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Not just an academic exercise
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Special Relativity

maximun speed for signal propagation

It is not possible to send or receive signal at a speed 
greater than c

EXPERIMENTAL FACT: THE SPEED OF LIGHT IS 
INDEPENDENT OF THE OBSERVER 

A speed limit is not compatible with GALILEAN 
RELATIVITY.

space and time cannot be seen as independent concept: we 
must think in term of space-time

SPECIAL RELATIVITY

3

Light Cone
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Equivalence Principle

It is not possible to distinguish  
INERTIAL MASS from 
GRAVITATIONAL MASS 

Inertial Mass 
      = Gravitational Mass

Gravity must be described in 
geometrical terms
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Dynamical space-time

Space time curvature will 
dynamically fix length and time 

close space open space flat space
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The world as seen by an ant
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BI-DIMENSIONAL VIEW

BUT (special relativity) WE MUST THINK IN SPACE-TIME TERMS ! The curvature is 
not the curvature of SPACE but the 4-dimensional curvature of SPACE-TIME
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Space and matter 
One can visualize Einstein’s general relativity as 
a sheet that in the absence of matter is flat 
but that in the presence of matter is not. 
The trajectory of particles will be the geodesics 
of this curved space

MATTER =

source of the curvature 
of space-time
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Light deflection (lensing)
Gravity will modify the space-time 
texture
Light will be deflected and/or 
focalized by matter-distribution
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Space-time view of 
light deflection
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http://ngst.gsfc.nasa.gov/science/gravlens.htm

Abell 2218, a galaxy cluster at 3 billion light year, 
deflect the light coming from other galaxies 

creating apparent arcs.

mass of the halo
⇒ arcs form a size 

Curved space time effects: Gravitational lensing 

10



Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008 11

Black Holes

Space-time region ... that  
    ………. traps light
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Light signal around a Black Hole
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Signal from a source 
falling into a Black Hole

Signal from an 
outside source
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Equivalence principle

13

The trajectory of freely 
falling particles follow 

the geodetic of a curved 
space-time 

The curvature of the space-time is determined by 
the distribution of energy (The Energy-Momentum 
tensor is the source of the Einstein’s equations).  
The Energy-Momentum tensor is conserved as a 

consequence of the Einstein’s equations).  
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Relativistic Stars and 
matter evolution

14

To construct stellar models in General Relativity or 
to study matter evolution in the relativistic regime 
it is necessary to chose a specific form of the 
energy-momentum tensor that describe the matter 
inside the star.

Perfect fluid is a medium in which the pressure is 
isotropic in the rest frame of each fluid elements 
and where shear stress and heat transport are 
absent.
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EM-Tensor in local Lorentz frame

For such a system any point-like-observer co-moving with the fluid 
will observe the fluid, in its neighborhood, as isotropic with an 
energy density e and a pressure p. In this local frame the energy-
momentum tensor is:

Its expression in any other frame can be obtained by performing a 
suitable Lorenz transformation. If now the fluid element is moving 
with respect to the laboratory frame with velocity:

15

8 Lecture I: Compact objects in Astrophysics

The above mass radius equation has a very peculiar behaviour. For n = 3 one finds that the mass is
independent of the radius of the star. For n > 3 its mass decrease

R =

[
K(1 + n) ρ1/n−1

c

4πG

]1/2

ξ1 =
[
K(1 + n)

4πG

]1/2

ρ(1−n)/2n
c ξ1 (2.37)

M = 4π [A]3 ρcξ
2
1 |θ′(ξ1)| = 4π

[
K(1 + n) ρ1/n−1

c

4πG

]3/2

ρcξ
2
1 |θ′(ξ1)| (2.38)

= 4π

[
K(1 + n)

4πG

]3/2

ρ(3−n)/2n
c ξ2

1 |θ′(ξ1)| (2.39)

(2.40)

A discussion of Landau argument....

2.3 General Relativity in a nut-shell

2.4 Relativist stars: TOV equations

To construct stellar models in General Relativity it is necessary to chose a specific form of the energy-
momentum tensor that describe the matter inside the star. The usual choice is to describe the matter
to be a perfect fluid. A perfect fluid is a medium in which the pressure is isotropic in the rest frame
of each fluid elements and where shear stress and heat transport are absent. For such a system any
point-like-observer coomoving with the fluid will observe the fluid, in its neighborhood, as isotropic with
an energy density e and a pressure p. In this local frame the energy-momentum tensor is

Tµν =





e 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p



 (2.41)

Its expression in any other frames can be obtained by performing a suitable Lorenz transformation. If
now the fluid element is moving with respect to the laboratory frame with velocity vi and indeed with
four-velocity uµ = 1/

√
1− vivi(1, vi) its expression would be given by:

Tµν = (e + p)uµuν + pηµν (2.42)

that reduce to the diagonal form of eq. (2.41) for vi = 0. Clearly, if we now want its expression not in local
inertial frame, the only change we have to perform to the above expression is to replace the Minkowsky
metric ηµν with the real space-time metric gµν . The definition of the energy momentum tensor should
be supplemented with an equation of state that related the pressure to the energy density, i.e. of a given
functional relation of the type p = p(e). At this point one has to solve the 10+4 equations

Gµ
ν = 8πGTµ

ν (2.43)
Tµ

ν;ν = 0 (2.44)

for the 10+3+1 independend variables that are the components of the metric tensor gµν , the three
independent components of the 4-velocity uµ and one of two dependent variable e and p (since they are
related by the Equation of State).

We can specialize to spherical symmetric space-time whose line element is given by:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2(θ)dφ2) (2.45)

Starting from this form of the metric we can proceed in computing the explicit form of the connection
coefficients and of the components of the curvature and Ricci tensor using their definitions:

Γα
βγ =

1
2
gαα′

(gβα′,γ + gγα′,β − gβγ,α′) (2.46)

Rα
·βµν = ∂µΓα

νβ − ∂νΓα
µβ + Γα

µγΓγ
νβ − Γγ

µβΓα
νγ (2.47)

Rµν = Rα
·µαν = ∂αΓα

νµ − ∂νΓα
αµ + Γα

αγΓγ
νµ − Γγ

αµΓα
νγ (2.48)
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FULL SET OF EQs:
Einstein’s equations:
Conservation of energy:
Equation of state (EOS):

Where:
The fluid four velocity is: 
The expression for the Energy-Momentum-tensor 
is:

Perfect Fluids in GR

16
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that reduce to the diagonal form of eq. (2.41) for vi = 0. Clearly, if we now want its expression not in local
inertial frame, the only change we have to perform to the above expression is to replace the Minkowsky
metric ηµν with the real space-time metric gµν . The definition of the energy momentum tensor should
be supplemented with an equation of state that related the pressure to the energy density, i.e. of a given
functional relation of the type p = p(e). At this point one has to solve the 10+4 equations
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for the 10+3+1 independend variables that are the components of the metric tensor gµν , the three
independent components of the 4-velocity uµ and one of two dependent variable e and p (since they are
related by the Equation of State). Indeed we have the following definition:

uµ = W (1, vi) (2.45)

1/W =
√

g00 + 2g0jvi + gijvivj (2.46)

Tµν = (e + p)uµuν + pgµν (2.47)

We can specialize to spherical symmetric space-time whose line element is given by:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2(θ)dφ2) (2.48)
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to be a perfect fluid. A perfect fluid is a medium in which the pressure is isotropic in the rest frame
of each fluid elements and where shear stress and heat transport are absent. For such a system any
point-like-observer coomoving with the fluid will observe the fluid, in its neighborhood, as isotropic with
an energy density e and a pressure p. In this local frame the energy-momentum tensor is

Tµν =





e 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p



 (2.41)

Its expression in any other frames can be obtained by performing a suitable Lorenz transformation. If
now the fluid element is moving with respect to the laboratory frame with velocity vi and indeed with
four-velocity uµ = 1/

√
1− vivi(1, vi) its expression would be given by:

Tµν = (e + p)uµuν + pηµν (2.42)

that reduce to the diagonal form of eq. (2.41) for vi = 0. Clearly, if we now want its expression not in local
inertial frame, the only change we have to perform to the above expression is to replace the Minkowsky
metric ηµν with the real space-time metric gµν . The definition of the energy momentum tensor should
be supplemented with an equation of state that related the pressure to the energy density, i.e. of a given
functional relation of the type p = p(e). At this point one has to solve the 10+4 equations

Gµ
ν = 8πGTµ

ν (2.43)
Tµ

ν;ν = 0 (2.44)

for the 10+3+1 independend variables that are the components of the metric tensor gµν , the three
independent components of the 4-velocity uµ and one of two dependent variable e and p (since they are
related by the Equation of State). Indeed we have the following definition:

uµ = W (1, vi) (2.45)

1/W =
√

g00 + 2g0jvi + gijvivj (2.46)

Tµν = (e + p)uµuν + pgµν (2.47)

We can specialize to spherical symmetric space-time whose line element is given by:

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 + sin2(θ)dφ2) (2.48)
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Einstein’s Equations

10 partial differential equations for the 10 metric function 
(in a coordinate frame)

Main difficulty: the 4 coordinates have no physical 
meaning ! 

Indeed we have 4 gauge function and indeed only 2 out 
of the 10 metric function will have any physical meaning. 

Like in the case of EM where of the 4 potential there are 
only 2 physical degree of freedom because we have 1 
gauge function.

17
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Gravitational WAVES
10 metric function

vacum Einstein’s equations (10 non-linear PDEs)

Expand around the Minkowsky background:

Impose De-Donge gauge:

Go to transverse trace-less gauge

18

gµν

Rµν = ∂αΓα
νµ − ∂νΓα

αµ + Γα
αγΓγ

νµ − Γγ
αµΓα

νγ = 0

Γα
βγ =

1
2
gαα′

(∂γgβα′ + ∂βgγα′ − ∂α′gβγ)

h̄0µ = 0 and ηµν h̄µν = 0

gµν = ηµν +
(
h̄µν − 1/2 ηµν h̄

)

ηαβ∂αh̄βµ = 0

18
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Gravitational Waves (2)

The Einstein’s equations become:

They becomes (where there is no matter) a wave 
equation for the two independent degree of freedom 
of the metric perturbation.
Gauge Invariance
On shell ... transverse-traceless gauge

19

ηµν∂µ∂ν h̄αβ = 16πG Tαβ

h̄µν → h̄µν + ∂µξν + ∂νξµ − ηµν∂αξα

h̄µν = Hµν eikµxµ

kµHµν = 0, H0µ = 0, ηµνHµν = 0

19
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Experimental evidence for GWs

PSR B1913+16 (also known as J1915+1606) is a pulsar in a 
binary star system, in orbit with another star around a 
common center of mass. In 1974 it was discovered by 
Russell Alan Hulse and Joseph Hooton Taylor, Jr., of 
Princeton University, a discovery for which they were 
awarded the 1993 Nobel Prize in Physics

Nature 277, 437 - 440 (08 February 1979), J. H. TAYLOR, 
L. A. FOWLER & P. M. MCCULLOCH:
Measurements of second- and third-order relativistic 
effects in the orbit of binary pulsar PSR1913 + 16 have 
yielded self-consistent estimates of the masses of the 
pulsar and its companion, quantitative confirmation of the 
existence of gravitational radiation at the level predicted 
by general relativity, and detection of geodetic precession 
of the pulsar spin axis

20
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Two-bodies problem and GWs

+10-21-

–10-21-

ISCO

CL

FN FN or CL

FN 15M

“inspiral” “plunge/merger” “ring-down”

Gravitational waves
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Is it possible to numerical study the 
merger of 2 Black-Hole ? Yes it is!

22

http://arxiv.org/pdf/0707.2559

Credits:  R. Kaehler & L. Rezzolla

RUN R7: equal-mass, spinning bhs, 
different spins. 
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Black Hole Merger results
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posed. Though it is generally expected that the significance
of such limitations on the final merger simulations should
be reduced if the black holes begin sufficiently far apart,
there is no clear way to assess just how significant such
effects will be on the results, including the gravitational
waveforms, before carrying out the evolutions.

Our simulations, begun with varying initial separations,
should be affected by any initial modeling error in varying
amounts, but should agree to the degree that they represent
the ideal astrophysical spacetime. A key objective in our
analysis is to identify universal characteristics among the
different runs which, we reason, are then likely to correctly
represent those aspects of the astrophysical equal-mass
nonspinning binary black hole merger spacetime.

A. Overview of simulations

Our comparative analysis covers four simulations
labeled R1 to R4 in Table I. We evolved them all using
the medium resolution of hf ! !=3 except for R1, where
we have applied the higher hf ! !=4 resolution. In all runs
we used an initial grid setup and adaptive mesh refinement
as described in Sec. III. We evolved all the runs to well
after the wave signal had passed the extraction region; the
actual amount of time is noted as Tsim in Table IV. For the
time-slicing condition used in our simulations, the region
where the lapse satisfies the condition " ! 0:3 corre-
sponds roughly with the apparent horizon location. We
thus used the moment when the two " ! 0:3 regions
around the black holes merge to specify a merger time
Tmerge. The number of orbits for each run, Norbits, was
estimated from the trajectories shown in Fig. 4 and is taken
up to the point at which the merger occurs.

