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Units for these lectures

Natural units:

Einstein sum convention: 

Hopefully only in a few instances (not intentional):

Small circle approximation:

Supra-natural approximations:

� = 1, c = 1

� = 1

�1 = 1, i = 1

aibi �
�

i

aibi
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Lecture I: QCD at finite temperature and density

Motivation: Why thermal QCD?

 The continuum formulation

Differences and limitations of perturbation theory compared to T=0

The lattice formulation
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Why thermal QCD?

chiral condensate , Cooper pairs
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Chiral symmetry:          broken                                        (nearly) restored
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Thermal QCD in nature

The Early Universe:

Physics of Non-Abelian

Plasmas

Energy Epoque

Quantum Gravity

1019 GeV

Grand Unified Theories

1016 GeV

Supersymmetry

Standard Model

103 GeV

Electroweak Symmetry Breaking

Quark Hadron Transition

100 MeV

Nucleosynthesis
10 MeV

Radiation Matter Decoupling
1 eV

Physics of early universe:

non-abelian plasma physics
(          )

          QCD is prototype

µB ≈ 0
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What are compact stars made of?

Radius  ~ 10-12 km
Mass    ~  1.2-2.2 x Solar Mass

�0 : nuclear density
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Thermal QCD in experimentThis is how experiment probes the phase transition & QGP....

heavy ion collision experiments at RHIC, LHC, GSI....
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QCD phase diagram: theorist’s view (science fiction)

T

µ

confined

QGP

Color superconductor

Tc

!
~170 MeV

~1 GeV?

Expectation based on simplifying models (NJL, linear sigma model, random matrix models, ...)

Check this from first principles QCD! 

Until 2001: no finite density lattice calculations, sign problem!
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The QCD phase diagram established by experiment:

B

Nuclear liquid gas transition with critical end point
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Statistical mechanics reminder

Density matrix,
Partition function:

Thermodynamics:

Densities:

System of particles in volume V with conserved number operators,
in thermal contact with heatbath at temperature T

Canonical ensemble: exchange of energy with bath, particle number fixed

Grand canonical ensemble: exchange of energy and particles with the bath

Ni, i = 1, 2, . . .
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QCD at finite temperature and density

Sg[Aµ] =

1/T
∫

0

dx0

∫

V

d3
x

1

2
Tr FµνFµν

Sf [ψ̄, ψ, Aµ] =

1/T
∫

0

dx0

∫

V

d3
x

Nf
∑

f=1

ψ̄f

(

γµDµ + mf
q − µγ0

)

ψf

Grand canonical partition function

Action

Parameters g2, mu ∼ 3MeV, md ∼ 6MeV, ms ∼ 120MeV, V, T, µ = µB/3

Z(V, T, µ; g, Nf , mf ) = Tr(e−(H−µQ)/T) =

∫
DADψ̄ Dψ e−Sg[Aµ]e−Sf [ψ̄,ψ.Aµ]

quark number Nf
q = ψ̄fγ0ψf

Nf = 2 + 1 sufficient up to T~300-400 MeV
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Difference to T=0: compact, periodic time direction!

Fourier expansion of the fields:   discrete Matsubara frequencies

Thermodynamic limit:

Modified Feynman rules:

Loop integration:Inverse (bosonic) free propagator:

��1 =
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Perturbation theory at finite T

Split action into free (Gaussian) and interacting part, expand in interactions

Renormalisation:  Whatever renormalisation is necessary and sufficient at   
T=0 is also necessary and sufficient at finite temperature and density

UV behaviour:  microscopic physics, depends on details of interactions

         :  macroscopic parameters, affect IR behaviour of the theory

14



Ideal gases from the Gaussian path integral

Important (sometimes unrealistic) model systems to (mis-)guide intuition

Real scalar field:

Fourier space:

S0 =
� 1

T

0
d�

�
d3x

1
2
⇥(x)(�⇤µ⇤µ + m2)⇥(x)
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Note: T-independent constants may be dropped (no contribution to thermodynamics)

For Matsubara sum:

E0 = �⇤ 1
T

lnZ0 =
V

2

�
d3p

(2�)3
⇥Vacuum energy, pressure: p0 = T�V lnZ0 = �E0

V

divergent, zero point energy!
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Renormalisation:

Final result:

Fermion fields (Grassmann!):

quarks and anti-quarkstwo spin components

General one-particle (field) expression:

�i : spin and internal d.o.f

m=0:

m=0:
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Ideal gases in QCD

Free gas of quarks and gluons:  valid at infinite temperature, weak coupling limit

2 gluon spin states gluon colours quark, anti-quark, each two spin states

quark colours

Hadron resonance gas:  at this point a model;  later: strong coupling limit of full QCD

Quark-interactions “hidden” in hadrons; hadrons interact weakly

i = �, ⇥,K, p, n, . . .
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IR-structure: divergences and mass scales

Inverse (bosonic) free propagator:

effective thermal mass ~T

n=0 mode: propagator of a 3d theory, 
divergent for m=0!

