x1 ! x2 ! x3 ! · · ·

and arrived at xj

• Make a proposal y according to probability W(y xj)

• Compute Pacc and draw random number 0  r < 1

xj+1 =

(
y if r < Pacc

xj else

Good proposal
• Easy to generate
• High acceptance propability

23 / 39

Generic issues of the method

The step size can be rather limited

Small steps

P(x0) ⇡ P(x)! Pacc high
But it takes many steps to sample the whole integration space
Large autocorrelations

Large steps

Small autocorrelations
Feasible only if an update leading to reasonable Pacc can be
found
Can be difficult to compute proposal.

In high dimensional spaces, it can be very difficult to argue,
what “large step” and “small step” even mean.

24 / 39

Summary of part I

Monte Carlo is a method to numerically compute
high-dimensional integrals.

Integral! average over sample points.

Sample points need to be chosen in region of high probability.

Problem of constructing a normalized distribution
! Markov Chain Monte Carlo

+ No normalized distribution needed.
� Deal with autocorrelations.

25 / 39

Back to QCD

µU (x)x

a

q()

One point x

! one value for each link variable
! one field configuration

Instead of x we will therefore now use U which are in SU(3).

26 / 39

QCD

hAi =
1

Z

Z Y

x,µ

dUx,µe
�S[U]

A[U]

with
Z =

Y

x,µ

dUx,µe
�S[U]

Normalized probability density

P[U] =
1

Z
e
�S[U]

Ratios in probabilities
!

Need to evaluate differences in the action S[U]
While this choice of P[U] seems natural, it is not unique

27 / 39

QCD

Basically two types of algorithms

Single link updates

Of the 4V links, only one is changed at a time.

In each step S[U]� S[U0]
Possible if this is an O(1) operation.

With dynamical fermions, estimating change in action is
a global O(V) operation

Method of choice in pure gauge theory.
No systematic study.

28 / 39

QCD

Basically two types of algorithms

Updates based on Molecular Dynamics

Based on ideas from classical mechanics.

π,(U)
π,(’ U’)

Field configuration position
Introduce momenta! equations of motion.

Updates keep propbability constant (micro-canonical)

Solves problem of finding a good proposal in
Metropolis-Hastings procedure

29 / 39

Hybrid Monte Carlo

Extended field space

Z =
Z

[dU][d⇡] e
� 1

2
(⇡,⇡)�S[U]

Expectation values of observables A[U]
remain the same.

Momenta ⇡ = ⇡a
T

a
2 su(N), ⇡a

2 R

(⇡, ⇡) =
X

x,µ

⇡a

x,µ⇡a

x,µ

Updates

Make updates in this extended phase space.
) updates for U fields.

30 / 39

Molecular dynamics

Essential update step for the gauge fields: (⇡, U)! (⇡0, U
0)

Simulation time ⌧ .

Hamilton’s equations of motion

Hamiltonian
H[⇡, U] =

1

2
(⇡, ⇡) + S[U]

E.o.m.

U̇x,µ = ⇡x,µUx,µ

⇡̇x,µ = �Fx,µ , F
a

x,µ =
@S(e!

U)
@!a(x, µ)

31 / 39

Molecular dynamics

By Liouville’s theorem, the classical dynamics

(⇡, U)! (⇡0, U
0)

maps areas of equal likelihood into eachother.

Energy conservation

d

d⌧
H = 0

Boltzmann factor e
�H is constant.

Conservation of phase space

An exact solution of the E.o.m is a valid update.

Fundamentally different from Metropolis–Hastings

In practice: integration errors

32 / 39

HMC

Momentum Heatbath
Refresh momenta ⇡ (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time ⌧ (trajectory)
deriving from Hamiltonian H = 1

2
(⇡, ⇡) + S[U].

π,(U)
π,(’ U’)

Acceptance Step

Correcting for inaccuracies in integration.

33 / 39

Metropolis

Different viewpoint:

The molecular dynamics as the symmetric proposal in
Metropolis.

This solves the problem of the inexact integration.

Need a symplectic integrator, i.e. area conserving and
reversible.

Reversibility haunts computer implementations.
No good theory for this.

34 / 39

Metropolis

Acceptance step

Molecular dynamics (⇡, U)! (⇡̄, Ū)

Pacc = min(1, e
�(H(⇡̄,Ū)�H(⇡,U)))

Exact solution of MD equations has �H = 0

) always accepted

�H needs to be O(1) for good acceptance.
Difficult to achieve on large volume.

35 / 39

Updates

Z =
Z

[dU][d⇡] e
� 1

2
(⇡,⇡)�S[U]

Momenta: Heatbath

(⇡, ⇡) =
P

x,µ |⇡a
x,µ|

2

⇡a
x,µ are Gaussian random numbers.

Normalization is known.

Just for ⇡ this is the optimal update
no correlation to previous config.
Also true for combined system? (Kramers’ rule,. . .)

36 / 39

Comments

Momentum heat-bath is the only source of randomness.

Makes algorithm ergodic.

Problems with ergodicity from S =1 surfaces.

The original hope was that a trajectory consititutes a
macroscopic update.

Free field theory

Ü = ⇡̇ =
�S

�U

! Monte Carlo Time ⌧ / 1/a

37 / 39

In the classic algorithm trajectory length is scaled with 1/a.

In number of updates, autocorrelations should stay the same.

M.Lüscher, S.S.’11
This does not apply in interacting theory

Virotta,Sommer, S.S.’10
Still, rather long trajectories are a good idea, ⌧ ⇠ 2.

For exercises in �4 theory:

S.S., Les Houches 2009, available at NIC@DESY website.

38 / 39

Summary

Markov Chain Monte Carlo provides general purpose
framework for importance sampling—no normalization needed
in distribution

Choice of transition probablity

Metropolis = (symmetric proposal) ⇥ (acceptance step)

Molecular dynamics “swiss army knife” for continuous variables

Link updates perform better(?)