A graphical overview of our four simulations is pre-
sented in Fig. 4 showing the paths traced by the black
hole punctures on the computational domain. These were
obtained by numerically integrating the equation of motion
_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
jectory of each puncture [9]. The value of the shift at the
location of the puncture ~## ~xpunc$ was interpolated between
grid points as required.

For clarity, Fig. 4 shows only the track of one of the two
black holes from each simulation. We have oriented each
trajectory according to a physical reference discussed in

Sec. V B, so that they superpose at the radiation peak,
which occurs very near the end of the puncture trajectory.
R4 has the widest initial separation and completes the
largest number of orbits. Each of the other cases, after an

TABLE IV. Simulation parameters and general results. Tmerger

is the time at which the merger occurs, starting from the initial
time in each run.

R1 R2 R3 R4

L=M0 9.9 11.1 12.1 13.2
hf !=4 !=3 !=3 !=3
Tsim 421M 531M 530M 850M
Tmerger 160M 234M 396M 513M
Norbits 1.8 2.5 3.6 4.2

-4 -2 0 2 4

x / M

-4

-2

0

2

4

y 
/ M

R1
R2
R3
R4
Merger

FIG. 4 (color online). Paths of black holes starting from differ-
ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
holes follow the same tracks. The point of merger (estimated by
a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.
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FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
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ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
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a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.

-150 -100 -50 0 50

t / Mf

-0.04

-0.02

0

0.02

0.04

rΨ
4

R1
R2
R3
R4

-600 -500 -400 -300 -200 -100

-0.0025

0

0.0025

FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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FIG. 1: Comparison between EOB and NR waveforms for a5 = 25 and vpole = 0.6241: frequencies (top–left), phase difference (top–right),

amplitudes (bottom–left) and real parts (bottom–right) of the two gravitational waveforms. The vertical line at tNR = 1509 locates the

maximum of (twice) the orbital frequency Ω (alias the “EOB-light-ring”) and indicates the center of our matching comb (whose total width is

indicated by the two neighboring vertical lines in the top–left panel). The vertical dashed line at tNR = 1482 indicates the crossing time of the

adiabatic LSO orbital frequency (ΩLSO = 0.1003).

found that vpole = 0.5356 yields an excellent EOB/NR agree-

ment 11.

We exhibit our results in the four panels of Fig. 2, which

are entirely parallel to those of Fig. 1. The remarkable level of

EOB/NR agreement that we get now, when a5 = 60, is rather

close to the one that we got above when a5 = 25. At this

stage, there is no rationale for saying that either value of a5

is preferred over the other (though a5 = 25 yields somewhat

better results). Some partial numerical tests that we performed

suggest that this conclusion extends to (at least) all values of

a5 between 25 and 60.

11 Note that this “best” value of vpole (for a5 = 60 and ν = 1/4) happens

to be numerically close to the best fitting vpole ! 0.53 value that Ref. [24]

found in the test-mass limit ν → 0.

Some of the numbers quantifying the EOB/NR agreement

are:

(i) the (two-sided) EOB-NR phase difference over the time

interval (500M, 1550M) (which covers about 13 GW cycles

of inspiral, plunge, and most of the ring-down) is smaller than

about ± 1
20.13 radians, which corresponds to ±0.01 GW cy-

cles;

(ii) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies between −0.8% and

+0.55%. After tNR = 1400M , this fractional difference in-

creases from +0.55% to a maximum of +23% (reached at

tNR " 1511M ) and then decreases to take values of order

+6% during the observationally relevant part of the ringdown.

INSPIRAL RING DOWN

Exponentially dumped 
oscillation (QNM)

AEI simulation 
arXiv:0712.3003

23



Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008

Inspiral part of the signal: .....

Post Newtonian approximation ....

... Damour EOB (Effective one 
body) waveforms for the two 
bodies problem.

See Damour-Nagar about 
matching Numerical-Relativity 
waveform and EOB ones.
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We exhibit our results in the four panels of Fig. 2, which

are entirely parallel to those of Fig. 1. The remarkable level of

EOB/NR agreement that we get now, when a5 = 60, is rather

close to the one that we got above when a5 = 25. At this

stage, there is no rationale for saying that either value of a5

is preferred over the other (though a5 = 25 yields somewhat

better results). Some partial numerical tests that we performed

suggest that this conclusion extends to (at least) all values of

a5 between 25 and 60.

11 Note that this “best” value of vpole (for a5 = 60 and ν = 1/4) happens

to be numerically close to the best fitting vpole ! 0.53 value that Ref. [24]

found in the test-mass limit ν → 0.

Some of the numbers quantifying the EOB/NR agreement

are:

(i) the (two-sided) EOB-NR phase difference over the time

interval (500M, 1550M) (which covers about 13 GW cycles

of inspiral, plunge, and most of the ring-down) is smaller than

about ± 1
20.13 radians, which corresponds to ±0.01 GW cy-

cles;

(ii) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies between −0.8% and

+0.55%. After tNR = 1400M , this fractional difference in-

creases from +0.55% to a maximum of +23% (reached at

tNR " 1511M ) and then decreases to take values of order

+6% during the observationally relevant part of the ringdown.

INSPIRAL RING DOWN

Exponentially dumped 
oscillation (QNM)
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QNM part of the signal: 1D codes
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posed. Though it is generally expected that the significance
of such limitations on the final merger simulations should
be reduced if the black holes begin sufficiently far apart,
there is no clear way to assess just how significant such
effects will be on the results, including the gravitational
waveforms, before carrying out the evolutions.

Our simulations, begun with varying initial separations,
should be affected by any initial modeling error in varying
amounts, but should agree to the degree that they represent
the ideal astrophysical spacetime. A key objective in our
analysis is to identify universal characteristics among the
different runs which, we reason, are then likely to correctly
represent those aspects of the astrophysical equal-mass
nonspinning binary black hole merger spacetime.

A. Overview of simulations

Our comparative analysis covers four simulations
labeled R1 to R4 in Table I. We evolved them all using
the medium resolution of hf ! !=3 except for R1, where
we have applied the higher hf ! !=4 resolution. In all runs
we used an initial grid setup and adaptive mesh refinement
as described in Sec. III. We evolved all the runs to well
after the wave signal had passed the extraction region; the
actual amount of time is noted as Tsim in Table IV. For the
time-slicing condition used in our simulations, the region
where the lapse satisfies the condition " ! 0:3 corre-
sponds roughly with the apparent horizon location. We
thus used the moment when the two " ! 0:3 regions
around the black holes merge to specify a merger time
Tmerge. The number of orbits for each run, Norbits, was
estimated from the trajectories shown in Fig. 4 and is taken
up to the point at which the merger occurs.

A graphical overview of our four simulations is pre-
sented in Fig. 4 showing the paths traced by the black
hole punctures on the computational domain. These were
obtained by numerically integrating the equation of motion
_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
jectory of each puncture [9]. The value of the shift at the
location of the puncture ~## ~xpunc$ was interpolated between
grid points as required.

For clarity, Fig. 4 shows only the track of one of the two
black holes from each simulation. We have oriented each
trajectory according to a physical reference discussed in

Sec. V B, so that they superpose at the radiation peak,
which occurs very near the end of the puncture trajectory.
R4 has the widest initial separation and completes the
largest number of orbits. Each of the other cases, after an

TABLE IV. Simulation parameters and general results. Tmerger

is the time at which the merger occurs, starting from the initial
time in each run.

R1 R2 R3 R4

L=M0 9.9 11.1 12.1 13.2
hf !=4 !=3 !=3 !=3
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FIG. 4 (color online). Paths of black holes starting from differ-
ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
holes follow the same tracks. The point of merger (estimated by
a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.
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FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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adiabatic LSO orbital frequency (ΩLSO = 0.1003).
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better results). Some partial numerical tests that we performed

suggest that this conclusion extends to (at least) all values of

a5 between 25 and 60.
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to be numerically close to the best fitting vpole ! 0.53 value that Ref. [24]

found in the test-mass limit ν → 0.
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about ± 1
20.13 radians, which corresponds to ±0.01 GW cy-

cles;

(ii) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies between −0.8% and

+0.55%. After tNR = 1400M , this fractional difference in-

creases from +0.55% to a maximum of +23% (reached at

tNR " 1511M ) and then decreases to take values of order

+6% during the observationally relevant part of the ringdown.

INSPIRAL RING DOWN

Exponentially dumped 
oscillation (QNM)

RING DOWN
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Not a characteristic of just BH merger 
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Works of Vishveshwara [Nature, 227, 936 (1970)], Press 
[Astrophys. J. Letts. 170, L105 (1971)] and Davis, Ruffini and Tiomno 
[Phys. Rev. D 5, 2932 (1972)], unambiguously showed that a non-
spherical gravitational perturbation of a Schwarzschild Black Hole 
is radiated away via exponentially damped harmonic oscillations.

These dumped oscillation are the QNM first studied by Regge and 
Wheeler [Phys. Rev. 108 1063 (1957)] 
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Spherical symmetry:
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tensor Harmonics
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are expected to emit strong gravitational radiation. Interestingly, quasinormal modes are again

seen to dominate the gravitational radiation wave forms at certain times [6, 7], even though

they are a concept born from linearized perturbation calculations. We can therefore regard

them as a robust intrinsic feature of relativistic objects, rather than an artefact of the linearized

perturbation treatment. As an alternative and complementary approach to the enormous effort

necessary for the fully relativistic calculation of colliding black holes, Price and Pullin [8]

have developed a close limit approximation based on perturbation techniques which has been

amazingly successful.

All of these calculations demonstrate that quasinormal modes will play a prominent role

in gravitational radiation emitted by a variety of astrophysical scenarios, and may well be seen

by the new gravitational wave detectors. Consequently, a given signal may be analysed in

terms of quasinormal modes, attempting to extract parameters such as oscillatory frequency

and damping. These parameters may then be used to infer information about the system that

produced these oscillations [9].

If we want to talk about how strongly some physical process excites quasinormal modes,

we need to have a quantitative measure for such an excitation. This proves surprisingly

difficult. In fact, there are ambiguities which cannot be resolved, since they are a consequence

of the mathematical properties of quasinormal modes. Nevertheless, the possibility to use

quasinormal modes to gain information, for example, about the mass and radius of a neutron

star, or to distinguish between a black hole and a neutron star, is a very exciting astrophysical

application of this mathematical concept.

This review focuses on the basic concept of quasinormal modes. Wewill restrict ourselves

to the discussion of non-rotating black holes and neutron stars to avoid obscuring the picture

with the added technical difficulties of treating rotating objects in general relativity. However,

astrophysical objects will usually be rotating. In particular, there is currently a very interesting

discussion about unstable modes of rotating neutron stars which do not exist for non-rotating

stars. Thesemay have a number of very interesting astrophysical consequences. In an appendix

we will briefly summarize some of the work on rotating black holes and neutron stars and point

the reader to relevant references.

2. The perturbation equation

In this section, we will demonstrate how the equations governing the perturbations of a

Schwarzschild black hole can be derived, and how they can be reduced to a one-dimensional

wave equation with a potential barrier. We will essentially follow the approach of Regge and

Wheeler [10]; some errors in the original paper by Regge and Wheeler were later corrected by

Edelstein and Vishveshwara [11].

The equilibrium state of a non-rotating (and uncharged) black hole is given by the well

known Schwarzschild metric:

ds2 = −
(
1− 2M•

r

)
dt2 +

(
1− 2M•

r

)−1
dr2 + r2 dθ2 + r2 sin2 θ dϕ2, (1)

whereM• is the mass of the black hole.

2.1. Linearized field equations

We regard the perturbed metric as a sum of the unperturbed background metric
◦
gµν and the

actual perturbation hµν :

ḡµν =
◦
gµν + hµν, (2)
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unchanged under rotations. Writing out the transformation of h, it is obvious that this simple

decomposition changes under rotation. Worse, it changes in a way that depends on the angular

variables. As a result, the equations for the expansion coefficients still depend on the angular

variables, defeating our purpose of decoupling them. This is not surprising, since this naive

attempt does not recognize the symmetry of the original problem.

Instead, we have to decompose h into tensor functions which have the correct behaviour

under rotations on the 2-sphere. Due to the symmetry of h, we need ten independent tensor

functions (Y n
LM)µν :

hµν =
∞∑

L=0

L∑

M=−L

10∑

n=1
Cn

LM(t, r)(Y n
LM)µν(θ, ϕ). (10)

The task of finding these tensor functions is simplified considerably by noting that different

parts ofh transformdifferently under rotations. The partsmarked ‘S’ in equation (11) transform

like scalars under rotation, the parts marked ‘V’ like two-dimensional vectors and the part

marked ‘T’ like a 2× 2 tensor:

h =





S S V

S S V

V V T




. (11)

The scalar components of h can be represented directly by the scalar spherical harmonics,

YLM(θ, ϕ). From the scalar function SLM(θ, ϕ) = YLM(θ, ϕ), vectors and tensors can be

constructed as follows [10]:

( 1

VLM

)

a
= (SLM);a = ∂

∂xa
YLM(θ, ϕ) (12)

( 2

VLM

)

a
= εa

b (SLM);b = γ bcεac

∂

∂xb
YLM(θ, ϕ) (13)

( 1

TLM

)

ab
= (SLM);ab (14)

( 2

TLM

)

ab
= SLM γab (15)

( 3

TLM

)

ab
= 1

2

[
εa

c(SLM);cb + εb
c(SLM);ca

]
. (16)

The indices a, b, c run from 2 to 3; γ is the metric on the 2-sphere of radius 1, and ε is the

totally antisymmetric tensor in two dimensions, i.e. ε = sin θ
(
0

1

−1
0

)
; the covariant derivatives

are to be taken on the 2-sphere.