Corrections:

electric or Debye screening 
mass

mLO
M = 0, mM � g2T from 2-loop magnetic screening 

mass

�Ai(x)Ai(y)⇥

�A0(x)A0(y)⇥

0-mode sector of 4d QCD at finite T contains 3d Yang-Mills theory with 
Confining! Doom for perturbation theory....

g2
3 � g2T
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The Linde problem of finite T QCD / 3d YM

contribution from
Matsubara 0-mode:

even for weak coupling!

contribution to pressure
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Same problem for all observables!
Only the order to which it occurrs is different:

E.g. for magnetic mass already at leading order (2-loop)

Perturbation theory at finite temperature works only 
up to a finite, observable-dependent order, 
no matter how weak the coupling!
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Salvation comes as a lattice...
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The lattice formulation at zero density

Hypercubic lattice:               ,   Lattice spacing     ,     Wilson’s YM action:a

Plaquette: Lattice gauge coupling: � =
2N

g2

Periodic boundary conditions:

N
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Transfer matrix formalism

Provides connection between path integral and Hamiltonian formalism

Rewrite action as sum over time slices:

spatial plaquettes within one time slice

temporal plaquettes connecting slices

Transfer matrix: operator acting on square-integrable functions �[U ]

Matrix elements:
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Rewrite partition function exactly:

Translation of states by one time-slice:         |⇥[Ui(� + 1,x)]� = T |⇥[Ui(�,x)]�

Identify:         T = e�aH

Identify:         

Thermal expectation value:

Thermodynamic limit:                 but keep T finite   

Vacuum expectation value:

H|n� = En|n�

complete set of energy eigenstates    
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The space-wise transfer matrix

Hamiltonian translates in time; 
Spectrum: particle masses, from exp. decay of correlators in time

May also define a Hamiltonian translating the system in space;
Spectrum: screening masses, from exp. decay of correlators in space

:

Thermal physics:

Vacuum physics: Nx,y,z,� �⇥ spectra identicalH,Hz

Hz acts on states defined on             lattice; 

spectrum of theory on torus with one side squeezed

Finite T physics = finite size effect of the shortened time direction!

Nx,y,�
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Adding fermions

Pick a suitable fermion action:

Full QCD partition function:

Wilson fermions:
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Fixes: pick your poison

Wilson fermions
add irrelevant ops. (going away in CL) to make doublers very massive
breaks chiral symmetry for non-zero a 

staggered (Kogut-Susskind) fermions
distribute spinor components on different sites, reduces to 4 flavours
take 4th root of determinant to get to one flavour, keeps reduced chiral symm.
non-local operation, have to take CL before chiral limit, mixing of spin, flavour

domain wall fermions
introduce 5th dimension, fermions massive in that dim. and chiral in the other
expensive

overlap fermions
non-local formulation with modified chiral symmetry even for finite a
two orders of magnitude more expensive than Wilson
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Continuum limit 

Fixed scale approach: 

 For a given lattice spacing,       controls temperature;

 Allows only discrete temperatures, too large for many applications;

 Continuum limit requires series of lattice spacings

Fixed       approach:

For a given      , vary the lattice spacing via        ;   
      

Allows continuous temperatures, but each T value has different cut-off! 

Continuum limit requires series of 

N� �(a)

N�

N�

N�
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Lines of constant physics and setting the scale

 Compute observable for series of           ,             a, N�

 Tune bare parameters such that for each lattice 
     spacing renormalised parameters are constant   

 More practical: keep physical quantities constant  

 Non-trivial because of cut-off effects:
     Different for different quantities and actions        

Perturbative relation for         :  only good very close to continuum limit       �(a)

�QCD on lattice:
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Non-perturbatively:  Express computed quantity in units of another known quantity 

E.g. for the critical temperature of a phase transition:

Compute hadron mass at the critical lattice spacing:

N.B.: Only possible when operating at physical quark masses!

For unphysical quark masses:        
(out of computational limitations or interest in certain limits, mass dependence etc.)

Take quantity that depends only weakly on quark masses: 
String tension, Sommer scale
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Requirements for and constraints from the lattice:

a ≪ ξ ≪ aL !

, ξ ∼ m−1
H

correlation length    :  lightest gauge invariant (hadronic?) mass scaleξ

scale of interest:

feasible lattices: 32
3
× 4, 16

3
× 8

T = 1
aNt

a ∼ 0.1 − 0.3fm

Tc ∼ 200MeV ∼ (1fm)−1

aL ∼ 1.5 − 3fm

low T (confined) phase: 

high T (deconfined) phase: mπ ∼ T, ξ ∼ 1/T
1

Nt

≪ 1 ≪
L

Nt

mπ
>
∼

250MeV

T <
∼

5Tc

lighter just beginning...
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The ideal gas on the lattice

Starting point:  propagator of a free scalar field

Lattice momenta:

Matsubara sum by analytic continuation, use:
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Substitution:  

Expand in small lattice spacing about continuum limit:  

a�0�⇥ 0

So we may put a=0 in the integration limits!  Now expand the dispersion relation  
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Expansion of the pressure now simple: expand down                 ,   then expand log e�aEN�

Use dimensionless variables:

Free boson gas has leading               
cut-off effects!