39 / 39

Numerical Methods for Lattice QCD II

Stefan Schaefer

John von Neumann Institute for Computing, DESY

VII Parma International School of Theoretical Physics

1 / 33

HMC

Momentum Heatbath

Refresh momenta ⇡ (Gaussian random numbers)

Molecular Dynamics

Solve numerically MD equations for some MC time ⌧
(trajectory) deriving from Hamiltonian H = 1

2
(⇡,⇡) + S[U].

π,(U)
π,(’ U’)

Acceptance Step

Correcting for inaccuracies in integration.

2 / 33

Numerical integration

H =
1

2
(⇡,⇡) + S[U] = T + S

U̇x,µ = ⇡x,µUx,µ ⇡̇x,µ = �Fx,µ

Splitting methods

Eom for each part T, S can be solved exactly
! symplectic

T defines TU

Ux,µ(⌧) = e
⇡⌧

Ux,µ(0), ⇡(⌧) = ⇡(0)

S defines Tp

Ux,µ(⌧) = Ux,µ(0), ⇡(⌧) = ⇡(0)� ⌧F

3 / 33

Splitting methods

TU = e
✏T̂ : Ux,µ(✏) = e

⇡✏
Ux,µ(0), ⇡(✏) = ⇡(0)

Tp = e
✏Ŝ : Ux,µ(✏) = Ux,µ(0), ⇡(✏) = ⇡(0)� ✏F

Can be put together in any order.

Legal integrator

Time steps of TU and Tp sum up to 1.

Symmetric integrator

!Integration error automatically O(✏2)

4 / 33

Example: Leapfrog / Verlet integrator

Divide trajectory in N steps of size ✏ = ⌧/N

π,(U)
π,(’ U’)

T = (TU(✏/2)Tp(✏)TU(✏/2))N

π

U

You can combine the half steps ! save computation

π

U

5 / 33

Omelyan & Co

Leapfrog has been long-time workhorse
Robust, but in general not optimal.

Easy improvement without detailed knowledge of physics
system.

Seminal paper Omelyan, Mrygold, Folk, 2003

Introduce reduandant parameters and optimize

T = [Tp(✏�)TU(✏/2)Tp(✏(1� 2�)TU(✏/2)Tp(✏�)]N/2

� = 0.19 performs roughly 2⇥ better than leapfrog.

The paper contains O(100) integrators.

6 / 33

Optimizing integrators

Exact time evolution operator

e
⌧ d

dt = e
⌧Ĥ with Ĥ = � �S

�U

@

@U
� �T

�⇡

@

@⇡
= Ŝ + T̂

with T(⇡) = (⇡,⇡) and S[U] the action.
Ĥ is the Hamiltonian vector field.

Leap-frog integrator

[e✏/2 Ŝ
e
✏ T̂

e
✏/2 Ŝ]⌧/✏

= exp{(Ŝ + T̂)✏� ✏3

24
([Ŝ, [Ŝ, T̂]] + 2[T̂, [Ŝ, T̂]])}⌧/✏

= exp{(Ŝ + T̂)⌧ � ⌧✏2

24
([Ŝ, [Ŝ, T̂]] + 2[T̂, [Ŝ, T̂]])}

Baker-Campbell-Hausdorff formula has been used.
see series of paper by Clark and Kennedy

7 / 33

Shadow Hamiltonian

For each symplectic integrator, there is the
conserved shadow Hamiltonian

Can be constructed by a power series
Commutators ! Poisson brackets

H̃ = H + ✏2(c1 {S, {S, T}} + c2{T, {S, T}})
= H + ✏2(c1 @aS@aS� c2 ⇡a⇡b@a@bS) . . .

Convergence of the series?

c1 and c2 depend only on the integrator

For a long time, it has been believed that what matters is
the size of

�H = H̃ �H

8 / 33

Optimizing integrators

At the beginning of the trajectory

H1 =
1

2
(⇡1,⇡1) + S[U1] H̃1 = H1 + �H1 (1)

At the end of the trajectory

H2 =
1

2
(⇡2,⇡2) + S[U2] H̃2 = H2 + �H2 (2)

During the trajectory, H̃ is conserved. H̃=H̃1=H̃2

�H = H2 �H1 = (H2 � H̃)� (H2 � H̃) = �H2 � �H1

What matters is the fluctuation of �H.

9 / 33

Example

From Clark, Joo, Kennedy, Silva, 1108.1828

0.1 0.15 0.2 0.25 0.3
λ

0

0.2

0.4

0.6

0.8

1
P a
cc

prediction
data

0 0.2 0.4
δτ

0

0.2

0.4

0.6

0.8

1

10 / 33

Multiple time scales

In the HMC, different forces have vastly different size.

Fg � Fferm,UV � Fferm,IR

This is the oppostite ordering of the cost of their
computation.

Multiple time scale integrators have been proposed.

Field
1
2
3

Force

The idea is to integrate “large forces” on a finer time scale
— exacter.

11 / 33

Multiple time scales

T⇡(✏/2)TU(✏)T⇡(✏/2)
! T⇡,1(✏/2) [T⇡,2(✏/2m) TU(✏/m) T⇡,2(✏/2m)]m T⇡,1(✏/2)

Experimental finding: it never works as well as expected.

Can be understood by Shadow Hamiltonian

H̃ = H + ✏2[c1(F1, F1) + c2⇡
a⇡b

S
(ab)
1

+ c2(F1, F2)

+
1

m2
(c2(F2, F2) + c2⇡

a⇡b
S

(ab)
2

)]

Interference term between “large” and “small” force not
suppressed by relative times scale m.

12 / 33

Summary: Integrators

Integrators have contributed to improvement in
algorithms.

Typical gains are factor two.
No miracles to be expected.

Difficulty separating IR from UV.

Optimization by measurement is possible.

13 / 33

Fermions
Formulation of the theory

14 / 33

Fermions

Textbook verions contains Grassmann fields and ̄

Z =
Z Y

i

d id ̄
Y

i,µ

dUi,µe
�Sg�

P
f
 ̄f D(mf) f

We integrate out the fermions and get the quark
determinant

Z =
Z Y

i,µ

dUi,µ

Y

f

det D(mf) e
�Sg

Determinant not usable in large volume situation
! too complicated/expensive to compute

15 / 33

Fermions in simulations

Ideally, we would want to use

Sferm = �
NfX

i=1

tr log D(mi) = �
NfX

i=1

log det D(mi)

Unfortunately, the determinant of a N ⇥N matrix is
virtually impossible to compute for large N.