Altogether, there is one scalar function which can be used in three places (taking into

account the symmetry of h), two vectors which can be used in two places each and three

tensors, for a total of ten independent contributions. The explicit tensor spherical harmonics

constructed in this way have been given by Zerilli [12] and by Moncrief [13]. Note that only

the tensors given by Zerilli form an orthonormal system under a suitable scalar product; the sets

given in equations (12)–(16), which were also used by Regge and Wheeler [10] and Moncrief

[13], are slightly different. The relationships between them can be found in Zerilli [12].
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unchanged under rotations. Writing out the transformation of h, it is obvious that this simple
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variables. As a result, the equations for the expansion coefficients still depend on the angular

variables, defeating our purpose of decoupling them. This is not surprising, since this naive

attempt does not recognize the symmetry of the original problem.

Instead, we have to decompose h into tensor functions which have the correct behaviour

under rotations on the 2-sphere. Due to the symmetry of h, we need ten independent tensor

functions (Y n
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10∑
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The task of finding these tensor functions is simplified considerably by noting that different
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YLM(θ, ϕ). From the scalar function SLM(θ, ϕ) = YLM(θ, ϕ), vectors and tensors can be

constructed as follows [10]:
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b (SLM);b = γ bcεac

∂

∂xb
YLM(θ, ϕ) (13)

( 1

TLM

)

ab
= (SLM);ab (14)

( 2

TLM

)

ab
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]
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The indices a, b, c run from 2 to 3; γ is the metric on the 2-sphere of radius 1, and ε is the

totally antisymmetric tensor in two dimensions, i.e. ε = sin θ
(
0

1

−1
0

)
; the covariant derivatives

are to be taken on the 2-sphere.

Altogether, there is one scalar function which can be used in three places (taking into

account the symmetry of h), two vectors which can be used in two places each and three

tensors, for a total of ten independent contributions. The explicit tensor spherical harmonics

constructed in this way have been given by Zerilli [12] and by Moncrief [13]. Note that only

the tensors given by Zerilli form an orthonormal system under a suitable scalar product; the sets

given in equations (12)–(16), which were also used by Regge and Wheeler [10] and Moncrief

[13], are slightly different. The relationships between them can be found in Zerilli [12].
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2.3. Parity

If we examine the individual contributions we have constructed in equations (12)–(16), we find

that they have a distinct behaviour under space inversions. An inversion of space is achieved

by letting (θ, ϕ) → (π − θ, π + ϕ). However, we can also formally set (θ ′, ϕ′) = (θ + π, ϕ).

This immediately shows that the properties of YLM under inversion are independent ofM . It

can be verified directly from the definition of the YLM that they are multiplied by a factor of

(−1)L under space inversions.
Usually, a (scalar) function which remains unchanged under space inversion is said to have

even parity; if it simply changes sign, it has odd parity. However, in relativistic perturbation

theory, functions acquiring a factor (−1)L under space inversions are often called even,

and those with a factor (−1)L+1 odd. To avoid confusion resulting from this discrepancy,

Chandrasekhar refers to ‘polar’ [(−1)L] and ‘axial’ [(−1)L+1] perturbations instead [14]
(chapter 4, section 24). He argues that changing the sign of ϕ—which achieves a space

inversion followed by a rotation—shows that axial perturbations impart a differential rotation to

the black hole, while polar perturbations do not. We will follow Chandrasekhar’s terminology

in this paper.

If wewant to determine the parity of vectors and tensors, we cannot simply check how their

components behave under space inversions, since this behaviour will depend on the chosen

gauge. However, we can use the fact that taking the gradient of a function preserves parity,

while multiplying with the totally antisymmetric tensor ε inverts it. The parity of the vector

and tensor contributions is therefore as follows:

SLM polar (−1)L (17)

1

VLM polar (−1)L (18)

2

VLM axial (−1)L+1 (19)

1

TLM polar (−1)L (20)

2

TLM polar (−1)L (21)

3

TLM axial (−1)L+1. (22)

Since the unperturbed metric is invariant against inversion, we expect that the perturbation

equations will not mix polar and axial contributions. We can therefore separate a perturbation

into polar and axial contributions and study them separately.

As an example, we list the general form of an axial perturbation with given L andM in a

notation similar to that of Regge and Wheeler [10]:

hµν =





0 0 −h0(t, r)
1

sin θ

∂YLM

∂ϕ
h0(t, r) sin θ

∂YLM

∂θ

0 0 −h1(t, r)
1

sin θ

∂YLM

∂ϕ
h1(t, r) sin θ

∂YLM

∂θ

∗ ∗ 1
2
h2(t, r)

1

sin θ
XLM − 1

2
h2(t, r) sin θWLM

∗ ∗ ∗ − 1
2
h2(t, r) sin θXLM





, (23)

27



Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008

Where:

Use gauge freedom 
to set h2=0

Axial perturbations

The linearized 
equation are:

Apparently 3 
equations with 
two unknown

28

R164 Topical Review

2.3. Parity

If we examine the individual contributions we have constructed in equations (12)–(16), we find

that they have a distinct behaviour under space inversions. An inversion of space is achieved

by letting (θ, ϕ) → (π − θ, π + ϕ). However, we can also formally set (θ ′, ϕ′) = (θ + π, ϕ).

This immediately shows that the properties of YLM under inversion are independent ofM . It

can be verified directly from the definition of the YLM that they are multiplied by a factor of

(−1)L under space inversions.
Usually, a (scalar) function which remains unchanged under space inversion is said to have

even parity; if it simply changes sign, it has odd parity. However, in relativistic perturbation

theory, functions acquiring a factor (−1)L under space inversions are often called even,

and those with a factor (−1)L+1 odd. To avoid confusion resulting from this discrepancy,

Chandrasekhar refers to ‘polar’ [(−1)L] and ‘axial’ [(−1)L+1] perturbations instead [14]
(chapter 4, section 24). He argues that changing the sign of ϕ—which achieves a space

inversion followed by a rotation—shows that axial perturbations impart a differential rotation to

the black hole, while polar perturbations do not. We will follow Chandrasekhar’s terminology

in this paper.

If wewant to determine the parity of vectors and tensors, we cannot simply check how their

components behave under space inversions, since this behaviour will depend on the chosen

gauge. However, we can use the fact that taking the gradient of a function preserves parity,

while multiplying with the totally antisymmetric tensor ε inverts it. The parity of the vector

and tensor contributions is therefore as follows:

SLM polar (−1)L (17)

1

VLM polar (−1)L (18)

2
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1

TLM polar (−1)L (20)

2

TLM polar (−1)L (21)

3

TLM axial (−1)L+1. (22)

Since the unperturbed metric is invariant against inversion, we expect that the perturbation

equations will not mix polar and axial contributions. We can therefore separate a perturbation

into polar and axial contributions and study them separately.

As an example, we list the general form of an axial perturbation with given L andM in a

notation similar to that of Regge and Wheeler [10]:

hµν =





0 0 −h0(t, r)
1

sin θ

∂YLM

∂ϕ
h0(t, r) sin θ

∂YLM

∂θ

0 0 −h1(t, r)
1

sin θ

∂YLM

∂ϕ
h1(t, r) sin θ

∂YLM

∂θ

∗ ∗ 1
2
h2(t, r)

1

sin θ
XLM − 1

2
h2(t, r) sin θWLM

∗ ∗ ∗ − 1
2
h2(t, r) sin θXLM





, (23)
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where the asterisks denote a component fixed by the symmetry of h, and

XLM(θ, ϕ) = 2

(
∂

∂θ

∂

∂ϕ
YLM − cot θ

∂

∂ϕ
YLM

)
(24)

WLM(θ, ϕ) =
(

∂2

∂θ2
YLM − cot θ

∂

∂θ
YLM − 1

sin2 θ

∂2

∂ϕ2
YLM

)
. (25)

Of course, there is one set of coefficient functions h0, h1 and h2 for each L and M . For

simplicity, we will not mark them as such explicitly.

2.4. The Regge–Wheeler gauge

The gauge of the background spacetime is essentially fixed, since we have decided to use the

Schwarzschild metric in Schwarzschild coordinates. However, once we allow the background

metric to be perturbed, we can change the gauge to first order in the perturbation, thereby

affecting only the first-order metric perturbations, but not the background metric. We achieve

this by using an infinitesimal gauge transformation

x ′µ = xµ + ηµ (26)

where the gauge vector η is of first order in h. This results in

g′
µν(x

′) = gµν(x) + ηµ;ν + ην;µ − gµν,αηα

=
◦
gµν(x

′) + hµν + ηµ;ν + ην;µ =
◦
gµν(x

′) + h′
µν . (27)

Note that we always require the background metric to have the Schwarzschild form in

whatever coordinates we are using. In other words, the functional form of the components
◦
gµν(x

′) after the coordinate transformation are required to be the same as
◦
gµν(x) before the

transformation.

The signs in equation (27) correspond to the active form of the coordinate transformation,

which is commonly used [15]; for the passive form, the sign of the gauge vector has to be

inverted.

We want this gauge transformation to conserve both the decomposition into tensor

spherical harmonics and the separation into polar and axial contributions. Therefore, we

will construct one gauge vector in such a way that it is a polar vector under rotations, and one

as an axial vector.

2.4.1. Axial gauge vector. We will discuss the axial gauge transformation as an example.

The gauge vector has the form

ηµ = '(t, r)
[
0, 0,

2

V (θ, ϕ)
]

= '(t, r)

[
0, 0, − 1

sin θ

∂

∂ϕ
YLM, sin θ

∂

∂θ
YLM

]
. (28)

Explicitly computing the changes in the metric perturbation, using the unperturbed

Christoffel symbols for the covariant derivatives in equation (27), we find that the new tensor

h′
µν has the correct general form (23) of an axial perturbation. The changes to the coefficients

h0, h1 and h2 are as follows:

δh0 = ∂

∂t
'(t, r) (29)

δh1 = ∂

∂r
'(t, r) − 2

'(t, r)

r
(30)

δh2 = −2'(t, r). (31)
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2.5. Linearized equations for axial perturbations

Again, we will demonstrate the calculation for axial perturbations. The polar case follows the

same general procedure, but it is more complicated technically because it involves a larger

number of equations and unknown functions.

Inserting the axial perturbation tensor in its Regge–Wheeler form into the linearized field

equations (9), we find that some equations are satisfied trivially, some are non-trivial only for

M != 0 since the spherical harmonics YLM(θ, ϕ) appear only as derivatives with respect to

ϕ, and some are non-trivial also for M = 0. Using the differential equation satisfied by the

spherical harmonics,

(
sin2 θ

∂2

∂θ2
+

∂2

∂ϕ2
+ cos θ sin θ

∂

∂θ
+ sin2 θ L(L + 1)

)
YLM(θ, ϕ) = 0, (38)

as well as its derivatives with respect to θ and ϕ, we can rewrite each component δRµν as

a product of a radial function Ri(t, r) and a non-vanishing angular function Ai(θ, ϕ). The

results are summarized in table 1

Table 1.

Satisfied trivially: δR00 = δR01 = δR11 = 0

Non-trivial condition δR23 = R1(h0, h1, t, r) A1(θ, ϕ) = 0

for all values ofM: δR13 = R2(h0, h1, t, r) A2(θ, ϕ) = 0

δR03 = R3(h0, h1, t, r) A3(θ, ϕ) = 0

Non-trivial condition δR22, δR33: same condition as from δR23

only forM != 0: δR12: same condition as from δR13

δR02: same condition as from δR03

Specifically, these conditions are:

δR23: 0 = R1(h0, h1, t, r) = 1

B(r)

∂

∂t
h0 − ∂

∂r
(B(r)h1) (39)

δR13: 0 = R2(h0, h1, t, r) (40)

= 1

B(r)

(
∂2h1

∂t2
− ∂2h0

∂t∂r
+
2

r

∂h0

∂t

)
+
1

r2
(L(L + 1) − 2)h1 (41)

δR03: 0 = R3(h0, h1, t, r) (42)

= 1

2
B(r)

(
∂2h0

∂r2
− ∂2h1

∂t∂r
− 2

r

∂h1

∂t

)
+
1

r2

(
r

∂

∂r
B(r) − 1

2
L(L + 1)

)
h0, (43)

where B(r) = (1− 2M•/r).