O(a2)

The bosonic dispersion relation has leading             cut-off effects O(a2)

Improvement: subtracting these, the dispersion relation is “p4-improved”

breaks rotation invariance
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Free fermion gas on the lattice

For Wilson fermions with finite mass,  the leading correction is         , staggered O(a) O(a2)

Analogous calculation, massless case starts also at O(a2)

Note:                  required for leading cut-off effects to dominate!N� � 10

O.P., Zeidlewicz, PRD 81 (2010)

36



Summary Lecture I

Perturbation theory of finite T QCD in continuum has infrared problems

Long wavelength modes of finite T QCD are always confining, even at high T

Finite T on the lattice is a finite size effect

For simulations with fixed Nt discretisation errors are T-dependent

Perturbation theory allows assessment of cut-off effects, but only at high T
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Lecture II: 

Owe Philipsen

QCD in the static and chiral limit 

The equation of state

Screening masses

Free energy of static quarks

Phase transitions

Parma,  September  2014 Lattice: Methods and Applications
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Quenched limit of QCD and Z(N) symmetry

Infinite quark masses (omitting flavour index)

Static quark propagator: �⇤a
�(⇥,x)⇤̄b

⇥(0,x)⇥ = ��⇥ e�m⇤
�
Tei

R �
0 d⇤A0(⇤,x)

⇥

ab

On the finite T lattice:           Polyakov loop

Static QCD: 
(one flavour)

m�⇥

Gauge transformations:

Periodic b.c.: 

Action gauge invariant:

Sstatic[U ] = Sg[U ] +
⇤

x

�
e�mN� TrL(x) + e�mN� TrL†(x)

⇥

m�⇥�⇥ Sg[U ]
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Topologically non-trivial gauge transformations:

Modified b.c. for trafo matrix:

global “twist”

needs to be periodic for correct finite T physics! 

Sg[Ug�
] = Sg[U ] invariant:  centre symmetry of pure gauge action 

Centre of SU(N) 

Note: this is not a symmetry of    , but of      !  H Hz

Requires compact time direction with periodic b.c. ; finite T!
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Polyakov loop picks up a phase under centre transformations

Partition function in the presence of one static quark: 

gives free energy difference of thermal YM-system with and without a static quark 

Small T:                    because of confinement

Large T:                    

Thus Polyakov loop is non-analytic function of T                phase transition!

Deconfinement phase transition in YM: spontaneous breaking of Z(N) symmetry
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Now add dynamical quarks: 

needs to be anti-periodic for correct finite T physics! h = 1 only

Centre symmetry explicitly broken by dynamical quarks! 

for all T!             

Confined and deconfined region analytically connected (only one phase!)
No need for a phase transition!
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II.The chiral limit of QCD

massless quarks:

Sf invariant under global chiral transformations

SU(Nf )L × SU(Nf )R → SU(Nf )V

UA(1) × SU(Nf )L × SU(Nf )R

spontaneous symmetry breaking:

N
2

f − 1   massless Goldstone bosons, pions

order parameter:    chiral condensate ⟨ψ̄ψ⟩ =
1

L3Nt

∂

∂mq

lnZ

⟨ψ̄ψ⟩

{

> 0 ⇔ symmetry broken phase, T < Tc

= 0 ⇔ symmetric phase, T > Tc

chiral transition: spontaneous restoration of global                                   at high T SU(Nf )L × SU(Nf )R

But: chiral limit cannot be simulated!!

Massless QCD and chiral symmetry (continuum)

Chiral symmetry explicitly broken by dynamical quarks, no need for phase transition!
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Physical QCD

.....breaks both chiral and Z(3) symmetry explicitly 

.....but displays confinement and very light pions

no order parameter           no phase transition necessary!

if there is a p.t.:        are there two distinct transitions?

if there is just one p.t.:    is it related to chiral or Z(3) dynamics?   

if there is no phase transition:   how do the properties of matter change?

T
deconf
c < T

chiral
c
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Equation of state: ideal (non-interacting) gases

partition fcn. for one relativistic bosonic/fermionic d.o.f.:

equation of state for g d.o.f., two relevant limits:

Relativistic Boson, m ≪ T × (Fermion) Non-relativistic, m ≫ T

pr = g π
2

90
T 4

(

7

8

)

pnr = gT
(

mT

2π

)
3

2 exp(−m/T )

ϵr = g π
2

30
T 4

(

7

8

)

ϵnr = m

T
pnr ≫ pnr

pr = ϵr/3, pnr ≃ 0

lnZ = V

∫

d3p

(2π)3
ln

(

1 ± e−(E(p)−µ)/T
)±1

, E(p) =
√

p2 + m2

Stefan-Boltzmann
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The QCD equation of state

Task: compute free energy density or pressure density 

all bulk thermodynamic properties follow:

f = −

T

V
lnZ(T, V )

p = −f,
ϵ − 3p

T 4
= T

d

dT

( p

T 4

)

,
s

T 3
=

ϵ + p

T 4
, c2

s
=

dp

dϵ

Technical problem:  partition function in Monte Carlo normalized to 1.
                                           
                                        not directly calculable, only Z, p, f ⟨O⟩ = Z−1 Tr(ρO)

f

T 4

∣

∣

∣

∣

T

To

= −

1

V

∫ T

To

dx
∂x−3 lnZ(x, V )

∂xIntegral method:
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modify for lattice action:

f

T 4

∣

∣

∣

∣

β

βo

= −

N3
τ

L3

∫ β

βo

dβ′

(〈

∂ lnZ

∂β

〉

−

〈

∂ lnZ

∂β

〉

T=0

)

N.B.:  lower integration constant not rigorously defined, 
         but exponentially suppressed

f

T 4
(β0) ∼ e−mglueball/T

≈ 0

cut-off effects in the high temperature, ideal gas limit:

p

T 4

∣

∣

∣

∣

Nτ

=
p

T 4

∣

∣

∣

∣

∞

+
c

N2
τ

+ O(N−4

τ )

          momenta ∼ T ∼

1

a

(staggered)

Hadron

Integration along line of constant physics!
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Quantities to be calculated:

For the numerical integration along lines of constant physics, need beta-functions!