Need O(N3) operations.

Large memory requirement.

Is numerically extremely unstable.

)
Need algorithm with is based on solutions of linear
equations.

16 / 33

Pseudofermions

Pseudofermions PETCHER, WEINGARTEN’81

det Q
2 /

Z
[d�][d�†] e

�(�, Q�2�) , Q = �5D

Gaussian integral ! apply transformation � = Q ⌘
Z

[d⌘][d⌘†] e
�(⌘, ⌘) =

Z
[d�][d�†] det

�2
Q e

�(�, Q�2�)

Determinant is the Jacobian of this transformation.

Q is Hermitian

Generate Gaussian complex-valued quark field ⌘

P[⌘] / e
�(⌘,⌘)

Multiply with Q

� = Q⌘

17 / 33

Even–odd preconditioning

The Wilson Dirac operator connects only neighboring sites.

Label them “even” and “odd”.

D =
✓

Dee Deo

Doe Doo

◆

Doo and Dee are site-diagonal matrices.
18 / 33

Even–odd preconditioning

Matrix identity
✓

Dee Deo

Doe Doo

◆
=

✓
1 DeoD

�1
oo

0 1

◆ ✓
(Dee �DeoD

�1
oo Doe) 0

0 Doo

◆ ✓
1 0

D
�1
oo Doe 1

◆

For the determinant this means

det D = det Doo det(Dee �DeoD
�1
oo Doe) ⌘ det Doo det D̂

with D̂ the Schur complement.

In the following, I will mostly write D or Q = �5D.
In practice, this frequently means D̂ or Q̂.

19 / 33

Partition function

Include pseudofermions in path integral.

Z =
Z

[dU][d⇡][d�][d�†] e
� 1

2
(⇡,⇡)�Sg[U]�(�, 1

Q2
�)+2 log detQoo

Sg: gauge action

effective fermion action for Nf = 2.

Sf ,eff = (�,
1

Q̂2
�)� 2 log detQoo

20 / 33

HMC

Momentum and pseudofermion Heatbath

Refresh momenta ⇡
Refresh pseudofermions �! kept fixed during trajectory

Molecular Dynamics

Solve numerically MD equations for some MC time ⌧
(trajectory) deriving from Hamiltonian H = 1

2
(⇡,⇡) + S[U].

π,(U)
π,(’ U’)

Acceptance Step

Correcting for inaccuracies in integration.

21 / 33

Problems

Pseudofermions PETCHER, WEINGARTEN’81

det Q
2 /

Z
d�†

d� e
�(�, Q�2�)

Works only for pairs of degenerate flavors
Solution: take square root ! PHMC, RHMC
Force evaluation expensive: 2 solutions of Dirac eq.

Fpf = �(�, Q
�2 �Q Q

�1 �) + h.c.

Seems somewhat unnatural
Start with manifestly local action
! quite non-local expression

22 / 33

Berlin Wall

Status 2000 Quarks 16⇥ heavier than in nature.
No perspective even with 2010 computers.

Coarse lattices a ⇡ 0.1fm
(the typical length scale is 1fm)

Cost of a simulation (Ukawa Lattice 2001)

Cost = C


#conf

1000

�
·


mq

16mphys

��3

·


L

3fm

�5

·
h

a

0.1fm

i�7

C ⇡ 2.8 Tflops year

23 / 33

Fermions

Pseudofermions PETCHER, WEINGARTEN’81

det Q
2 /

Z
[d�][d�†] e

�(�, Q�2�)

HMC + single pseudofermion action not successful

Compare

Fpf = �(�, Q
�2�) and Fex = ��tr log Q

2

Fpf is “stochastic estimate” of Fex

At beginning of the trajectory hFpfi� = Fex

Very large fluctuations in Fpf

|Fpf|� |Fex|

24 / 33

Fermions
Modifications

25 / 33

Determinant Splitting

Insight

Need better estimate of determinant.
Frequency splitting.

Mass preconditioning Hasenbusch’01, Hasenbusch,Jansen’03

det Q
2 = det

Q
2

Q2 + µ2
det(Q2 + µ2)

Each determinant represented by pseudo-fermion
“Pauli-Villars” for fermion force
more intermediate µ ! Noise reduction in force.
success depends on choice of µ. Urbach et al’04

26 / 33

Numerical examples

Action

Nf = 2 + 1 NP improved Wilson fermions
Iwasaki gauge action
64⇥ 323 lattice with a = 0.09fm
studied extensively by PACS-CS AOKI ET AL’09,’10

m⇡ = 200MeV
m⇡L = 3

Algorithm M. LÜSCHER, S.S.’12

Reweighting to avoid stability problems.
Generated with public openQCD code.
http://cern.ch/luscher/openQCD

27 / 33

http://cern.ch/luscher/openQCD

Effect of determinant factorization

Forces for light quark, 20 configurations. µ1 = 0.05, µ2 = 0.5

 4 5 6 7 8
|F|2/link

1PF

 4.2 4.25 4.3 4.35 4.4
|F|2/link

3PF

Fluctuations of force not much reduced.
Fluctuations in norm squared of force:
Spread reduced by more than factor 100.
(Different scale!)

28 / 33

Understanding the improvement

Framework CLARK, JOO, KENNEDY, SILVA’11

Shadow Hamiltonian of symplectic integrators

H̃ = H + (c1 @aS@aS� c2 ⇡a⇡b@a@bS)✏2 + . . .

Large cancellation between the two terms
! potential for optimization.

2nd order minimum norm integrators:
minimum of c

2

1
+ c

2

2
Omelyan, Mrygold, Folk’03

Symplectic integrators profit from reduced

fluctuations in norm of force.

29 / 33

Numerical examples

-100000 0 100000
(ΔH-<ΔH>)/(δτ)2

1PF

-1000 0 1000
(ΔH-<ΔH>)/(δτ)2

3PF

�H = H̃ �H, fermions only.
Second order min. norm Omelyan integrator.
Much larger step-size possible.