It appears that we have three differential equations for only two unknown functions,

h0(t, r) and h1(t, r). However, it turns out that this set of three equations contains some

redundancy: any set of solutions of equations (39) and (41) will satisfy the time derivative of

equation (43). There is a remaining ambiguity since h0 appears only with its time derivative

in equations (39) and (41), i.e. we can always add an arbitrary function of r to it. This

additional function can then be determined using equation (43). In other words, equation (43)

can essentially be derived from equations (39) and (41), the only additional information it

provides is to fix an ambiguity left by equations (39) and (41).
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2.6. The Regge–Wheeler equation

We may use equation (39) to eliminate h0 from equation (41). Defining

QL(t, r) := 1

r
B(r)(h1)RW(t, r) = 1

r
B(r)k1(t, r), (44)

we find thatQ(t, r) satisfies the following differential equation:

∂2QL

∂t2
− B(r)

∂

∂r
B(r)

∂

∂r
(rQL) +

2

r
B2(r)

∂

∂r
(rQL) +

1

r
(L(L + 1) − 2)B(r)QL = 0. (45)

We note that this equation depends on L, but not on M . This was to be expected due to

the symmetry of the background, and due to the fact that it was sufficient to considerM = 0

to derive the radial equations (39)–(43).

We now switch to the tortoise coordinate

x = r + 2M• ln

(
r

2M•
− 1

)
(46)

as the radial coordinate. This puts the horizon (r = 2M•) at x = −∞, limiting the domain of

the differential equation to the spacetime outside the horizon.

With this definition, equation (45) turns into

∂2

∂t2
QL(t, x) − ∂2

∂x2
QL(t, x) + VRW(x)QL(t, x) = 0, (47)

where

VRW(x) =
(
1− 2M•

r(x)

)[
L(L + 1)

r(x)2
− 6M•

r(x)3

]
(48)

is the so-called Regge–Wheeler potential. The equation describing axial perturbations now

takes the form of a one-dimensional wave equation with an additional potential, called the

Regge–Wheeler equation.

Note that just as for k1,Q is invariant under first-order gauge transformations. Moreover,

even though we have reduced the problem to this simple equation, we can still reconstruct the

full axial perturbation (in the Regge–Wheeler gauge) from it. Besides h1, we only need h0,

which can be obtained by integrating equation (39) and then using equation (43) to completely

determine h0.

2.7. Polar perturbations: the Zerilli equation

The analysis for polar perturbations proceeds along similar lines. It is, however, considerably

more complicated due to the larger numbers of functions involved. Regge and Wheeler could

not reduce the equations as far as those for axial perturbations, but Zerilli succeeded much

later [12]. The result actually has the same form as the Regge–Wheeler equation, only the

potential in the wave equation is different:

∂2

∂t2
ZL(t, x) − ∂2

∂x2
ZL(t, x) + VZ(x)ZL(t, x) = 0, (49)

with

VZ(x) =
(
1− 2M•

r

)[
72M3

•
r5λ2

− 12M•

r3λ2
(L − 1)(L + 2)

(
1− 3M•

r

)

+
(L − 1) L (L + 2)(L + 1)

r2λ

]

, (50)
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We note that this equation depends on L, but not on M . This was to be expected due to

the symmetry of the background, and due to the fact that it was sufficient to considerM = 0
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We note that using a new coefficient k1 instead of h1, defined by

k1 = h1 +
1

2

(
h2,r − 2

h2

r

)
, (32)

results in

δk1 = 0. (33)

Therefore, k1 is invariant under such an infinitesimal coordinate transformation. In general,

there are many different ways to construct gauge-invariant functions from the coefficient

functions h0, h1 and h2. Moncrief [13] provides a decomposition of the metric perturbations

into their gauge-invariant, gauge-dependent and constrained parts, using a variational principle

to obtain the perturbation equations. It is the only invariant form that can be constructed from

data related to a spatial hypersurface, i.e. from its intrinsic, three-dimensional metric and its

extrinsic curvature (refer to section 5.2 for a brief description of these terms).

Regge and Wheeler have used the freedom of choosing a gauge to simplify the general

form of the perturbations by eliminating the contribution with the highest derivatives in the

angles (θ, ϕ). For axial perturbations, this means choosing the coefficient h2(t, r) to become

zero. This is achieved by setting the function $(t, r) as

$(t, r) = − 1
2
h2(t, r). (34)

We note that k1 is equal to h1 in the Regge–Wheeler gauge:

k1(t, r) = (h1)RW(t, r). (35)

2.4.2. Polar gauge vector. The polar gauge vector has the following general form:

ηµ =
[
M0(t, r)YLM(θ, ϕ), M1(t, r)YLM(θ, ϕ), M2(t, r)

1

V (θ, ϕ)
]

=
[
. . . , . . . , M2(t, r)

∂

∂θ
YLM(θ, ϕ), M2(t, r)

1

sin2 θ

∂

∂ϕ
YLM(θ, ϕ)

]
. (36)

We now have three functions we can choose, allowing us to annul the coefficients of the
1

V and
1

T contributions (h0, h1 andG, in Regge and Wheeler’s notation). Further details of the

calculation are left to the reader as an exercise.

We note that given a perturbation in any gauge, we can immediately transform it into the

Regge–Wheeler gauge point-by-point, without, say, having to solve any differential equations.

2.4.3. Regge–Wheeler gauge as conditions on h. We can also express the Regge–Wheeler

gauge as conditions on the metric perturbation h:

∂

∂θ
(sin θ h02) = − ∂

∂ϕ

(
1

sin θ
h03

)
∂

∂θ
(sin θ h12) = − ∂

∂ϕ

(
1

sin θ
h13

)

h23 = 0 h33 = sin2 θ h22.

(37)

This formulation applies to both axial and polar perturbation. Using equation (37), one can

check whether a given metric perturbation is expressed in the Regge–Wheeler gauge without

having to decompose it into tensor spherical harmonics first. On the other hand, it does not

tell us how to determine the gauge vector needed to transform a given perturbation tensor into

the Regge–Wheeler gauge.
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2.5. Linearized equations for axial perturbations

Again, we will demonstrate the calculation for axial perturbations. The polar case follows the

same general procedure, but it is more complicated technically because it involves a larger

number of equations and unknown functions.

Inserting the axial perturbation tensor in its Regge–Wheeler form into the linearized field

equations (9), we find that some equations are satisfied trivially, some are non-trivial only for

M != 0 since the spherical harmonics YLM(θ, ϕ) appear only as derivatives with respect to

ϕ, and some are non-trivial also for M = 0. Using the differential equation satisfied by the

spherical harmonics,

(
sin2 θ

∂2

∂θ2
+

∂2

∂ϕ2
+ cos θ sin θ

∂

∂θ
+ sin2 θ L(L + 1)

)
YLM(θ, ϕ) = 0, (38)

as well as its derivatives with respect to θ and ϕ, we can rewrite each component δRµν as

a product of a radial function Ri(t, r) and a non-vanishing angular function Ai(θ, ϕ). The

results are summarized in table 1

Table 1.

Satisfied trivially: δR00 = δR01 = δR11 = 0

Non-trivial condition δR23 = R1(h0, h1, t, r) A1(θ, ϕ) = 0

for all values ofM: δR13 = R2(h0, h1, t, r) A2(θ, ϕ) = 0

δR03 = R3(h0, h1, t, r) A3(θ, ϕ) = 0

Non-trivial condition δR22, δR33: same condition as from δR23

only forM != 0: δR12: same condition as from δR13

δR02: same condition as from δR03

Specifically, these conditions are:

δR23: 0 = R1(h0, h1, t, r) = 1

B(r)

∂

∂t
h0 − ∂

∂r
(B(r)h1) (39)

δR13: 0 = R2(h0, h1, t, r) (40)

= 1

B(r)

(
∂2h1

∂t2
− ∂2h0

∂t∂r
+
2

r

∂h0

∂t

)
+
1

r2
(L(L + 1) − 2)h1 (41)

δR03: 0 = R3(h0, h1, t, r) (42)

= 1

2
B(r)

(
∂2h0

∂r2
− ∂2h1

∂t∂r
− 2

r

∂h1

∂t

)
+
1

r2

(
r

∂

∂r
B(r) − 1

2
L(L + 1)

)
h0, (43)

where B(r) = (1− 2M•/r).

It appears that we have three differential equations for only two unknown functions,

h0(t, r) and h1(t, r). However, it turns out that this set of three equations contains some

redundancy: any set of solutions of equations (39) and (41) will satisfy the time derivative of

equation (43). There is a remaining ambiguity since h0 appears only with its time derivative

in equations (39) and (41), i.e. we can always add an arbitrary function of r to it. This

additional function can then be determined using equation (43). In other words, equation (43)

can essentially be derived from equations (39) and (41), the only additional information it

provides is to fix an ambiguity left by equations (39) and (41).
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Solving RW in the frequency domain

Since the potential is positive we will not have bounded 
solution and we have to look to a wave like solution that 
at the two boundary behave like outgoing waves. In the 
frequency domain:

The function should be a solution of the eigenvalues 
equation:

Fulfilling the boundary condition:
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Chapter 1

Lecture III: Stability of compact
stars

1.1 Fluid perturbations and stability

1.2 Dynamical and Secular instability of self-gravitating sys-
tems

1.3 Quasi-Normal modes of relativistic stars

The ”normal mode picture” ... Consider a system that can loose energy:

∂2χ(x, t)
∂t2

+
(
− ∂2

∂x2
+ V (x)

)
χ(x, t) = 0 (1.1)

Laplace transform this equation to get
(
− ∂2

∂x2
+ V (x)

)
χ̂(s, t) + s2χ̂(s, t) = sχ̇(0, x) + χ(0, x) (1.2)

An equivalent view of the problem is in term of the exponential of

(1.3)

QL(t, x) = e−iωtχ(ω, x) (1.4)

with:

χ(ω, x)→ e−iωx for x→ +∞ (1.5)
χ(ω, x)→ e+iωx for x→ −∞ (1.6)

Q(n)
L (t, x) = e−iωntχ(ωn, x) (1.7)

χ(ωn, x)→ e−iωnx for x→ +∞ (1.8)
χ(ωn, x)→ e+iωnx for x→ −∞ (1.9)
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1.2 Dynamical and Secular instability of self-gravitating systems 3

M(ρc) (1.37)

d

dr

(
Γ1P

1
r2

d

dr

(
r2ξ

))
− 4

r

dP

dr
ξ + ω2ρξ = 0 (1.38)

where
Γ1 =

d lnP

d ln ρ
(1.39)

If
P = KρΓ → Γ1 = Γ (1.40)

ξ(0) = 0 ∆P (R) = 0⇒ ξ(R) = finite (1.41)

ω2
0 < ω2

1 < ω2
2 < . . . (1.42)
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QNM of Schwarzschild BH
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K.D. Kokkotas and B.G. Schmidt 16

n ! = 2 ! = 3 ! = 4
0 0.37367 -0.08896 i 0.59944 -0.09270 i 0.80918 -0.09416 i
1 0.34671 -0.27391 i 0.58264 -0.28130 i 0.79663 -0.28443 i
2 0.30105 -0.47828 i 0.55168 -0.47909 i 0.77271 -0.47991 i
3 0.25150 -0.70514 i 0.51196 -0.69034 i 0.73984 -0.68392 i

Table 1: The first four QNM frequencies (ωM) of the Schwarzschild black hole
for ! = 2, 3, and 4 [135]. The frequencies are given in geometrical units and for
conversion into kHz one should multiply by 2π(5142Hz)× (M!/M).

very quickly. This means that the higher modes do not contribute significantly
in the emitted gravitational wave signal, and this is also true for the higher !
modes (octapole etc.). As is apparent in figure 2 that there is a special purely
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Figure 2: The spectrum of QNM for a Schwarzschild black-hole, for ! = 2
(diamonds) and ! = 3 (crosses) [25]. The 9th mode for ! = 2 and the 41st for
! = 3 are “special”, i.e. the real part of the frequency is zero (s = iω).

imaginary QNM frequency. The existence of “algebraically special” solutions
for perturbations of Schwarzschild, Reissner-Nordström and Kerr black holes
were first pointed out by Chandrasekhar [57]. It is still questionable whether
these frequencies should be considered as QNMs [137] and there is a suggestion
that the potential might become transparent for these frequencies [11]. For a
more detailed discussion refer to [144].

As a final comment we should mention that as the order of the modes in-
creases the real part of the frequency remains constant, while the imaginary
part increases proportionally to the order of the mode. Nollert [157] derived
the following approximate formula for the asymptotic behavior of QNMs of a
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Chapter 1

Lecture III: Stability of compact
stars

1.1 Fluid perturbations and stability

1.2 Dynamical and Secular instability of self-gravitating sys-
tems

1.3 Quasi-Normal modes of relativistic stars

The ”normal mode picture” ... Consider a system that can loose energy:

∂2χ(x, t)
∂t2

+
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+ V (x)
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Q(n)
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χ(ωn, x)→ e−iωnx for x→ +∞ (1.6)
χ(ωn, x)→ e+iωnx for x→ −∞ (1.7)
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Where:

The solution of the above problem are by 
definition the QNM of a Schwarzschild BH
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Why the name quasi-NM

At first sight we have reduced the problem 
of the evolution of a perturbation to a mode-
expansion.