Directly accessible before integration: trace anomaly
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Numerical results, pure gauge

Boyd et al., NPB 469 (1996)

Continuum extrapolation using Nt=6,8Ideal gas behaviour at high and low T
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ϵSB
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3π2
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compare with ideal gas:

Tc und Zustandsgleichung Bielefeld

Reine Eichtheorie : Tc/
√

σ = 0.637 ± 0.005

Tc = (271 ± 2) MeV continuum extrapolated

Chiraler Limes, Nf = 2 : Tc = (173 ± 8) MeV Nt = 4, a ∼ 0.3 fm

Nf = 3 : Tc = (154 ± 8) MeV ”
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  0

  1

  2

  3

  4

  5

100 200 300 400 500 600

T [MeV] 

p/T
4 pSB/T

4

3 flavour
2+1 flavour

2 flavour
pure gauge

⇒T > Tc: mehr Freiheitsgrade, aber signifikante Wechselwirkung!more degrees of freedom, but significant interaction!

sQGP  or `almost ideal’ gas....?

staggered p4-improved, Nτ = 4 Bielefeld

so far qualitative, lattices too coarse, quark masses too heavy...

Numerical results on the equation of state

Pions

Gluons and Quarks

Karsch et al., PLB 478 (2000)

Flavour dependence of the equation of state
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Deconfinement:
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Beware of cut-off effects!

Different versions of improved staggered actions:

Taste splittings of staggered actions give 
different contributions to pressure 
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Equation of state for physical quark masses, continuum

Budapest-Marseille-Wuppertal 

Hadron resonance gas model

Karsch et al., PLB 478 (2000)

Symanzik-improved gauge action, staggered quarks with stout links
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Screening in a QED plasma 

+

+

+

+
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- -

+

QCD auf dem Gitter

System mit endlich vielen Freiheitsgraden, Erwartungswerte :

⟨O⟩ = Z−1

∫

DU detM O e−Sg[U ]

≈
1

N

N
∑

n=1

(detMO)[U ] Mittelung über Eichkonfigurationen U

Für Hadron mitmH , ξ ∼ m−1
H

a ≪ ξ ≪ aL ! ξ

⇒e.g. 304 ∼ 106 Gitterpunkte

Jeder Punkt⇒4 U ’s, jedes U ⇒8 unabh. Komponenten

⇒108-dimensionales Integral!

Typisch: a ∼ 0.1 − 0.3 fm, L ∼ 1.5 − 3 fm

mD = ξ−1 inverse screening length

determined by equal time field correlator:

lim
|x−x

′|→∞
⟨Ei(x, t), Ej(x

′, t)⟩ ∼ e−mD|x−x
′|

equivalently:

V (r) = Q

∫
d3k

(2π)3
eikr

k2 + Π00(0,k)
= Q

e−mDr

4πr

Fourier transform of       propagator 
= LO potential of a static charge

A0

effective photon mass

magn. fields unscreened

∼ T

Screening masses: QED
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analogy: screening of colour sources            deconfinement

proposed plasma signal:            suppression

BUT:

field correlator not gauge-invariant!     

perturbatively:  fix gauge, look for pole mass in      propagator (gauge-inv.)

                                                                                           Kobes et al.

                                                                                           

non-analytic in      ,         receives contributions from all orders    (Linde problem)

                                     (magn. mass scale)

Screening in the QCD plasma

A0

mD = m0

D +
3

4π
g2T ln

m0
D

g2T
+ c3g

2T + O(g3T )

g
2 c3

m0

D =

(

N

3
+

Nf

6

)1/2

gT

Erste Simulation mit dynamischen Fermionen,Nf = 2, T = 1 − 1.5Tc Aarts et al.

ηc J/ψ
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a
t
!

0
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0.6

0.8

"
(!
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!

2

PS, N
t
=24

PS, N
t
=32

PS, continuum

V, N
t
=24

V, N
t
=32

V, continuum

#=8, a
t
m=0.1

Spektralfunktion freier Fermionen

Gitterartefakte

⇒scheinbare Teilchenanregungen

⇒1S Zustände scheinen bis∼ 1.5Tc stabil

Rebhan

Matsui, Satz

Screening masses: QCD
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Generalized definition of screening 

  spatial correlators of equilibrated, gauge inv. sources  

Static, equilibrium (time averaged) spatial correlators

Ā(x) = 1
β

∫ β
0 dτ A(x,−iτ)

C(|x|) = ⟨Ā(x)Ā(0)⟩c ∼ e−M |x|

M : eigenvalue of the spacewise transfer matrix
inverse screening length for source with quantum no’s of A

e.g.: Debye screening

for |x| ≫ 1
T effectively three-dimensional!

Effective theory approach
Ginsparg;
Appelquist, Pisarski;
Reisz; Kajantie et al;
Braaten, Nieto. . .• Perturbative dimensional reduction

integrate out p ∼ T (non-zero Matsubara modes, fermions!),

expansion in g/(4π)

• Lattice simulation of effective theory
IR-modes p ∼ gT, g2T , 3d, purely bosonic

C(|x|) computed from 3d lattice theory with perturbatively
matched parameters ⇒ M : eigenvalue of 3d transfer matrix

error(2-loop):
δC

C
∼ O(g3)

<∼ 5% electroweak phase tr.
<∼ 15%? QCD

3d: β = N/ag2
3

accurate infinite volume and continuum limits!
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Braaten, Nieto. . .• Perturbative dimensional reduction

integrate out p ∼ T (non-zero Matsubara modes, fermions!),

expansion in g/(4π)

• Lattice simulation of effective theory
IR-modes p ∼ gT, g2T , 3d, purely bosonic

C(|x|) computed from 3d lattice theory with perturbatively
matched parameters ⇒ M : eigenvalue of 3d transfer matrix

error(2-loop):
δC

C
∼ O(g3)

<∼ 5% electroweak phase tr.
<∼ 15%? QCD

3d: β = N/ag2
3

accurate infinite volume and continuum limits!