30 / 33

Factorizations

Hasenbusch Hasenbusch’03

det Q
2 = det

Q
2

Q2 + µ2

1

det
Q

2 + µ2

1

Q2 + µ2

2

· · ·det(Q2 + µ2

N
)

RHMC Kennedy, Horvath, Sint’99, Clark, Kennedy’07

det Q
2 =

NY

i=1

det
N
p

Q2

Domain decomposition Lüscher ’04

det Q = det Qblock det R

31 / 33

Domain decomposition

Lüscher’04

Domain decomposition
! Divide the lattice in blocks

det D = det Dblock · det DR

Do not update links connecting blocks
! longer autocorrelations
Good for slow communication.

32 / 33

Summary

Fermion action �tr logD cannot be simulated directly.

Use pseudofermions together with matrix factorization

Several factorizations lead to working setups.

Need of solving the Dirac equation in each force
evaluation.

33 / 33

Numerical Methods for Lattice QCD III

Stefan Schaefer

John von Neumann Institute for Computing, DESY

VII Parma International School of Theoretical Physics

1 / 36

Solving the Dirac equation

The solution of the Dirac equation

D = �

is the most costly part of lattice simulations including
dynamical fermions.

Needed for forces in the MD evolution

hadronic observables

Dirac operator D can be viewed as a matrix acting in C12V

Large literature on iterative solvers for sparse linear
systems

2 / 36

Wilson Dirac operator

DW(m0) =
1
2

3X

µ=0

{�µ(r⇤
µ +rµ)� ar

⇤
µrµ}+ m0

with
(rµ)(x) =

1
a

⇥
U(x, µ) (x + aµ̂)� (x)

⇤

Spinor fields

 c,d(x) ! complex psi[i], i=1...12V

ν

µ
ψ()x

ψ(+ν)

ψ(+µ)ψ(−ν)

ψ(−ν)

x x

x

x
0

BBBBBB@

⇥ ⇥ 0 0 0 ⇥

⇥ ⇥ ⇥ 0 0 0
0 ⇥ ⇥ ⇥ 0 0
0 0 ⇥ ⇥ ⇥ 0
0 0 0 ⇥ ⇥ ⇥

⇥ 0 0 0 ⇥ ⇥

1

CCCCCCA

3 / 36

The Dirac operator

Dirac operator D can be viewed as a matrix acting in C12V

For Wilson, staggered and domain wall fermions this matrix
is sparse.

Application of D on vector scales / V.

Methods to solve Dirac equation based on

Matrix ⇥ vector

Itererative methods, huge applied math literature.

4 / 36

Krylov space

The Krylov space Kn of order n generated by a starting
vector � and a matrix D is

Kn(D,�) = span
�
�, D�, . . . , D

n�1�

Cayley-Hamilton theorem

Any N ⇥N matrix A satisfies its charact. polynomial p(x).

p(x) = det(x1N⇥N � A)) p(A) = 0

Any power A
M with M > N � 1 can be expressed trough

polynomial of degree N � 1.

The value of a function (also the inverse) of an N ⇥N

matrix can be constructed from its powers up to N � 1.

! Solution of Dirac equation is in KN�1.

This theorem is not of much practical help if N is in the millions. 5 / 36

Krylov space solvers

Use the Krylov space to iteratively construct the solution of

the Dirac equation to a specified precision.

D = �

Polynomial approx. with coefficients depending on D.

The basic problem is that it is not practical to safe the
Krylov space.
• too much memory would be needed
• Only up to O(20) vectors can be stored

Different algorithms make different choices on how may
vectors to compute before restarting.

Kn(D,�)! ⇢0 ! Kn(D, ⇢0)! ⇢1 ! · · ·

6 / 36

Iterative improvement

D = �

For a certain approximation ̃ you can define the residue

⇢ = ��D ̃

This ⇢ can be used as a new right hand side

D(� ̃) ⌘ D 0 = ⇢ ! = ̃ + 0

Used in
• Restarting iterative solvers
• Single precision acceleration
• Chronologically predicted solutions

7 / 36

Convergence criteria and accuracy

D = �

The convergence of the algorithm will be tested using

|⇢| = |��D ̃| < ✏|�|

This deviates from the exact solution by at most

| ̃ � | = |D
�1

D(̃ �)| = |D
�1⇢| < ✏|D�1

||�| < ✏(D)| |

with (D) the condition number

(D) = |D||D
�1
|

Note that (D) can be large
! criterion on residue can mean very little for the solution
(and even less for single elements).

8 / 36

Condition number

2/am

For �2
min, �2

max the smallest/largest EV of D
†
D

�min /

�max / 1/a

Condition number (D) / (am)�1.
9 / 36

The GCR algorithm

The Generalized Conjugate Residue algorithm constructs
for each k the solution of the Dirac equation

 1, 2, 3, . . . k, . . .

that minimizes the residue

⇢k = ��D k

This minimum is attained where D k is the orthogonal
projection of � to DKk.

0
DKk

φ

10 / 36

The GCR algorithm

Issue: How to represent the Krylov space

This orthogonal projection is simplified by computing an
orthonormalized basis �i

DKk = span{�i}.

Computation of the new residue = orthogonal projection

⇢k = ��
k�1X

l=0

cl �l with cl = (�l,�)

11 / 36

The GCR algorithm

At some point in the algorithm one thus has
the orthonormal basis of DKk�1 and the residues

{�0,�1, . . . ,�k�1} {⇢0, ⇢1, . . . , ⇢k�1}

one constructs the current residue

⇢k = ��
k�1X

l=0

cl �l with cl = (�l,�)

and adds to the basis �k, the contribution of D⇢k.

Compute the representation of the � in terms of the D⇢.