Unfortunately this is not the case since it is 
not possible to write a generic solution 
fulfilling an initial condition just in terms of 
Quasi-Normal-Modes.
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Laplace Transform:

The technique that allows us the possibility to analise 
the problem is the use of the Laplace transform instead 
of the Fourier one:

Its inverse is:

And the solution of the problem is given in terms of the 
solution of the following homogeneous equations:

with initial data given by:
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One could also ask whether a quasinormal mode contains an infinite amount of energy,

since it becomes infinite near the horizon and at spatial infinity. This problem is actually

the easiest one to solve: a quasinormal mode could only have spread over all of space if it

had existed for all of time. Due to the exponential decay with time, it would have had to be

infinitely large at infinitely early time, which accounts for the infinite energy. This means that

a single quasinormal mode is not a physical state of the system. Of course, it also means that

we should not think in terms of a truly stationary solution, i.e. one that has existed forever and

will continue to exist forever without changing. Rather, we will have to look explicitly at the

time when the perturbation started, i.e. we will have to consider the initial data that excited the

perturbation we are studying.

3.2. Laplace transform

The Fourier transform makes it very difficult for us to include this initial data in our study. In

fact, when we started out, we did not want to include it, since we were interested in a general

formalism that does not depend on the specific form of a perturbation and the initial data that

caused it. However, it seems that we went a little too far in this attempt. So let us backtrack a

little and include the initial data into the picture.

A technique that will allow us to do this, which is very similar to the Fourier transform,

is the Laplace transform. If the initial data has compact support on the Schwarzschild part

of the spacetime, then the solution of the perturbation equation will be bounded and allows a

Laplace transform [27]. In general, this will remain true if the initial data are not compact, but

sufficiently localized. The Laplace transform for a solution in the time domain is

f̂ (s, x) =
∫ ∞

0

e−st Q(t, x) dt, (54)

it is an analytic function of s for Re(s) > 0.

The Laplace transform f̂ (s, x) satisfies the differential equation

f̂ ′′(s, x) +
(
−s2 − V (x)

)
f̂ (s, x) = I(s, x), (55)

where the source term I(s, x) is determined by the initial data:

I(s, x) = −s Q
∣∣
t=0 − ∂Q

∂t

∣∣∣∣
t=0

. (56)

Conversely, given a solution of equation (55), a solution of the time-dependent perturbation

equation is obtained by

Q(t, x) = 1

2π i

∫ ε+i∞

ε−i∞
est f̂ (s, x) ds, (57)

where the contour of integration runs parallel to, and just to the right of, the imaginary s-axis

(see figure 4).

The solution of the inhomogeneous differential equation (55) is unique up to a solution

of the homogeneous equation. Any two linearly independent solutions, say f− and f+, of the

homogeneous differential equation

f ′′(s, x) +
(
−s2 − V (x)

)
f (s, x) = 0 (58)

define a particular Green’s functionG(s, x, x ′) for the solution of the inhomogeneous equation,
such that

f̂ (s, x) =
∫ ∞

−∞
G(s, x, x ′) I(s, x ′) dx ′, (59)
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There is a very standard technique to solve for an in-
homogenous equation. 
Find two independent solution of the homogenous:

Denote this two solution as f+ and f- 
Construct the Wronksian W(s)::
The Green-Function is:

The final solution is:

Laplace Transform:
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where

G(s, x, x ′) = 1

W(s)
f−(s, x<)f+(s, x>), (60)

x< ≡ min(x ′, x), x> ≡ max(x ′, x) and W(s) is the Wronskian of f− and f+: W(s) =
f−(s, x)f ′

+(s, x) − f ′
−(s, x)f+(s, x). If f− and f+ are solutions of a differential equation

having the form of equation (58), the Wronskian does not depend on the variable x.

The homogeneous differential equation (58) has two linearly independent solutions, and

each combination of them will produce a different Green’s function and hence a different

solution to the time-dependent perturbation equation (47). Which one is the correct one, i.e.

the one that will result from the given initial data?

The boundedness of the solution in spacetime implies that its Laplace transform must be

bounded in x as well. We will obtain a bounded solution from equation (59) if and only if

f− stays bounded as x → −∞ (i.e. at the horizon), and if f+ stays bounded as x → +∞ (at

spatial infinity), when s is in the right half of the complex plane.

If we examine equation (58) with standard techniques [28] (volume III.2, chapter V), it

turns out that if Re(s) > 0, a set of two linearly independent solutions, f1 and f2, exists

such that f1 stays bounded as x → −∞ while f2 becomes unbounded. Therefore, all linear

combinations of f1 and f2 with a non-vanishing contribution of f2 will also be unbounded, and

f1 is essentially the only bounded solution. We must therefore choose f− to be proportional
to f1. For x → +∞, the same occurs with another set of solutions. The choices for f− and
f+ (and for the Green’s function of equation (55)) are therefore uniquely determined by the

boundedness of the original solution in spacetime. There is no need to impose ad hoc boundary

conditions; the boundary conditions of the solutions we need to use are determined uniquely

by the physics and mathematics of the problem.

We now know how to construct a solution of the perturbation equation, given specific

initial data. Indeed, Leaver [29] and Sun and Price [30, 31] have shown how astrophysically

realistic systems can be treated using the Laplace transformation. However, the quasinormal

modes have somehow disappeared from our view. How can we identify them in the Laplace

transform picture?

3.3. Topics for further reading

• Stability of non-rotating black holes [22, 27].

4. Quasinormal modes in the Laplace picture

A standard technique for identifying important contributions to the solution of a differential

equation consists of closing the contour of integration in equation (57). This relates analyticity

properties of the Laplace-transformed solution to the asymptotic behaviour of the time-

dependent solution. If there are no essential singularities inside the contour, then the value of

the integral along the closed contour (of which the original contour is a part) is equal to a sum

over the residues inside the contour:∮
est f̂ (s, x) ds = 2π i

∑

q

Res
(
est f̂ (s, x), sq

)
. (61)

4.1. Quasinormal-mode expansion

Usually, one closes the contour with a half circle at infinity in either the right or left part of

the complex plane. In fact, such a closure at |s| = ∞ should be regarded as the limit of a
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conditions; the boundary conditions of the solutions we need to use are determined uniquely

by the physics and mathematics of the problem.

We now know how to construct a solution of the perturbation equation, given specific

initial data. Indeed, Leaver [29] and Sun and Price [30, 31] have shown how astrophysically

realistic systems can be treated using the Laplace transformation. However, the quasinormal

modes have somehow disappeared from our view. How can we identify them in the Laplace

transform picture?

3.3. Topics for further reading

• Stability of non-rotating black holes [22, 27].

4. Quasinormal modes in the Laplace picture

A standard technique for identifying important contributions to the solution of a differential

equation consists of closing the contour of integration in equation (57). This relates analyticity

properties of the Laplace-transformed solution to the asymptotic behaviour of the time-

dependent solution. If there are no essential singularities inside the contour, then the value of

the integral along the closed contour (of which the original contour is a part) is equal to a sum
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q
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(
est f̂ (s, x), sq

)
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the complex plane. In fact, such a closure at |s| = ∞ should be regarded as the limit of a
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sequence of closures at finite values of |s|. Let us assume for themoment that this sequence has
a limit, and that the integral over the half circle at infinity vanishes in the limit. Furthermore,

let there be no essential singularities inside the contour. Also, we assume that the solutions

f− and f+ are analytic in s. These assumptions are satisfied in some simple cases, such as a

square barrier potential, or an infinite torsion fibre with changing moment of inertia [32]. In

general, one or more of them may be violated. In fact, we will see later that this is the case

for the Regge–Wheeler and the Zerilli potentials. Nevertheless, it is instructive to use these

simplifying assumptions at first, and come back later to the complications that arise when they

do not hold.

With everything being analytic, the poles of the Green’s function can only originate in

zeros of the WronskianW(s). If these are simple roots, we can rewrite equation (61) as

Q(t, x) = 1

2π i

∫ ε+i∞

ε−i∞
est

∫ ∞

−∞
G(s, x, x ′) I(s, x ′) dx ′ ds

= 1

2π i

∮
est

1

W(s)

∫ ∞

−∞
f−(s, x<)f+(s, x>) I(s, x ′) dx ′ ds

=
∑

q

esq t Res

(
1

W(s)
, sq

) ∫ ∞

−∞
f−(sq, x<)f+(sq, x>) I(sq, x

′) dx ′. (62)

Specifically, if the initial data has compact support, and x is located to the right of this

support, we have

Q(t, x) =
∑

q

cquq(t, x), (63)

where

cq = 1

dW(sq)/ds

∫ xr

xl

f−(sq, x
′) I(sq, x

′) dx ′ (64)

uq(t, x) = esq tf+(sq, x), (65)

with xl and xr denoting the left and right boundaries of the compact support of the initial data.

Such zeros do indeed exist in the left half of the complex s-plane. IfW(s = sq) = 0, then

the solutions f−(sq, x) and f+(sq, x) must be identical, up to a constant factor. Investigating

equation (58)with standard techniques [28] (volume III.2, chapter V), we find that the solutions

which are bounded at either end must behave like

f−(s, x) ∼ esx
(
1 +O

(
1

x

))
as x → −∞

f+(s, x) ∼ e−sx

(
1 +O

(
1

x

))
as x → +∞

(66)

in the right half-plane of s. Their analytic continuations into the left half-plane must therefore

show the same behaviour, even though this will make them unbounded at the boundaries.

The formal replacement s = iω turns equation (58) into the Fourier-transformed

differential equation (52). This replacement shows that f− and f+ satisfy the out-going

quasinormal-mode boundary conditions of equation (53). Therefore, the vanishing of the

WronskianW(s) for certain values of s (orω) implies that the corresponding solution f− = f+
of the time-independent differential equation satisfies the conditions at both boundaries

simultaneously. We may therefore identify such a solution with a quasinormal mode of a

Schwarzschild black hole in the sense of the original, ‘naive’ definition based on equation (53).
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where

G(s, x, x ′) = 1

W(s)
f−(s, x<)f+(s, x>), (60)

x< ≡ min(x ′, x), x> ≡ max(x ′, x) and W(s) is the Wronskian of f− and f+: W(s) =
f−(s, x)f ′

+(s, x) − f ′
−(s, x)f+(s, x). If f− and f+ are solutions of a differential equation

having the form of equation (58), the Wronskian does not depend on the variable x.

The homogeneous differential equation (58) has two linearly independent solutions, and

each combination of them will produce a different Green’s function and hence a different

solution to the time-dependent perturbation equation (47). Which one is the correct one, i.e.

the one that will result from the given initial data?

The boundedness of the solution in spacetime implies that its Laplace transform must be

bounded in x as well. We will obtain a bounded solution from equation (59) if and only if

f− stays bounded as x → −∞ (i.e. at the horizon), and if f+ stays bounded as x → +∞ (at

spatial infinity), when s is in the right half of the complex plane.

If we examine equation (58) with standard techniques [28] (volume III.2, chapter V), it

turns out that if Re(s) > 0, a set of two linearly independent solutions, f1 and f2, exists

such that f1 stays bounded as x → −∞ while f2 becomes unbounded. Therefore, all linear

combinations of f1 and f2 with a non-vanishing contribution of f2 will also be unbounded, and

f1 is essentially the only bounded solution. We must therefore choose f− to be proportional
to f1. For x → +∞, the same occurs with another set of solutions. The choices for f− and
f+ (and for the Green’s function of equation (55)) are therefore uniquely determined by the

boundedness of the original solution in spacetime. There is no need to impose ad hoc boundary

conditions; the boundary conditions of the solutions we need to use are determined uniquely

by the physics and mathematics of the problem.

We now know how to construct a solution of the perturbation equation, given specific

initial data. Indeed, Leaver [29] and Sun and Price [30, 31] have shown how astrophysically

realistic systems can be treated using the Laplace transformation. However, the quasinormal

modes have somehow disappeared from our view. How can we identify them in the Laplace

transform picture?

3.3. Topics for further reading

• Stability of non-rotating black holes [22, 27].

4. Quasinormal modes in the Laplace picture

A standard technique for identifying important contributions to the solution of a differential

equation consists of closing the contour of integration in equation (57). This relates analyticity

properties of the Laplace-transformed solution to the asymptotic behaviour of the time-

dependent solution. If there are no essential singularities inside the contour, then the value of

the integral along the closed contour (of which the original contour is a part) is equal to a sum

over the residues inside the contour:∮
est f̂ (s, x) ds = 2π i

∑

q

Res
(
est f̂ (s, x), sq

)
. (61)

4.1. Quasinormal-mode expansion

Usually, one closes the contour with a half circle at infinity in either the right or left part of

the complex plane. In fact, such a closure at |s| = ∞ should be regarded as the limit of a
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equation consists of closing the contour of integration in equation (57). This relates analyticity

properties of the Laplace-transformed solution to the asymptotic behaviour of the time-

dependent solution. If there are no essential singularities inside the contour, then the value of

the integral along the closed contour (of which the original contour is a part) is equal to a sum

over the residues inside the contour:∮
est f̂ (s, x) ds = 2π i

∑

q

Res
(
est f̂ (s, x), sq

)
. (61)

4.1. Quasinormal-mode expansion

Usually, one closes the contour with a half circle at infinity in either the right or left part of

the complex plane. In fact, such a closure at |s| = ∞ should be regarded as the limit of a
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where
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W(s)
f−(s, x<)f+(s, x>), (60)
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of the code which assured a convergence factor of ∼ 2.
A resolution of ∆r∗ = 0.01 and ∆r = 0.015 is sufficient
to be in the convergence regime. Since we have imple-
mented standard Sommerfeld outgoing boundary condi-
tions (see Ref. [32] for improved, non-reflecting boundary
conditions), we can’t avoid some spurious reflections to
come back from boundaries. To avoid that this effect
contaminates too much the late-time tails of the signals,
we need to choose radial grids sufficiently extended, say
r∗ ∈ [−2000, 2000] and r ∈ [0, 2000].