7

in principle all equilibrium properties encoded in screening spectrum!

Technically:   spectrum of spatial Hamiltonian with one compactified
                   dimension, characterized by:

J
PC
R

T-reflection, Z(2)SO(2) rotations
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Screening masses from numerical simulations

0

1

2

3

4

5

6

0 1 2 3 4 5 6
M

 /
 T

 
T / TC

 2!

! staggered
" staggered

! Wilson
" Wilson

0

1

2

3

4

5

6

1 2 3

M
/T

T/Tc

A
1
++

A
2
--

pure gauge, `glueballs` `mesons` from quenched chiral 
fermions

T < Tc : screening masses stable and close to the            massesT = 0

T > Tc : pion mode massive, degeneracies V, AV         chiral symmetry restoration

T = Tc : dip in screening mass=peak in suscept.  χ =

∫ 1/T

0

dτ

∫
d3x C(τ,x)

Datta, Gupta Bielefeld

0
++
+

`mesons` dynamical, staggered
RBC-Bielefeld, EPJC 71 (2011)Datta, Gupta, PRD 67 (2003)
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Identify screening d.o.f. from mixing analyses

Hart et al., NPB 586 (2000)
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Studies of chiral symmetry restoration: 
RBC-Bielefeld, EPJC 71 (2011)
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The free energy of a static quark anti-quark pair

Transfer matrix in temporal gauge: 

Acts on Hilbert space of states with static charges

Projection operator: 

Projects on sector with fundamental 
charge at x and anti-charge at 0;
annihilates all other states

|��µ[Ug]� = g�⇥(x)g†⇤µ(0)|�⇥⇤[U ]�
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Zero temperature limit:

This is the usual static potential of a quark anti-quark pair at distance |x|.

The free energy is the Boltzmann-weighted sum over all excited states.
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The static quark free energy in the quenched limit

4

6
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V(R,T)/T

R T

!
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-0.05

0
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R T

V(R)/T

!

4.075
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4.08  
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4.09  
4.10  
4.15  
4.20  
4.40  
4.60  
4.80  

Bielefeld

T < Tc T > Tc

σ(T )

σ(0)
= a

√

1 − b
T 2

T 2
c

Fqq̄(r, T )

T
= −

c(T )

(rT )d
e−µ(T )r

Kaczmarek et al., PRD 62 (2000)
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Screening of the static potential (viz. static quarkonium)

0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4 4.5 5

µ(T)/T

T/Tc

Nt=4
Nt=6
Nt=8

...in pure gauge theory

Fqq̄(r, T )

T
= −

c(T )

(rT )d
e−µ(T )r

perturbation theory: d = 2, µ = 2m0

D

numerically: d ≈ 3/2, µ ≈ M
0
++

+

exchange of two A0

lightest gauge inv. screening mass

Screening of the static quark free energy
Kaczmarek et al., PRD 62 (2000)
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The static quark free energy, dynamical 

0.00

0.50

1.00

1.50

2.00

0 1 2 3 4 5

F(r)/!"

r!"

Bielefeld

V (r) = −α/r + rσ

with dynamical light quarks:

screening of colour force at T=0 by dynamical fermions

with increasing T screening by the plasma

T = 0.58Tc

T = 1.15Tc

Nf = 3
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Decomposition in different colour channels

McLerran, Svetitsky PRD 81

e−Fq̄q(r,T )/T =
1

N2
⟨TrL†(x) TrL(y)⟩ =

1

N2
e−F1(r,T )/T +

N2 − 1

N2
e−F8(r,T )/T

e−F1(r,T )/T =
1

N
⟨TrL†(x)L(y)⟩,

e−F8(r,T )/T =
1

N2 − 1
⟨TrL†(x) TrL(y)⟩ −

1

N(N2 − 1)
⟨TrL†(x)L(y)⟩.

correlators in ‘singlet’ and ‘octet’ channels gauge dependent, non-pert. meaning?

F1(r, T ) ∼
e−mD(T )r

4πr
Nadkarni PRD 86
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Spectral analysis of Polyakov loop correlators

Jahn, O.P., PRD 05

T̂0 = e
−aĤ0 with Kogut-Susskind Hamiltonian in temporal gauge

energies: usual (T=0) colour singlet potential + excit. in all three channels

non-vanishing matrix elements in singlet and octet channel

matrix elements path/gauge dependent but contribute

e−Fq̄q/T =
1

ZN4
T̂r [T̂Nt

0
P̂F⊗F̄] =

1

ZN2

∑

n

⟨nαβ |nβα⟩ e−En/T

e−F1/T =
1

ZN2

∑

n

⟨nδγ |Ûγδ(x,y)Û†
αβ(x,y)|nβα⟩ e−En/T

e−F8/T =
1

ZN2

∑

n

⟨nδγ |Û
a
γδ(x,y)Û†a

αβ(x,y)|nβα⟩ e−En/T
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Phase transitions and phase diagrams

• phase transitions: singularities in free energy F ⇒zeroes in partition functionZ

only in thermodynamic limit! ( Lee, Yang)

• first order: jump in order parameter, latent heat, phase coexistence

• second order: diverging correlation length

• crossover smooth, analytic transition

Example 1: water

order parameter: density ρ
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Example 2: ferromagnetism

M/V

T_c

H=0

H>0

disordered

ordered

T

Ising model, Z(2) symmetry

spins with nearest neighbour interaction

E = −
∑

ij ϵi,jsisj − H
∑

i si

Universality of 2.o. phase transitions, critical exponents:

Correlation length diverges: microscopic dynamics unimportant, only global symmetries

specific heat C ∼ |t|−α, magnetizationM ∼ |t|β, . . . t = T−Tc

Tc

exponents the same for all systems within one universality class!