�k =
kX

j=0

akjD⇢j with ⇢0 = �

12 / 36

Computing the current solution

�k =
kX

j=0

akjD⇢j

and

⇢k = ��
k�1X

l=0

cl �l with cl = (�l,�)

Putting everything together, we have

D k =
k�1X

l=0

cl �l =
k�1X

l=0

cl

lX

j=0

aljD⇢j

Now we can divide by D and get the solution k in terms
of the already computed residues.

 k =
k�1X

l=0

cl

lX

j=0

alj⇢j

13 / 36

Convergence rate

The solution is constructed in the Krylov space
! the solution is a polynomial of D times source.

⇢k = ��Dp̃k(D)� = pk(D)�

The GCR algorithm minimizes the residue

|⇢k| = minp|pk(D)�|  minp|pk(D)||�|

Take diagonaliziable D! D = V⇤V
�1, with ⇤ diagonal

|pk(D)| = |Vpk(⇤)V�1
|  (V)|pk(⇤)|

This leads to the inequality for any pk w/ pk(0) = 1

|⇢k|  (V)max�2D|pk(�)||�|

Assumption is that spectrum is contained in a disk D right of
origin.

14 / 36

Convergence rate

|⇢k|  (V)minpmax�2D|pk(�)||�|

Theory of polynomial approximations:
The optimal polynomial, for which the extremum is
attained is

pk(�) = (1�
�

R + b
)k

R is radius of the disk,
b the distance from origin.

|⇢k|  (V)(1 +
b

R
)�k

|�|

R
b

For b⌧ R this decays roughly exponentially e
�k

b

R

15 / 36

GCR: Summary

Above, one iteration of the GCR has been described.

It requires to order k

2k spinor fields of storage.
k matrix vector products.

Typical is the computation 20–40 vectors.

Then perform a restart.

16 / 36

Preconditioning

At small quark masses, the condition number of D

becomes large.

Many matrix-vector multiplications needed for solution.

Preconditioning

LDR 0 = L� ! = R 0

with L and R chosen such that L D R is well conditioned.

Many variants of preconditioning.

A good preconditioning will work on low-mode part of
spectrum.

17 / 36

Even-odd preconditioning

If the Dirac operator only connects nearest-neighbors,
the lattice can be split in “even” and “odd” sites.

D =
✓

Dee Deo
Doe Doo

◆

18 / 36

Even-odd preconditioning

D =
✓

Dee Deo
Doe Doo

◆

We can use the matrices L and R

L =
✓

1 �DeoD
�1
oo

0 1

◆
R =

✓
1 0

�D
�1
oo Doe 1

◆

to get

LDR =
✓

D̂ 0
0 Doo

◆
with D̂ = Doo �DoeD

�1
ee Deo

D̂ is the Schur complement
D̂ has less than half the condition number of D.

19 / 36

Preconditioning

Even-odd is the prime example of “classical”
preconditioning.
It is used in all simulations with next-nearest operators only.

Another example is SSOR.
Complicated to implement! not used so frequently.

Their benefit is limited: they do not know about the
physics.

For large quark masses, standard Krylov-space solvers +
eo work fine.

Small quark masses: condition number / (am)�1.

Need to take the IR physics into consideration to get more
significant speed-up.

20 / 36

Deflation

2/am

When quark mass gets small

 / 1/(am)

due to small eigenvalues with Re� ⇡ m.

21 / 36

Exact deflation with eigenvectors

Elimitate these eigenmodes from the Dirac equation.

D i = �i i

Projector on small eigenmodes i

P =
NsX

i=1

 i
†
i

Using it, we can split the Dirac equation in two

D =
✓

P D P 0
0 (1� P)D(1� P)

◆

) D
�1 =

 P
Ns

i=1
1
�i
 i

†
i

0
0 [(1� P)D(1� P)]�1

!

22 / 36

Discussion

D
�1 =

 P
Ns

i=1
1
�i
 i

†
i

0
0 [(1� P)D(1� P)]�1

!

Reduction of condition number ! |
�1

�Ns+1
|

Efficient if small number of very small eigenvalues
e.g., ✏-regime calculations

Need to compute eigenvectors (can be set up with
approximate vectors)

For constant effect need Ns / V vectors.

In large volume, computation of a single eigenvector
exceedingly expensive.

23 / 36

Local deflation

The problem of “classical” deflation is the scaling with the
volume.
Need Ns / V modes w/ cost/mode at least / V.

Local coherence

Lüscher’07

Experimental fact:
Locally eigenvectors with � < 100 MeV can be
constructed from very few components.

Procedure:
Take N0 lowest eigenmodes.

Decompose the lattice in small blocks ⇤i, e.g., (0.3 fm)4

Consider space spanned by block projected vectors.

R = span
�

P⇤i
 j| i = 1, . . . , Nblock, j = 1, . . . , N0

24 / 36

Deflation subspace

R = span
�

P⇤i
 j| i = 1, . . . , Nblock, j = 1, . . . , N0

Start with global
modes

And chop them
apart

x

ψ()xi

xψ ()i,1

x

xψ ()i,2 xψ ()i,3 xψ ()i,4

25 / 36

Deflation subspace

R = span
�

P⇤i
 j| i = 1, . . . , Nblock, j = 1, . . . , N0

Define deficit
✏ = |PR i � i|

with PR the orthonormal projector to R.

Experimental finding:

The deficit for eigenvectors i with eigenvalue  100 MeV

is small, N0 ⇠ 12.

✏ ⇡ O(few %)

26 / 36

Local coherence

This result can be interpreted as consequence of local
coherence.

In each point, the IR fields are aligned.

However, the vectors in R are quite discontinuous.

They can only be decent approximations to the
eigenvectors in the centers of the blocks.

Big advantage is that size of deflation space / volume.

Eigenvectors do not need to be very exact.
A few inverse iterations suffice.

27 / 36

Free field theory

Eigenmodes are plane waves

 p(x) = up e
i px

12 lowest modes are constant

How well can the higher modes be constructed by

constant block modes?

28 / 36

Free field theory

Eigenmodes are plane waves

 p(x) = up e
i px

12 lowest modes are constant

How well can the higher modes be constructed by

constant block modes?