III. RESULTS

A. Analysis of the waveforms

We analyzed the gravitational wave response of rela-
tivistic stars described by the four (two polytropic and
two constant energy density) models in Tab. I and of a
Black Hole of the same mass to an impinging gravita-
tional wave-packet of the form (2.8). We focus on the
dependence of the excitation of the star w-modes (and of
the Black Hole QNMs) ring-down on the width b. The
Gaussian is centered at r0 = 100; the waveforms are ex-
tracted at robs = 900 (robs

∗ = 916) and shown versus
observer retarded time u = t − robs

∗ . Fig. 1 exhibits the
waveforms, for Model A, Model B and the black hole for
b = 2 (top), b = 8 (middle) and b = 20 (bottom). The
main panel depicts the modulus on a logarithmic scale,
in order to highlight the late-time non-oscillatory tail.

Let us first discuss the main features of the signal of
Fig. 1, starting with the “narrow”pulse, b = 2. In the
case of the Black Hole, the ring-down has the “standard”
shape dominated by the fundamental mode that is quoted
in textbooks. In the case of the stars, a damped harmonic
oscillations due to w-modes appears (we shall make this
statement more precise below). The waveforms show the
common global behavior precursor - burst - ring-down -
tail. The precursor is determined by the choice of ini-
tial data and by the long-range features of the potential;
this implies that, until u $ 100, the three waveforms
are superposed. At later times, the short-range struc-
ture (burst-ring-down) becomes apparent. For the Black
Hole the burst is related to the pulse passing through
the peak of Regge-Wheeler potential. After the pulse
the quasi-harmonic oscillatory regime shows up. When
b is increased (b = 8), the features remain unchanged,
but, although the non-oscillatory tail is not dominating
yet, the amplitude of the damped oscillation is smaller
and lasting for a shorter time. A further enlargement of
the Gaussian causes the ingoing pulse to be almost com-
pletely reflected back by the “tail” of the potential, so
that the emerging waveform is unaffected by the prop-
erties of the central object. The bottom panel of Fig. 1
highlights this effect for b = 20: no quasi-normal oscil-
lations are present. It turns out that the waveforms are
perfectly superposed and any characteristic signature of
the Black Hole or of the star (for any star model, see
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FIG. 1: Dependence of the ring-down phase on the width b of
the Gaussian pulse: for b = 2 (top panel) and b = 8 (middle
panel) the process of excitation of the space-time modes shows
the same qualitative features for the Black Hole and for the
star. The waveforms for b = 20 (bottom panel) show there is
basically no difference between the gravitational wave signal
backscattered from a stars of Table I and from a Schwarzschild
Black Hole with the same mass.
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In the ‘ring-down’ picture, on the other hand, the analogy to normal modes is stressed.

Quasinormal modes are seen as a property of the underlying system, rather than the initial

data. It is regarded as significant that quasinormal modes show up as dominating the signal for

some period of time in an obvious way. This requires that the expansion coefficients should

be constants, they cannot be time dependent. The ‘excitation’ phase is completely dependent

on the initial data, it does not really tell us anything about the underlying system and should

therefore not be viewed in terms of quasinormal modes. It may be questioned whether a

representation of the signal by quasinormal modes should even be attempted, in any way,

during this initial phase.

The difference, then, is not one of right or wrong; rather, it is a question of the viewpoint,

or the angle from which we want to approach the problem.

4.4. Incompleteness of quasinormal modes

Unfortunately, for perturbations of black holes and neutron stars, the situation is not as simple

as we have pretended up to this point. Studies by Jensen and Candelas [34] and Ching et al

[35] have shown that f− is indeed analytic throughout the complex s-plane. However, f+ has

an essential singularity at s = 0. Furthermore, there is a branch cut extending from s = 0 to

infinity. In addition, there are isolated singularities of f+ along the negative imaginary s-axis.

The difference in the behaviour of f− and f+ is related to the fact that the potential falls off

exponentially in x as x → −∞, but much more slowly, as 1/x2, as x → +∞.

Figure 4. Path of integration ! in the complex plane for the inverse Laplace transformation.

S1 . . . S8 are the first eight poles of the Green’s function.

In order to keep the essential singularity at s = 0 from lying inside the closed contour,

we choose the contour as shown in figure 4. The branch cut is usually positioned along the

negative real s-axis; the half circle at s → ∞ has to be split up into two quarter circles.

It turns out that the integration along the branch cut and around the essential singularity

at s = 0 yields a non-vanishing contribution. The same is true for the quarter circles, even

in the limit s → ∞. We will discuss these contributions in more detail later. For now, we

For Black Hole perturbation
f- is analytic

Unfortunately f+ is not:
Due to the fall-off property
of the potential
f+ has an essential singularity at s=0.
f+ has isolated singularity along the 
negative s-axis

Other contributions to the inverse Laplace 
transformation

Topical Review R179

note that their existence implies that the quasinormal modes of the Regge–Wheeler and the

Zerilli potential do not form a complete set. This is actually true for most quasinormal-mode

systems, except for a few such as those mentioned in section 4.1. In section 4.6, we will look

at properties of the potential which allow, or preclude, a complete set of quasinormal modes.

4.5. Other contributions to the inverse Laplace transform for the Schwarzschild black hole

For a system with an incomplete set of quasinormal modes, we must modify equation (63) a

bit:

Q(t, x) =
∑

q

cquq(t, x) + (other contributions). (69)

The most important ‘other contributions’ are a power-law tail at late time, clearly evident

in the time evolution of the Regge–Wheeler function in figure 2, and the prompt contribution,

which is the initial perturbation propagated to the observer. They are related to specific parts

of the integration path for the integral in equation (57). They have been studied extensively,

for example, by Leaver [29] and Andersson [33]; we will just give a brief summary here.

4.5.1. Branch cut extending from the singularity at s = 0. The integration along the branch

cut running from the singularity at s = 0 towards |s| →∞ along the negative real s-axis

produces the power-law tail which dominates the signal at very late time. The tail is actually

present throughout, but it is hidden by the quasinormal ringing. Only after the quasinormal

modes, with their exponential decay, have become small enough, can the power-law tail take

over.

Gundlach et al [36] have determined the exponents of the tails for various locations in

the Schwarzschild spacetime. At spatial infinity, they find a leading decay as t−(2L+3). If the

initial data are momentarily stationary on a null surface, this changes to t−(2L+2), or to t−(2L+4)

if it is momentarily stationary on a Cauchy surface.

While the quasinormal-mode spectrum and the contribution of the quasinormal modes to

the signal are relatedmostly to the form of the potential around itsmaximum, the power-law tail

is determined by the long-range behaviour of the potential. Potentials falling off exponentially

at large |x| do not produce power-law tails [35]. Another, more specialized example is the
truncated dipole potential which has an exact 2/x2 behaviour [37] for x ! x0.

4.5.2. Quarter-circles at |s| →∞ . The integrals along the two quarter-circles at |s| →∞
generate the signal at early time, which is essentially the initial pulse being propagated through

spacetime to the observer. In general, these contributions do not vanish. This means that the

initial pulse usually cannot be described completely by the sum over the singularities of the

Laplace transformed solution.

4.6. How properties of the potential affect completeness

Bachelot and Motet-Bachelot [38] have proven that a potential with compact support will

not cause a power-law tail in the time evolution of Cauchy data. Beyer [39] has proven the

same for the Pöschl–Teller potential. Ching et al [35] have argued that any potential falling

off faster than exponentially towards infinity will not produce a power-law tail. In this case,

completeness of the quasinormal modes depends only on the behaviour of the integral over the

(now uninterrupted) half-circle at |s| →∞ .
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QNM of Stars: do the same of BHs 

Linearize Einstein equation:

Around a solution of the TOV equations.

We will have two cases:
Axial perturbations:
Polar Perturbations:
S and F metric perturbation
H density perturbation

+ a constraint:

Where:
38
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These equations should of course, be supplemented with an equation of state
p = p(ρ, . . .) as input. Usually is sufficient to use a one-parameter equation of
state to model neutron stars, since the typical thermal energies are much smaller
than the Fermi energy. The polytropic equation of state p = Kρ1+1/N where
K is the polytropic constant and N the polytropic exponent, is used in most of
the studies. The existence of a unique global solution of the Einstein equations
for a given equation of state and a given value of the central density has been
proven by Rendall and Schmidt [174].

If we assume a small variation in the fluid or/and in the spacetime we must
deal with the perturbed Einstein equations

δ

(
Gµ

ν −
8πG

c4
Tµ

ν

)
= 0, (49)

and the variation of the fluid equations of motion

δ
(
Tµ

ν;µ

)
= 0, (50)

while the perturbed metric will be given by equation (18).
Following the procedure of the previous section one can decompose the per-

turbation equations into spherical harmonics. This decomposition leads to two
classes of oscillations according to the parity of the harmonics (exactly as for
the black hole case). The first ones called even (or spheroidal, or polar) produce
spheroidal deformations on the fluid, while the second are the odd (or toroidal,
or axial) which produce toroidal deformations.

For the polar case one can use certain combinations of the metric pertur-
bations as unknowns, and the linearized field equations inside the star will be
equivalent to the following system of three wave equations for unknowns S, F, H:

− 1
c2

∂2S

∂2t
+

∂2S

∂2r∗
+ L1(S, F, %) = 0, (51)

− 1
c2

∂2F

∂2t
+

∂2F

∂2r∗
+ L2(S, F, H, %) = 0, (52)

− 1
(cs)2

∂2H

∂2t
+

∂2H

∂2r∗
+ L3(H,H ′, S, S′, F, F ′, %) = 0, (53)

and the constraint
∂2F

∂2r∗
+ L4(F, F ′, S, S′,H, %) = 0. (54)

The linear functions Li, (i = 1, 2, 3, 4) depend on the background model and
their explicit form can be found in [118, 5]. The functions S and F correspond
to the perturbations of the spacetime while the function H is proportional to
the density perturbation and is only defined on the background star. With cs

we define the speed of sound and with a prime we denote differentiation with
respect to r∗:

∂

∂r∗
= e(v−λ)/2 ∂

∂r
. (55)
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∂2F

∂2r∗
+ L4(F, F ′, S, S′,H, %) = 0. (54)

The linear functions Li, (i = 1, 2, 3, 4) depend on the background model and
their explicit form can be found in [118, 5]. The functions S and F correspond
to the perturbations of the spacetime while the function H is proportional to
the density perturbation and is only defined on the background star. With cs

we define the speed of sound and with a prime we denote differentiation with
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25 Quasi-Normal Modes of Stars and Black Holes

Outside the star there are only perturbations of the spacetime. These are de-
scribed by a single wave equation, the Zerilli equation mentioned in the previous
section, see equations (21) and (24). In [118] it was shown that (for background
stars whose boundary density is positive) the above system – together with the
geometrical transition conditions at the boundary of the star and regularity
conditions at the center – admits a well posed Cauchy problem. The constraint
is preserved under the evolution. We see that two variables propagate along
light characteristics and the density H propagates with the sound velocity of
the background star.

It is possible to eliminate the constraint – first done by Moncrief [152] –
if one solves the constraint (54) for H and puts the corresponding expression
into L2. (The characteristics for F change then to sound characteristics inside
the star and light characteristics outside.) This way one has just to solve two
coupled wave equations for S and F with unconstrained data, and to calculate
H using the constraint from the solution of the two wave equations. Again the
explicit form of the equation can be found in [5].

Turning next to quasi-normal modes in the spirit of section 2, we can Laplace
transform the two wave equations and obtain a system of ordinary differential
equations which is of fourth order. The Green function can be constructed from
solutions of the homogeneous equations (having the appropriate behavior at the
center and infinity) and its analytic continuation may have poles defining the
quasi-normal mode frequencies.

From the form of the above equations one can easily see two limiting cases.
Let us first assume that the gravitational field is very weak. Then equation (51)
and (52) can be omitted (actually S → 0 in the weak field limit [200, 5]) and we
find that one equation is enough to describe (with acceptable accuracy) the oscil-
lations of the fluid. This approach is known as the Cowling approximation [64].
Inversely, we can assume that the coupling between the two equations (51)
and (52) describing the spacetime perturbations with the equation (53) is weak
and consequently derive all the features of the spacetime perturbations from only
the two of them. This is what is called the “inverse Cowling approximation”
(ICA) [22].

For the axial case the perturbations reduce to a single wave equation for the
spacetime perturbations which describes toroidal deformations

− 1
c2

∂2X

∂2t
+

∂2X

∂2r∗
+

ev

r3

[
"(" + 1)r + r3(ρ− p)− 6M

]
= 0, (56)

where X ∼ hrφ. Outside the star, pressure and density are zero and this
equation is reduced to the Regge-Wheeler equation, see equations (21) and (24).
In Newtonian theory, if the star is non-rotating and the static model is a perfect
fluid (i.e. shear stresses are absent), the axial oscillations are a trivial solution
of zero frequency to the perturbation equations and the variations of pressure
and density are zero. Nevertheless, the variation of the velocity field is not
zero and produces non-oscillatory eddy motions. This means that there are no
oscillatory velocity fields. In the relativistic case the picture is identical [202]
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QNM of stars
Clearly, outside we should only consider metric 
perturbations.