Critical endpoint of water shows 3d Ising universality, Z(2)!

31



Fluctuations visible in any observable, but 
largest in “order parameter”:

Generalised susceptibilities:

(Note: can be generalised to 4d, but the QCD equilibrium system is 3d!)

Volume averages (intensive variables):

fluctuation:

Finding a phase transition: fluctuations

Pseudo-critical couplings (finite V!):  fluctuations maximal but finite!

pseudo-critical parameters not unique!
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Finding the phase transition:   the critical temperature 

5.2 5.3 5.4
0

0.1

0.2

0.3

0.4

0.5

0.6

m
q
/T = 0.08

m

5.2 5.3 5.4
0

0.1

0.2

0.3

m
q
/T = 0.08L

L

‘Measuring’ the phase transition I: (pseudo-) critical temperature T0

hadron gas→ quark gluon plasma: deconfinement or chiral phase transition?

“order parameters”:

Polyakov loop ⟨L⟩ (form → ∞), chiral condensate ⟨ψ̄ψ⟩ (form → 0)

5.2 5.3 5.4
0

0.1

0.2

0.3

m
q
/T = 0.08L

L

5.2 5.3 5.4
0

0.1

0.2

0.3

0.4

0.5

0.6

  

m

Susceptibilities: χ = V Nt(⟨O2⟩ − ⟨O⟩2) ⇒χmax = χ(β0) ⇒T0

β0, T0 only pseudo-critical on finite V

Susceptibilities:

Measuring the `order parameter’ as function of lattice coupling (viz. T)

here:  Nf = 2
β =

2Nc

g2(a)
T =

1

aNt

Tdeconf ≈ Tchiral
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Approaching the thermodynamic limit

different definitions (e.g. scanning in different directions, different observables etc.)

β0(µ) not unique

µ

T
finite V

βc(µ) unique for p.t., not for crossover

µ

T
infinite V

Critical line unique in thermodynamic limit!

Order of transition: finite volume scaling (β0(V ) − β0(∞)) ∼ V −σ

σ = 1 1st order

σ < 1 2nd order

σ = 0 crossover
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Scaling analyses employing universality

Effective Hamiltonian analogous to Ising model:

E energy-like M magnetisation-like
� temperature-like h magnetic field-like

Extensive operators:

Parameters:

At a critical point, the singular part of the free energy has the scaling form:

dim.less scale factor

Relation between scaling dimensions and 
critical exponents:
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How to map parameters and fields of QCD to those of the Ising model?

For many applications not necessary...

E(Sp, ⇤̄⇤, ...), M(Sp, ⇤̄⇤, ...), ⇥(�,mf , µf ), h(�,mf , µf )

��̄�(E,M) mix of energy and magnetic susceptibilities, 
in thermodynamic limit the more divergent one dominates!

Symmetry groups relevant for QCD:  Z(2), O(4), O(2)

�/⇥

First order scaling:

Analytic crossover:          no divergence, susceptibilities have finite thermodynamic limit
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Summary Lecture II

In the strong coupling limit QCD reduces to hadron resonance gas

Equation of state accessible at physical masses in the continuum limit

Screening masses give information about relevant scales, symmetries

Static quark free energy gives information about deconfinement;
But not to be used in potential models

Phase transitions are non-analyticities in the thermodynamic functions;
Only visible in infinite volume: finite size scaling necessary!
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Lecture III: 

Owe Philipsen

The QCD phase transition at zero density 

Lattice QCD at finite temperature and density

Towards the QCD phase diagram

           Parma, September  2014 Lattice: Methods and Applications
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The order of the QCD thermal transition, 

chiral p.t.
restoration of global

µ = 0

deconfinement p.t.: 
breaking of global 

SU(2)L � SU(2)R � U(1)A

Z(3)

anomalous

chiral critical line

deconfinement critical line

2



Very difficult!

Monte Carlo history,
plaquette near phase boundary 

 Distribution:

 0.49

 0.495

 0.5

 0.505

 0.51

 0.515

 0.52

 0.525

 0.53

 0  1000  2000  3000  4000  5000  6000  7000  8000
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The nature of the phase transition at the physical point Fodor et al. 06

...in the staggered approximation...in the continuum...is a crossover!