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

f(x
)

x

Approximation by locally constant mode

29 / 36

Free field theory

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

f(x
)

x

Approximation by locally constant mode

-1

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

f(x
)

x

Approximation by locally constant mode

Efficiency is expected to decrease for eigenmodes with
larger eigenvalues.

In the UV the Krylov solvers work very well.

Use as a preconditioner.

30 / 36

Implementation in a solver

Decomposition of the Dirac operator

D =
✓

(1� PR) D (1� PR) (1� PR)DPR
PR D (1� PR) PR D PR

◆

with the “little Dirac operator”

DLL = PR D PR

This is a (NsNblock)2 matrix.
Using the usual Schur complement trick

✓
DHH DHL

DLH DLL

◆�1
=

✓
1 0

�D
�1
LL

DLH 1

◆✓
(DHH �DHLD

�1
LL

DLH)�1 0
0 D

�1
LL

◆✓
1 �DHLD

�1
LL

0 1

◆

31 / 36

Deflating the Dirac equation

The Schur complement trick reduces the problem to the
solution of

DLL k = �k

(DHH �DHLD
�1
LL

DLH) ? = �?

The condition number of the matrix in the second
equation is significantly reduced.

Rewrite 2nd eq. in form of preconditioning

(1�DPR(PRDPR)�1
PR) D ? = �?

Can be solved with a GCR, but this is still expensive due to
solution of the little system.

Still need a good preconditioner to make it feasible
Needs to be effective in the UV
! Schwarz alternating procedure

32 / 36

Performance of the deflated GCR

Plot from original paper
M. Lüscher, Local coherence and deflation of the low quark modes in
lattice QCD, JHEP0707:081,2007

0 50 100 150 200 250

(amval)−1

0

50

100

150

200

250

300

350

400

t [sec]

mval = msea mval ∼
6
1 msmval ∼ ms

EO+BiCGstab

SAP+GCR

DFL+SAP+GCR

33 / 36

Deflation and the HMC

The construction of the deflation subspace is not cheap.

The more solutions of the Dirac equation, the more it pays.
! good for Hasenbusch decomposition

Low-modes evolve slowly in MC time
! take subspace in several consecutive time step.

0 50 100 150 200 250

(amsea)−1

0

50

100

150

200
t [min]

377618

DD-HMC

485

Accelerated DD-HMC

Mπ ∼ 282 MeV

34 / 36

HMC

Momentum and pseudofermion Heatbath

Refresh momenta ⇡
Refresh pseudofermions �! kept fixed during trajectory
Initialization of deflation subspace

Molecular Dynamics

Solve numerically MD equations for some MC time ⌧ .

π,(U)
π,(’ U’)

Repeated refresh of deflation subspace.

Acceptance Step

Correcting for inaccuracies in integration.

Need to be careful for violation of reversibility.
35 / 36

Summary

The solution to the Dirac equation is essential part of
lattice computations with fermions.

Methods take advantage of the spasity of the Dirac
matrix.
Matrix-Vector multiplications essential operation, is O(V).

Cost can be high for small quark masses
! shrinking gap to origin
! problem with exceptionally small eigenvalues

Need to find a physical solution to problem.

36 / 36

Numerical Methods for Lattice QCD IV

Stefan Schaefer

John von Neumann Institute for Computing, DESY

VII Parma International School of Theoretical Physics

1 / 36

Measuring hadronic observables

The goal is to compute hadronic correlation functions on
a set of gauge configurations, e.g.

hPa(x) P
b(y)i

with
P

a =
1
2
⌧a�5 and =

✓
u

d

◆

Use Wick’s theorem to eliminate the Grassmann fields

hPa(x) P
b(y)i = �1

2
�ab h trc,d

�
Smu

(x, y) �5 Smd
(y, x) �5

i

P(x) P(y)

2 / 36

Measuring hadronic observables

hPa(x) P
b(y)i = �1

2
�ab h tr

�
Smu

(x, y) �5 Smd
(y, x) �5

i

With the propagator

S(x, y) = D
�1(x, y) and SH(x, y) = Q

�1(x, y) = S(x, y)�5

we arrive for degenerate quarks at

hPa(x) P
b(y)i = �ab h tr

�
SH(x, y) SH(y, x)

i

3 / 36

Practical computation

Traditional method:

htrd,cSH(x, y)SH(y; x)i =
X

c,d,c0,d0

hSH(x, y)c,d;c0,d0SH(y; x)c0,d0;c,di

For this one space-time column of the propagator is
needed.

SH(x, y)c,d;c0,d0 = (SH ⌘
(y,c0,d0))(x)c,d

with a point source

⌘(x0,c0,d0)
c,d (x) = �x,x0�c,c0�d,d0

Solve Dirac equation for the 4⇥ 3 Dirac–color index
combinations

Q� = ⌘(y,c0,d0)

Get propagator from one point to all other points.
4 / 36

Volume average

Pion propagator projected on zero momentum

fP(x0 � y0) = � 1
L3

X

~x

X

~y

htrd,cSH(x, y)SH(y; x)i

Using point sources, the sum over y is difficult to do,
would need 12V solutions of the Dirac equation.

Translational invariance helps, need sum only at one end.

fP(x0) = �
X

~x

htrd,cSH(x, 0)SH(0; x)i

Lose information from different source positions.

Use a stochastic estimate for the traces.

5 / 36

Noise sources

Insert additional complex scalar fields into your partition
function.
Here just for one time slice y0; ”one-end trick”.

Z⌘ =
Z

[d⌘][d⌘†] e
�(⌘,⌘)

Each lattice point, Dirac and color index has an
independent Gaussian random number

h⌘c,d(~x) ⌘†
c0,d0(~y)i⌘ = �~x,~y �d,d0 �c,c0

Insert in correlation function

fP(x0 � y0) = � 1
V

X

~x

htrd,cSH(x, ·)⌘⌘†
SH(·; x)†i

here the h·i includes average over ⌘ fields.
6 / 36

Stochastic estimate

fP(x0 � y0) = � 1
V

X

~x

htrd,cSH(x, ·)⌘⌘†
SH(·; x)†i

As always in Monte Carlo, we replace integrals by a sum
over a number of field realizations.