Explicit form in: Kind, S., Ehlers, J., and Schmidt, B.G., 
“Relativistic stellar oscillations treated as an initial value 
problem”, Class. Quantum Grav., 10, 2137– 2152, (1993).

QNM mode problem even more complicate:
Outgoing wave condition only for r→∞ 
We have to impose boundary condition at the origin and at the 
boundary of the star

S=0 is the Cowling approximations. .... Not working very 
well ...... see: Dimmelmeier et all. Mon. Not. of the Royal 
Astron. Society, 368, (2006) 1609-1630.
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W-modes (gravitational modes)
Since in General Relativity the metric is a field we will have 
gravitational modes that have no counterpart in Newtonian 
Physics.

These Space-time modes are called W-modes

They are different from the QNM of a Black Hole of the 
same mass.

K=56.16 Γ=2 polytrope vs a same mass BH ...

It is possible to discriminate BH from Neutron stars.

40

5

TABLE II: The first four frequencies νn2 and damping times
τn2 of w-modes (for # = 2) of Model A: they have been
computed by means of a frequency domain code described
in Ref. [20–22]. The third and fourth column of the table
list the corresponding complex frequencies ωn2 − iαn2 in our
standard units. We have ωn2 = 2πνn2M!G/c3.

n νn2 [Hz] τn2 [µs] ωn2 αn2

0 9497 32.64 0.29393 0.15091

1 16724 20.65 0.5176 0.23853

2 24277 17.21 0.75136 0.28621

3 32245 15.43 0.99796 0.31923

TABLE III: The first four complex # = 2 QNMs frequencies
ωn2 − iαn2 of a M = 1.4 Black Hole in our standard units
(Derived from the values published in Table 1 of [31]).

n νn2 [Hz] τn2 [µs] ωn2 αn2

0 8624 77.52 0.2669 0.0635

1 8002 25.18 0.2477 0.1956

2 6948 14.42 0.2150 0.3416

3 5804 9.78 0.1796 0.5037

B. Identification of the w-modes

We conclude this section by discussing the possibility
of identifying unambiguously the presence of w-modes in
the waveforms and in the corresponding energy spectrum.
Ideally, one would like to find precise answers to the fol-
lowing points: (i) understand which part of the waveform
can be written as a superposition of w-modes; (ii) how
many modes one should expect to be excited and (iii)
how does this depend on b.

Although these questions have been widely investi-
gated in the past (see for example Chapter 4 of [5],
Ref. [6] and references therein), still they have not been
exhaustively answered in the literature. The major con-
ceptual problems underlying this difficulty are (i) the fact
that the quasinormal-modes sets are not complete and
(ii) the so called time shift problem. The former is in-
trinsic in the definition of the quasinormal modes and
prevents, in fact, to associate an energy to each excita-
tion mode. The latter is related to the exponential decay
of the quasinormal modes and it implies that, if the same
signal occurs at a later time, the magnitudes of the modes
will be larger with respect to that of the same signal oc-
curred at an earlier time. As a consequence, the use of
the magnitude of the amplitudes Cn (see Eq. 3.1 below)
is not a good measure of the excitation of the quasinor-
mal modes. We refer to the review of Nollert [35] for a
thorough discussion of such problems.

Beside these conceptual difficulties, from the practi-
cal point of view it is however important to extract as
much as information as possible about the quasi-normal
modes by analyzing the ringing phase of the signal. Two
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FIG. 4: Fits of the ring-down part of the waveform with the
fundamental (n = 0) space-time mode for a Black Hole ex-
cited by a b = 2 Gaussian pulse. We show the waveform
Ψ(o)

2 (t) and its absolute value on a logarithmic scale to high-
light the differences with the fit.

complementary methods can be used to obtain such im-
portant knowledge. On the one hand, one can imple-
ment the Fourier analysis, namely looking at the energy
Fourier spectrum in the frequency range where w-modes
are expected (see e.g. Refs. [12, 15, 19]). On the other
hand, one can perform a “fit analysis”. In this case, it is
assumed that, on a given interval ∆u = [ui, uf ], the wave-
form can be written as a superposition of n exponentially
damped sinusoids, the quasi-normal modes expansion:

Ψ! =
∑

n=0

Ψn! =
∑

n=0

Cn cos(ωnu+φn) exp(−αnu) , (3.1)

of frequency ωn and damping time 1/αn, that are, a pri-
ori, unknown [we omit henceforth the index $ since in the
following we will be focusing only on the $ = 2 modes].
Using a non-linear fit procedure one can estimate the
values of (ωn, αn, Cn φn) from the waveform. We per-
form this analysis by means of a modified least-square
Prony method (see e.g. the discussion of Ref. [34]) to fit
the waveforms. A feedback on the reliability of our fit
procedure is done by comparing the values of frequency
and damping time, ωn! and αn!, obtained by the fit with
those of Table II and Table III that we assume to be the
correct ones.

The typical outcome of the fit analysis, using only the
fundamental mode (n = 0), are shown in Fig. 4 for the
Black Hole with b = 2 and in Fig. 5 for the star Model A
with b = 2 (top panel) and b = 8 (bottom panel). When
b = 2, for which the largest space-time mode excitation
is expected, for both the star and the Black Hole the fits
show excellent agreement with the numerical waveform at
early times, that progressively worsen due to the power-
law tail contribution. The reliability of the procedure is
confirmed by the values of ω0 and α0 that we obtain from
the fit.
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complementary methods can be used to obtain such im-
portant knowledge. On the one hand, one can imple-
ment the Fourier analysis, namely looking at the energy
Fourier spectrum in the frequency range where w-modes
are expected (see e.g. Refs. [12, 15, 19]). On the other
hand, one can perform a “fit analysis”. In this case, it is
assumed that, on a given interval ∆u = [ui, uf ], the wave-
form can be written as a superposition of n exponentially
damped sinusoids, the quasi-normal modes expansion:
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of frequency ωn and damping time 1/αn, that are, a pri-
ori, unknown [we omit henceforth the index $ since in the
following we will be focusing only on the $ = 2 modes].
Using a non-linear fit procedure one can estimate the
values of (ωn, αn, Cn φn) from the waveform. We per-
form this analysis by means of a modified least-square
Prony method (see e.g. the discussion of Ref. [34]) to fit
the waveforms. A feedback on the reliability of our fit
procedure is done by comparing the values of frequency
and damping time, ωn! and αn!, obtained by the fit with
those of Table II and Table III that we assume to be the
correct ones.

The typical outcome of the fit analysis, using only the
fundamental mode (n = 0), are shown in Fig. 4 for the
Black Hole with b = 2 and in Fig. 5 for the star Model A
with b = 2 (top panel) and b = 8 (bottom panel). When
b = 2, for which the largest space-time mode excitation
is expected, for both the star and the Black Hole the fits
show excellent agreement with the numerical waveform at
early times, that progressively worsen due to the power-
law tail contribution. The reliability of the procedure is
confirmed by the values of ω0 and α0 that we obtain from
the fit.
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QNM of Rotating stars... 
.... an example

Better way to compute modes (instead of the Cowling approximation) is to 
use the CFC approximation (no gravity) making full 3D time simulations [*].

One can study the dependence on the rotation state of the frequency.
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Pulsations of rotating relativistic stars 9
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Figure 1. Frequencies of various modes for sequences A (solid
lines) and AU (dashed lines). Note the avoided crossing between
the H1 and the 4p1-mode.

corresponding decrease in the frequencies of the fundamen-
tal modes (and a similar tendency for the first overtones).
In contrast, along sequences B and BU, where the central
density is fixed, the compactness varies much less than for se-
quences A and AU. In fact, for sequence B, the compactness
even somewhat increases. One therefore expects a weaker
dependence of the pulsation frequencies on rotation for the
sequences of fixed central density. The above expectations
have already been verified qualitatively in the Cowling ap-
proximation by SAF.

In slowly rotating stars, the frequencies of all inertial
modes increase linearly with increasing T/|W | (see Friedman
& Lockitch 2001; Lockitch, Friedman & Andersson 2003).
At higher rotation rates, higher-order rotational terms can
modify this behavior. For uniformly rotating stars, the ex-
pectation is that the inertial mode frequency still increases
up to the mass-shedding limit. As clearly visible for the
rapidly rotating models of sequence A in Fig. 1, this gen-
eral expectation is no longer valid for differentially rotating
stars (for a more detailed discussion, see Section 4.4).

Due to differential rotation, the outer layers of the star
rotate slower and the equatorial radius is smaller compared
to a uniformly rotating model of same T/|W |. This leads to
a smaller sound-crossing time and correspondingly higher
fundamental mode frequencies for the differentially rotating
models. This explains why the curves for the fundamental
mode frequencies of the F and 2f -mode of sequence A in
Fig. 1 have smaller slopes than those corresponding to se-
quence AU. This behavior was already found for the same
model sequence in the Cowling approximation in the work
of SAF.

In general, higher order or large l modes are affected
more strongly by rotation than lower order or smaller l
modes. At large rotation rates this can lead to avoided cross-

ings between mode sequences, where modes can exchange
the character of their eigenfunctions. These avoided cross-
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Figure 2. Same as Fig. 1, but for the sequences B and BU.

ings are already known to exist from perturbative studies of
axisymmetric modes in rotating Newtonian stars (Clement
1986) and for relativistic quasi-radial modes (Yoshida &
Eriguchi 2001). It is not trivial to decide how to label the
mode sequences after an avoided crossing. The decisive cri-
terion for labeling a pulsation mode is not the continuity of
the eigenfrequency along a mode sequence. More important
is the character of the oscillation, i.e. the eigenfunction. One
must therefore examine the eigenfunctions of two pulsations
before and after an avoided crossing. Then the character of
the modes after the crossing can be determined according to
which modes (of those before the crossing) they resemble.
Thus, continuity of eigenfunctions is preferred over continu-
ity of eigenfrequencies in labeling modes.

4.2 Quasi-radial (l = 0) modes and avoided
crossings

The computed frequencies for the fundamental quasi-radial
l = 0 mode F and its first overtone H1 for the fixed rest mass
sequences A and AU are displayed in Tables 2 and 3 and
plotted in Fig. 1. Along the uniformly rotating sequence AU,
there is a decrease in the frequency of the fundamental quasi-
radial mode, since the central density of the star decreases
with increasing rotation rate. For Newtonian nonrotating
polytropic models the frequency of the fundamental quasi-
radial mode is proportional to the square root of the average
density. Even though we do not compute an average density
for the rapidly rotating models of sequences A and AU, we
notice that the decrease in the frequency of the F -mode from
1.458 kHz to 1.107 kHz along sequence AU follows closely
the decrease in central energy density εc. Along the differ-
entially rotating sequence A, the frequency of the F -mode
is further decreasing, reaching a very low value of 685 Hz
for the most rapidly rotating model. Remarkably, when one
compares models of same T/|W | along the two sequences A
and AU, the frequency of the F -mode is insensitive to the
degree of differential rotation.

c© 2005 RAS, MNRAS 000, 1–24

14 H. Dimmelmeier, N. Stergioulas and J. A. Font

l = 0 perturbation

l = 2 perturbation

with trial eigenfunction

0.0 1.0 2.0 3.0 4.0 5.0

f (kHz)

perturbation with actual F, H
1
, 

2
f, 

2
p

1
 eigenfunction

F

H
1

2
p

1

2
f

F 2
f

2
p

1 H
1

Figure 8. Fourier transform of the evolution of the radial profile
of the rest-mass density ρ along the equatorial plane for model
A1. For the two simulations in the upper panel an l = 0 and l = 2
trial eigenfunction is used as perturbation, respectively, while the
four recycling runs in the lower panel are excited with recycled
eigenfunctions. The scaling of the ordinate is linear, and the power
spectra in the upper panel are scaled to obtain the same strength
of the F -mode.

for a given mode some of these variables are out of phase
with respect to the others. Using the eigenfunctions of all
variables as recycling perturbations simultaneously without
taking into account the relative phase between them does
not lead to the excitation of a single mode, but to the ex-
citation of a sum of different modes (similar to choosing a
trial eigenfunction). From the phase information contained
in the complex FFT of the various variables, we determined
that, at least for the modes we are interested in, the quanti-
ties vr and vθ have the same phase, while the other two are
out of phase by π/2 with respect to vr and vθ .

While the suppression of undesired additional modes in
the power spectrum significantly improves when eigenfunc-
tion recycling is performed, the form of the eigenfunction of
various metric and hydrodynamic quantities extracted from
the recycling run is usually altered only negligibly as com-
pared to the eigenfunction extracted from the original simu-
lation with the trial perturbation. In Fig. 9 we present radial
profiles of the rest-mass density eigenfunction ρef along the
equatorial plane (upper panel) and of the θ-velocity eigen-
function vef

θ along θ = π/4 (lower panel). They are extracted
from both the original simulations of model A1 using l = 0
(for ρef) and l = 2 (for vef

θ ) perturbations with trial eigen-
functions, and also from the respective H1 and 2p1 recy-
cling runs. Only at the outer stellar boundary the shape of
the eigenfunctions depends slightly on whether the model is
perturbed by a trial or extracted eigenfunction, while in the
bulk of the star the eigenfunctions are practically identical.
We find similar results for the fundamental modes F and
2f and for the eigenfunctions of other metric and hydrody-
namic quantities in model A1 and several other moderately
rotating models.