The nature of the transition for phys. masses Aoki et al. 06
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How to identify the critical surface: Binder cumulant

B4(ψ̄ψ) ≡
⟨(δψ̄ψ)4⟩

⟨(δψ̄ψ)2⟩2
V →∞

−→

⎧

⎨

⎩

1.604 3d Ising
1 first − order
3 crossover
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B4(m, L) = 1.604 + bL1/ν(m − mc
0), ν = 0.63µ = 0 :

university-logo

Intro Tc CEP Results Discussion Concl. Others Strategy

Observable: Binder cumulant

• Probability distribution of order parameter

- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

- 2nd order: scale-invariant distribution with known Ising exponents

- encoded in Binder cumulant

• Measure B4(!̄!) ≡ ⟨("!̄!)4⟩
⟨("!̄!)2⟩2

∣
∣
∣
⟨("!̄!)3⟩=0

=
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⎨

⎩

3 crossover

1 first−order
1.604 3d Ising

for V → #
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• Finite volume, µ= 0: B4(am) = 1.604+ c(L)(am−am
c

0)+ . . . , c(L) % L
1/&

Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

How to identify the order of the phase transition

x� xc

parameter along  phase boundary, T = Tc(x)
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Order of p.t., arbitrary quark masses  
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physical point: crossover in the continuum                   Aoki et al 06

chiral critical line on                                                   de Forcrand, O.P. 07

consistent with tri-critical point at 

But:              chiral O(4) vs. 1st still open               Di Giacomo et al 05, Kogut, Sinclair 07
            anomaly!                                                  Chandrasekharan, Mehta 07
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Towards the continuum: Nt = 6, a � 0.2 fm

Nt=4

mc
�(Nt = 4)

mc
�(Nt = 6)

� 1.77 Nf = 3 de Forcrand, Kim, O.P. 07
Endrödi et al 07 

phys.
point

0
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f

f
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m s
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2nd order
O(4) ?

2nd order
Z(2)

2nd order
Z(2)

crossover
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 d 

tric

!

!

Pure

Nt=6

First order region shrinks drastically, continuum limit not yet known...

N.B.: for fixed masses in physical units the order of the p.t. depends on the cut-off!
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Lattice QCD at finite baryon density

Quark number and chemical potential:

Necessary for real world applications:        heavy ion collisions, nuclear matter, 
                                                               compact stars,...

Behaviour under charge conjugation:       
                                                              

sign flip in Q!

µ > 0 : net baryon number
µ < 0 : net anti-baryon number

8



Exact symmetry of the continuum grand canonical partition function:       
                                                              

Lattice implementation, naive:       
                                                              

Introduces divergence, which is absent
at zero density: failure!

Another symmetry broken by the discretisation!

Continuum fermion number like current coupling to (imaginary) gauge field:

9



Effectively part of covariant derivative, “gauged” U(1), protects against renormalisation

Lattice implementation: lattice covariant derivative with external gauge field

Wilson fermions:

)

(Discretisation not unique, only continuum limit)

Now use
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The sign problem

Dirac operators satisfy 
(continuum, Wilson, staggered,...)

With complex chemical potential:

“Sign problem” of QCD

Complex measure cannot be used for MC importance sampling

After integration over gauge fields the partition function is real!

Generic for systems with anti-particles, necessary for physics!
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 1dim. illustration

12



Example:  Polyakov loop

Static quarks and anti-quarks must have different free energy at finite density!

Sign problem expresses 
property under C-conjugation!

Cluster algorithms find configs. with conjugate determinant
works for particular Hamiltonians, but not QCD

Simulation with Langevin algorithms (no importance sampling)
Only proven to work for real actions, but work for some ranges of coupling 
constants

Fixes:

13



Special cases without sign problem

Two flavours, finite isospin chemical potential:

Two colours, SU(2) QCD:

real reps.

Imaginary chemical potential:

real for

14



Approximate methods to evade the sign problem:
Reweighting

Based on exact relation:

I. Numerically difficult, signal exponentially suppressed with volume

II. Overlap problem, because of importance sampling

With increasing difference the most frequent configs. are
increasingly unimportant 

U

S

µ=0 finite µ

in
te

gr
an

d
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Finite density by Taylor expansion

Taylor expansion of the pressure 
around zero density:

The coefficients can be computed at zero density!

Other physical quantities follow:

No sign problem, but need small µ/T

Higher coeffs. increasingly difficult:
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QCD at imaginary chemical potential

No sign problem; general idea:

Observables have definite symmetry,
even or odd in chemical potential

Simulate left side without further systematic error

Check if fit to low order polynomial is possible 

Analytic continuation trivial (in the absence of singularities)

General considerations:

Partition function is periodic

Is this a healthy theory?

Yes! Recall

Equivalent to theory in real external field!

Z = T̂r e�
(H�iµiQ)

T

µ/T < 1
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Periodicity non-trivial:

Chemical potential can be absorbed by boundary conditions

Consider the topological gauge trafo

Measure and action are invariant, hence

Both partition fcns. related by gauge trafo, identical!

Roberge-Weiss symmetry:
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The phase diagram at imaginary chemical potential

-2!/3 -!/3 0 !/3 2!/3

T

!I/T

disordered

Tc(!=0)

ordered, k=0 ordered, k=1ordered, k=2

Z3 transitions

Phase of Polyakov loop

Analytic continuation
of chiral/deconfinement
transition, depends on
Nf, quark masses

Roberge-Weiss:     Z(3) transitions are first order for large T (perturbation theory)
                                                          crossover for small T (strong coupling limit)

Limited by singularity (phase transition)
closest to  µ = 0
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The Z(3) transition numerically
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Sectors characterised by phase of Polyakov loop: �L(x)⇥ = |�L(x)⇥| ei�

Low T: crossover         High T: first order p.t.