� 1
V

1
Ns

NsX

i=1

X

~x

htrd,cSH(x, ·)⌘i⌘
†
i
SH(·; x)†i

Unbiased estimator, no need to take Ns large.
Also Ns = 1 is correct, but take new source on each
configuration. Integrals commute.

Need to solve one Dirac equation per source.
For pions O(10) give a very good signal.

For mesons, no need to use more sources as V !1.
7 / 36

Pion propagator

 1e-05

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40 45

C
PP

(x
0)

x0/a

Exponential fall-off for x0 !1

CPP(x0) =
X

n

Ane
�mnx0 ! A0e

�m⇡x0

Source couples to all states with given quantum numbers.
Excited states clearly visible at small x0.

8 / 36

Effective mass

Since exponential fall-off is difficult to judge, one typically
looks at quantities that show a plateau.

C(x0)
C(x0 + a)

=
A e

�mx0

A e�m(x0+a)
= e

am

Effective mass
ameff = log

C(x0)
C(x0 + a)

 0.13

 0.135

 0.14

 0.145

 0.15

 0.155

 10 20 30 40 50 60

m
ef

f,P
S

x0

9 / 36

Statistical error

Reminder:
The square of the error of a measuremnt is proportional to
the variance of the observable

�2(A) = hA2i � hAi2

Parisi’83
The variance is a physical observable, the exponential
fall-off can be predicted.

hAi = hPa(x) P
a(y)i ! �2(A) = hPa(x)Pb(x) P

a(y)Pb(y)i � hAi2

/ e
�E⇡ |x�y| / e

�E2⇡ |x�y|

In large volume, E2⇡ = 2m⇡ = 2E⇡

Constant signal-to-noise ratio

hAi
�(A)

/ e
�m⇡ |x�y|

p
e�2m⇡ |x�y|

= const.

10 / 36

Signal-to-noise problem

For the nucleon, one considers

hAi = �↵�hN↵(x)N̄�(y)i / e
�EN |x�y|

Variance

hA2i�hAi2“ = “hN(x)N̄(x) N(y)N̄(y)i�(hN(x) N̄(y))2i / e
�E3⇡ |x�y|

Matches quantum numbers of three pions and therefore
the signal-to-noise ratio is

hAi
�(A)

= e
�(mN� 3

2 m⇡)|x�y|

Exponential reduction once mN > 3
2m⇡.

Makes calculations of proton properties exceedingly
difficult.

11 / 36

Summary fermions

Most effort goes into fermions.

Deflation of Dirac equation brought great progress.
Is there even more possible?

Computation of PS meson two-point functions
well-established.

Significant challenges in baryon sector.

12 / 36

Back to simulations

What happened so far

Methods for Markov Chain Monte Carlo

Sequence of field configuratoins

!MC time series of measurements

Field updates are expensive! limited statistics

Outline for today

Methods to deal with autocorrelations

13 / 36

Bad start

Topological charge

-10

-5

 0

 5

 10

 0 500 1000 1500 2000 2500 3000

Q

τ

a=0.07fm

a ⇡ 0.08fm

64⇥ 323

m⇡ ⇡ 360MeV

-6

-4

-2

 0

 2

 4

 6

 1000 1500 2000 2500 3000 3500 4000 4500 5000

Q

τ

a=0.045fm

a ⇡ 0.06fm

64⇥ 323

m⇡ ⇡ 460MeV

14 / 36

A bad start

-20
-15
-10
-5
 0
 5

 10
 15
 20

 0 200 400 600 800 1000

Q

τ

a=0.035fm

a ⇡ 0.04fm

128⇥ 643

m⇡ ⇡ 480MeV
15 / 36

Markov Chain Monte Carlo

Sequence of field configurations

U1 ! U2 ! U3 ! · · ·! UN

Generated by a transition probability
density

T(U0 U) � 0 for all U, U
0

Stability
Z

[dU] T(U0 U) P[U] = P[U0]

Normalization
Z

[dU
0] T(U0 U) = 1

16 / 36

Autocorrelations

Sequence of field configurations

U1 ! U2 ! U3 ! · · ·! UN

Measurements of observables are correlated

A1 ! A2 ! A3 ! · · ·! AN

Estimates

Ā ⇡ ÃN =
1
N

NX

i=1

Ai

How far is this off?

 4.2

 4.4

 4.6

 4.8

 0 2000 4000 6000

t 0

τ[MD time]

17 / 36

Autocorrelations

Variance of estimator

hh(ÃN � Ā)2ii =
1

N2

NX

i,j=1

hh(Ai � A)(Aj � A)ii

For N large, this depends only on the difference in
simulation time

h(ÃN � Ā)2i =
1
N

1X

t=�1
�A(t)

�A(t) = h(A0 � Ā)(At � Ā)i

Note:
again substitution average over simulations
! average in simulation time

18 / 36

Error of the measurement

h(Ã� Ā)2i =
1
N

1X

t=�1
�A(t) ; �A(t) = h(A0 � A)(At � A)i

=
var(A)

N

1X

t=�1
⇢A(t)

Integrated autocorrelation time

⌧int(A) =
1
2

+
1X

t=1

�A(t)
�A(0)

⌘ 1
2

+
1X

t=0

⇢A(t)

Error of the measurement

�A =

s
var(A)

N/(2⌧int(A))

Measures efficiency of algorithm.
! eff. statistics reduced by 2⌧int

Can depend strongly on observable A.
19 / 36

Measuring autocorrelations

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

t

ρ
(t

)

Q2

plaquette
m

c

m
s

⌧int(A) =
1
2

+
1X

t=1

⇢A(t)

We only have a limited precision estimate of the
integrand.
Summing to t =1 leads to diverging variance.
! need to cut the summation
! biased estimate
Need to find a balance between stat. and syst. error.

20 / 36

Error of ⌧int

⌧int(A) =
1
2

+
WX

t=1

�A(t)
�A(0)

Systematic error

Summation truncated at W

! neglect potentially large tail.
Particular problem in presence of slow modes.