Nf=2:  de Forcrand, O.P. 02 

Nf=4:  D’Elia, Lombardo 03 
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Towards the QCD phase diagram 

Analyticity of the (pseudo-)critical line

Recall definition by peak of susceptibilities:

Implicit definition of pseudo-critical line

Implicit function theorem:

For analytic susceptibility, also the implicitly 
defined pseudo-critical coupling is analytic 
(always true on finite V!)

�c(mf , µ)

⇥max = ⇥(�c, mf , µ)

Accessible to all methods discussed for sufficiently small chemical potential

Crosscheck, in particular between Taylor coefficients and imaginary chem. pot.
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Test of methods: comparing Tc(µ)
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The calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc

!

need

Upper region: equation of state, screening masses, quark number susceptibilities etc.
under control

µ/T <� 1 (µ = µB/3)
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Much harder: is there a QCD critical point?

12
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Fodor,Katz JHEP 04

abrupt change:  physics or problem of the method?                       Splittorff 05; 
                                                                                                 Han, Stephanov 08                                       

Lee-Yang zero:

Critical point from reweighting

                 physical quark masses, unimproved staggered fermionsNt = 4, Nf = 2 + 1

Approach 1a:    CEP from reweighting Fodor, Katz 04 

Splittorf 05, Stephanov 08 

caused by baryon or pion condensation?
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Approach 1b: CEP from Taylor expansion

p

T 4
=
�⇤

n=0

c2n(T )
� µ

T

⇥2n

Nearest singularity=radius of convergence
µE

TE
= lim

n�⇥

⇥����
c2n

c2n+2

����, lim
n�⇥

����
c0

c2n

����

1
2n

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.85  0.9  0.95  1  1.05  1.1

T/Tc(0)

! !2(p/T
4
)

!4(p/T
4
)

!2("B)

!4("B)

C.Schmidt, hotQCD 09

Hadron resonance gas

Radius of convergence necessary condition for CEP, but can it proof its existence?  

   Different definitions agree only for                 
   not n=1,2,3,... 
   control of systematics?      

n�⇥
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Approach 2:  follow chiral critical line        surface

mc(µ)
mc(0)

= 1 +
⇤

k=1

ck

� µ

�T

⇥2k

ch
ir

al
 p

.t
.

ch
ir

al
 p

.t
.

hard/easy

de Forcrand, O.P.   08,09 
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Finite density: chiral critical line        critical surface
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Curvature of the chiral critical surface

de Forcrand, O.P.   08,09 
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Nf=3:  a) fit to imaginary chemical potential
          b) calculation of coefficient by finite differences

Importance of higher order terms ? 
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On coarse lattice exotic scenario: 
no chiral critical point at small density

Weakening of p.t. with chemical potential also for:

-Heavy quarks                                                               de Forcrand, Kim, Takaishi 05

-Light quarks with finite isospin density                           Kogut, Sinclair 07

-Electroweak phase transition with finite lepton density   Gynther 03

  QCD critical point DISAPPEARED

crossover 1rst
0 ∞

Real world

X

Heavy quarks

mu,d
ms

µ
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Un-discovering a critical point feels like...
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Understanding the curvature from imaginary

Nf=4: D’Elia, Di Renzo, Lombardo 07    Nf=2:  D’Elia, Sanfilippo 09    Nf=3:

Strategy:  fix                    ,  measure  Im(L),  order parameter at 

              determine order of Z(3) branch/end point as function of m   

µi

T
= �µi

T
=

�

3
, �

µ

de Forcrand, O.P. 10

0 0.5 1 1.5 2 2.5 3 3.5 4

T

µi

T /(π
3 )

ordered

disordered

ordered

disordered
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� = 0.33, 0.5, 0.63

for 1st order, tri-critical, 3d Ising 

 0.3
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!
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Tricritical

First order

On infinite volume, this becomes a step function, 
smoothness due to finite L

T

m

Phase diagram at fixed
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triple line

3d Ising

ordered phase
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Scaling of Binder cumulant:
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Critical lines at imaginary µ
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Z(2)

crossover

1st

 d 

tric

!

!

Pure

µ = i
�T

3µ = 0

-Connection computable with standard Monte Carlo!   
-Here: heavy quarks in eff. theory
        

triple

tricritical1st

 order
triple

1st order

    2nd order

 3d Ising

mu,d

m
s

?
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3d, imaginary chemical potential included:
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Deconfinement critical line
Fromm, Langelage, Lottini, O.P. 11

mc

T
(µ2) =

mtric

T
+ K

⇤��

3

⇥2
+

� µ

T

⇥2
⌅2/5

tri-critical scaling:                                                                                    exponent universal
        

Heavy quarks
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Summary Lecture IV

Thermal transition at zero density is a crossover

The sign problem is related to C-symmetry

Direct MC methods to circumvent only at small chemical potential

In the controlled region there is no evidence for a chiral critical point!

Langevin algorithms?
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New horizon: onset of cold nuclear matter 

... with very heavy quarks

continuum limit with 5-7 lattice spacings per point

consistent with physical  
nuclear density

µ

T
� 4000

m� = 20 GeV, T = 10 MeV, a = 0.17 fm

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.994  0.996  0.998  1  1.002

n
B
 /

 m
B

3

µ
B
 / m

B

T =  20 MeV

T =  10 MeV

T =    5 MeV

T = 2.5 MeV

Complex Langevin:  no sign problem
convergence criteria satisfied
cf.  Seiler, Stamatescu; Aarts, James

Based on 3d effective action by strong coupling and hopping exp.

Frankfurt group, PRL 13
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