Statistical error Madras,Sokal

h[⌧̃int(A, W)� ⌧int(A, W)]2i ⇡ 4
N

(W +
1
2
� ⌧int(A))⌧int(A)2

Infinite variance for W !1.

21 / 36

Criteria for W

All automatic methods are problematic.

Cut where �� > �
! large systematic error
Madras-Sokal criterion
!minimum of sum of systematic and statistical error

�
p
⌧p
⌧
/ min

W

⇣
e
�W/⌧ + 2

p
W/N

⌘

ALPHA method (2010)
Estimate ⌧exp from various (slow) observables
Add tail to all other observables before losing
signal �A

22 / 36

Analyzing autocorrelation functions

The autocorrelation function depends on

Underlying theory

Algorithm

Observable

Analyze it similarly to a corraltion function
Wave functions + masses

23 / 36

Detailed balance

Detailed balance

T(U0 U) P[U] = P[U0] T(U0 U)

Implies stability
Z

[dU]T(U0 U)P[U] =
Z

[dU]P[U0]T(U0 U) = P[U0]

Elementary steps frequently fulfill this condition.

As a consequence we have a symmetric matrix M

M(U0 U) = P[U0]�1/2
T(U0 U)P[U]1/2

24 / 36

Detailed balance

Detailed balance

T(U0 U) P[U] = P[U0] T(U0 U)

Associated symmetric matrix M

M(U0 U) = P[U0]�1/2
T(U0 U)P[U]1/2

If ⌘ eigenvector of T

⇠(U) = P
�1/2(U)⌘(U)

is eigenvector of M with the same eigenvalue �.

Spectral decomposition

M =
X

i

�i ⇠i⇠
†
i

25 / 36

Autocorrelation

Spectral decomposition

�A(t) = h (At � Ā) (A0 � Ā) i

=
Z

[dU][dU
0]�A(U0) T

t(U0 U) �A(U) P[U]

=
Z

[dU][dU
0]P1/2[U0]�A(U0)Mt(U0 U)�A(U)P1/2[U]

=
X

n>0

(�n)t [cn(A)]2

With “matrix elements”

cn(A) =
Z

[dU]⇠n(U)[P[U]]1/2(A(U)� Ā)

26 / 36

Spectral representation

�A(t) =
X

n

(�n)t [cn(A)]2

=
X

n

sign�n e
�t/⌧n [cn(A)]2

⌧n = 1/ log |�n| > 0
For the analysis of algorithms it is useful to think of
Monte Carlo time t as a fifth dimension.
Autocorrelation function is a 2pt function.
time constants ⌧n ! inverse masses
Slowest decay ⌧1 ! exponential AC time

27 / 36

Comments

�A(t) =
X

n

e
�t/⌧nc

2
n(A)

⌧n depend only on algorithm
Matrix elements cn depend on observable.
All observables affected by slow modes.

Length of a simulation

Simulation must have length of at least O(100)⇥ ⌧1.
⌧int(A) can be much smaller than ⌧1
Danger of

Incomplete thermalization.
Bias.
Wrong estimate of autocorrelations.

28 / 36

Thermalization

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

A

τ
Same decay rates contribute as in ⌧int
different initial distribution/matrix elements

Z
[dU][dU

0]P1/2[U0]�A(U0)Mt(U0 U)�A(U)
P0[U]

P1/2[U]

=
X

n>0

(�n)t [cn(A)][c(0)
n (A)]

Opportunity to learn about largest ⌧1.
29 / 36

Observables

Need to look at observables with large ci(Ak), i small.
Hunt for slow quantities.

Noise can cover up auto-correlations (⌘ Gaussian noise)

A! A + c⌘) �(t)! �(t) + c
2�t,0

) ⌧int(A)! ⌧int(A)
var(A)

var(A) + c2

Look at low-noise observables

Take into consideration expected scaling properties

⌧int /
1
a2 for a! 0

30 / 36

Wilson flow

LÜSCHER’10, LÜSCHER&WEISZ’11

Smoothing with gradient flow at fixed flow time t = t0.

@tVt(x, µ) = �g
2
0 [@x,µS(Vt)] Vt(x, µ); Vt(x, µ)|t= = U(x, µ)

Gaussian smoothing over r ⇠
p

8t.
Renormalized quantities with continuum limit.
Smooth observables! long autocorrelations.

E = � a
3

2L3

X

~x

tr Gµ⌫Gµ⌫

��
x0=T/2

Q = � a
3

32⇡2

X

~x

tr G̃µ⌫Gµ⌫

��
x0=T/2

Q = � a
4

32⇡2

X

x

tr G̃µ⌫Gµ⌫

31 / 36

Effect of the smoothing

Autocorrelation time of Ē vs smoothing range (a=0.05fm).

0 0.2 0.4 0.6 0.8 1 1.2t/t0
0

20

40

60

80

100
τint

p
8t smoothing radius! t = t0 smoothing over r ⇡ r0

⌧int saturates with ⌧int = 93 + ae
�ct.

32 / 36

Dangers

Algorithm is slow.
Detectable by
measuring
autocorrelations.

There are barriers in field
space.
Hard to detect.

33 / 36

Topological charge

Best recipe: Avoid large autocorrelations ⌧n.

Special case: Topological charge

In the continuum, topological sectors form.
Consequence of the periodic boundary conditions.

Happens very quickly as a! 0.
Engel, S.’10

 0.1

 1

 10

 100

 1000

 10000

161310865432

P a
cc
τ i

nt

ξ

HMC, Q2

HMC, χm
HMC, ξ
HMC, E

34 / 36

Example from CP
N�1 model

Topological charge AC dominates other observables.

 0.001

 0.01

 0.1

 1

 0 1000 2000 3000 4000 5000

ρ χ
m
(t)

t

Solution:
Use setup without topological sectors
! Open boundary conditions.

35 / 36

Summary: Autocorrelations

Autocorrelations always present in MCMC.

Not sufficient to look at one observable alone.

Noise covers correlations, but does not solve them.

Smoothed out quantities particularly sensitive.

For a reliable result, need a careful estimate of ⌧int(A)
and ⌧1.

Work on better algorithms: more statistics, smaller AC.

36 / 36