0
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Figure 9. Radial profiles of the eigenfunctions ρef for the H1-
mode (along the equatorial plane; upper panel) and vef

θ for the
2p1-mode (along θ = π/4; lower panel) obtained from the evo-
lution of model A1. For an initial perturbation using either a
trial eigenfunction (black solid lines) or an extracted eigenfunc-
tion (blue dashed lines), the shapes of the eigenfunctions agree
well. The eigenfunctions are scaled to the same maximum height.

We can thus conclude that for such rotating stellar mod-
els an initial perturbation with trial eigenfunctions is ade-
quate to precisely obtain the mode frequency and to extract
an accurate corresponding eigenfunction of the fundamental
modes and their first overtones from the evolution. Addi-
tionally, for such models a single recycling run suffices to
efficiently suppress the excitation of all unwanted modes.
However, if the peak of the investigated mode in the power
spectrum is small and/or if several modes interact (see also
the discussion of avoided crossings in Section 4.2), which is
typically the case for higher order modes in rapidly rotating
models, another recycling loop may be necessary to clearly
determine the mode frequency and eigenfunctions, and to
channel most of the initial perturbation energy into a single
oscillation mode.

Particularly in the case of the avoided crossing of the
H1 and the 4p1-mode in sequence A and B (see also Figs. 1
and 2), we use a modified recycling strategy for an accurate
mode analysis. Starting from a model where the mode fre-
quency and eigenfunctions can still be clearly determined,
the next model in the sequence is perturbed with the eigen-
functions of the investigated mode extracted from the previ-
ous model. This sequential recycling is a very helpful tool to
resolve problems with ambiguous or unclear mode frequen-
cies and character of the eigenfunction.

6 NON-LINEAR PULSATIONS

Although linear perturbations of rotating stars are assumed
to have a vanishingly small amplitude, so that the back-
ground equilibrium star is unaffected by a linear oscillation
mode, in certain situations non-linear effects can become

c© 2005 RAS, MNRAS 000, 1–24
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Issue related to QNMs

Completeness:
We expect that QNM do not form a complete basis for the 
perturbation. For Schwarzschild [Leaver 62] this is due to a branch cut 
in the Green function. Power-law tail

Stability of Schwarzschild:
Vishveshvara ’70 showed that the imaginary part of the QNM 
frequency is always negative
Wald ’79 showed that if the imaginary part of the QNM frequency is 
always negative all perturbation remains bounded

Some evidence for Kerr Black Hole

42

Valeria Ferrari & Leonardo Gualtieri: Quasi-normal modes and gravitational wave 
astronomy: Gen. Relativ. Gravit. 0001-7701 (Print) 1572-9532 (Online)
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Gravitational wave astronomy
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Fig. 3 The frequency of the fundamental mode is plotted as a function of the mass of the star for the
selected EOS (see text)

– Group II
The main difference between the equations of state BBS1 and BBS2 is that in
BBS2 strange heavy baryons (!− and "0) are allowed to form in the core. Neither
BBS1 nor BBS2 include relativistic corrections.

As representative of the RMFT, we choose the EOS named G240 . Matter composition
includes leptons and the complete octet of baryons (nucleons, !0,±, "0 and #±).
Hadron dynamics is described in terms of exchange of one scalar and two vector
mesons. It should be reminded that in this case, the EOS is obtained within the mean
field approximation [112].

For any of the above EOS we have solved the TOV equations for different values
of the central density, finding the equilibrium configurations. Then, for each EOS
and for each equilibrium model, we have solved the equations of stellar perturbations
finding the f -mode frequency, ν f . The results are shown in Fig. 3 where we plot ν f
as a function of the mass, up to the maximum mass allowed by each EOS. From this
picture we learn the following. Comparing the values of ν f for APR1 and APR2 we
immediately see that the relativistic corrections and the associated redefinition of
the three-body potential, which improve the Hamiltonian of APR2 with respect to
APR1, play a relevant role, leading to a systematic difference of about 150 Hz in
the mode frequency. Conversely, the presence of quark matter in the star inner core
(EOS APRB200 and APRB120) does not seem to significantly affect the pulsation
properties of the star. We also see that the frequencies corresponding to the BBS1 and

123

Frequency of mode depends on the EOS

Frequency of the fundamental mode for different realistic 
EOS 
G240 Relativistic Mean
Field Theory
Non relativistic Hamiltonian 
describing the Electroweak 
equilibrium of neutron, 
proton, muon, electron 

APR1...APRB120: three body Urbana IX
BBS1, BBS2: three body Urbana VII

STRONG DEPENDENCE ON THE USED EQUATION OF STATE
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Two-bodies problem and GWs
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Black Hole Merger results

3

posed. Though it is generally expected that the significance
of such limitations on the final merger simulations should
be reduced if the black holes begin sufficiently far apart,
there is no clear way to assess just how significant such
effects will be on the results, including the gravitational
waveforms, before carrying out the evolutions.

Our simulations, begun with varying initial separations,
should be affected by any initial modeling error in varying
amounts, but should agree to the degree that they represent
the ideal astrophysical spacetime. A key objective in our
analysis is to identify universal characteristics among the
different runs which, we reason, are then likely to correctly
represent those aspects of the astrophysical equal-mass
nonspinning binary black hole merger spacetime.

A. Overview of simulations

Our comparative analysis covers four simulations
labeled R1 to R4 in Table I. We evolved them all using
the medium resolution of hf ! !=3 except for R1, where
we have applied the higher hf ! !=4 resolution. In all runs
we used an initial grid setup and adaptive mesh refinement
as described in Sec. III. We evolved all the runs to well
after the wave signal had passed the extraction region; the
actual amount of time is noted as Tsim in Table IV. For the
time-slicing condition used in our simulations, the region
where the lapse satisfies the condition " ! 0:3 corre-
sponds roughly with the apparent horizon location. We
thus used the moment when the two " ! 0:3 regions
around the black holes merge to specify a merger time
Tmerge. The number of orbits for each run, Norbits, was
estimated from the trajectories shown in Fig. 4 and is taken
up to the point at which the merger occurs.

A graphical overview of our four simulations is pre-
sented in Fig. 4 showing the paths traced by the black
hole punctures on the computational domain. These were
obtained by numerically integrating the equation of motion
_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
jectory of each puncture [9]. The value of the shift at the
location of the puncture ~## ~xpunc$ was interpolated between
grid points as required.

For clarity, Fig. 4 shows only the track of one of the two
black holes from each simulation. We have oriented each
trajectory according to a physical reference discussed in

Sec. V B, so that they superpose at the radiation peak,
which occurs very near the end of the puncture trajectory.
R4 has the widest initial separation and completes the
largest number of orbits. Each of the other cases, after an

TABLE IV. Simulation parameters and general results. Tmerger

is the time at which the merger occurs, starting from the initial
time in each run.

R1 R2 R3 R4

L=M0 9.9 11.1 12.1 13.2
hf !=4 !=3 !=3 !=3
Tsim 421M 531M 530M 850M
Tmerger 160M 234M 396M 513M
Norbits 1.8 2.5 3.6 4.2

-4 -2 0 2 4

x / M

-4

-2

0

2

4

y 
/ M

R1
R2
R3
R4
Merger

FIG. 4 (color online). Paths of black holes starting from differ-
ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
holes follow the same tracks. The point of merger (estimated by
a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.
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FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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posed. Though it is generally expected that the significance
of such limitations on the final merger simulations should
be reduced if the black holes begin sufficiently far apart,
there is no clear way to assess just how significant such
effects will be on the results, including the gravitational
waveforms, before carrying out the evolutions.

Our simulations, begun with varying initial separations,
should be affected by any initial modeling error in varying
amounts, but should agree to the degree that they represent
the ideal astrophysical spacetime. A key objective in our
analysis is to identify universal characteristics among the
different runs which, we reason, are then likely to correctly
represent those aspects of the astrophysical equal-mass
nonspinning binary black hole merger spacetime.

A. Overview of simulations

Our comparative analysis covers four simulations
labeled R1 to R4 in Table I. We evolved them all using
the medium resolution of hf ! !=3 except for R1, where
we have applied the higher hf ! !=4 resolution. In all runs
we used an initial grid setup and adaptive mesh refinement
as described in Sec. III. We evolved all the runs to well
after the wave signal had passed the extraction region; the
actual amount of time is noted as Tsim in Table IV. For the
time-slicing condition used in our simulations, the region
where the lapse satisfies the condition " ! 0:3 corre-
sponds roughly with the apparent horizon location. We
thus used the moment when the two " ! 0:3 regions
around the black holes merge to specify a merger time
Tmerge. The number of orbits for each run, Norbits, was
estimated from the trajectories shown in Fig. 4 and is taken
up to the point at which the merger occurs.

A graphical overview of our four simulations is pre-
sented in Fig. 4 showing the paths traced by the black
hole punctures on the computational domain. These were
obtained by numerically integrating the equation of motion
_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
jectory of each puncture [9]. The value of the shift at the
location of the puncture ~## ~xpunc$ was interpolated between
grid points as required.

For clarity, Fig. 4 shows only the track of one of the two
black holes from each simulation. We have oriented each
trajectory according to a physical reference discussed in

Sec. V B, so that they superpose at the radiation peak,
which occurs very near the end of the puncture trajectory.
R4 has the widest initial separation and completes the
largest number of orbits. Each of the other cases, after an

TABLE IV. Simulation parameters and general results. Tmerger

is the time at which the merger occurs, starting from the initial
time in each run.

R1 R2 R3 R4

L=M0 9.9 11.1 12.1 13.2
hf !=4 !=3 !=3 !=3
Tsim 421M 531M 530M 850M
Tmerger 160M 234M 396M 513M
Norbits 1.8 2.5 3.6 4.2
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FIG. 4 (color online). Paths of black holes starting from differ-
ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
holes follow the same tracks. The point of merger (estimated by
a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.
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FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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FIG. 1: Comparison between EOB and NR waveforms for a5 = 25 and vpole = 0.6241: frequencies (top–left), phase difference (top–right),

amplitudes (bottom–left) and real parts (bottom–right) of the two gravitational waveforms. The vertical line at tNR = 1509 locates the

maximum of (twice) the orbital frequency Ω (alias the “EOB-light-ring”) and indicates the center of our matching comb (whose total width is

indicated by the two neighboring vertical lines in the top–left panel). The vertical dashed line at tNR = 1482 indicates the crossing time of the

adiabatic LSO orbital frequency (ΩLSO = 0.1003).

found that vpole = 0.5356 yields an excellent EOB/NR agree-

ment 11.

We exhibit our results in the four panels of Fig. 2, which

are entirely parallel to those of Fig. 1. The remarkable level of

EOB/NR agreement that we get now, when a5 = 60, is rather

close to the one that we got above when a5 = 25. At this

stage, there is no rationale for saying that either value of a5

is preferred over the other (though a5 = 25 yields somewhat

better results). Some partial numerical tests that we performed

suggest that this conclusion extends to (at least) all values of

a5 between 25 and 60.

11 Note that this “best” value of vpole (for a5 = 60 and ν = 1/4) happens

to be numerically close to the best fitting vpole ! 0.53 value that Ref. [24]

found in the test-mass limit ν → 0.

Some of the numbers quantifying the EOB/NR agreement

are:

(i) the (two-sided) EOB-NR phase difference over the time

interval (500M, 1550M) (which covers about 13 GW cycles

of inspiral, plunge, and most of the ring-down) is smaller than

about ± 1
20.13 radians, which corresponds to ±0.01 GW cy-

cles;

(ii) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies between −0.8% and

+0.55%. After tNR = 1400M , this fractional difference in-

creases from +0.55% to a maximum of +23% (reached at

tNR " 1511M ) and then decreases to take values of order

+6% during the observationally relevant part of the ringdown.
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FIG. 1: Comparison between EOB and NR waveforms for a5 = 25 and vpole = 0.6241: frequencies (top–left), phase difference (top–right),

amplitudes (bottom–left) and real parts (bottom–right) of the two gravitational waveforms. The vertical line at tNR = 1509 locates the

maximum of (twice) the orbital frequency Ω (alias the “EOB-light-ring”) and indicates the center of our matching comb (whose total width is

indicated by the two neighboring vertical lines in the top–left panel). The vertical dashed line at tNR = 1482 indicates the crossing time of the

adiabatic LSO orbital frequency (ΩLSO = 0.1003).

found that vpole = 0.5356 yields an excellent EOB/NR agree-

ment 11.

We exhibit our results in the four panels of Fig. 2, which

are entirely parallel to those of Fig. 1. The remarkable level of

EOB/NR agreement that we get now, when a5 = 60, is rather

close to the one that we got above when a5 = 25. At this

stage, there is no rationale for saying that either value of a5

is preferred over the other (though a5 = 25 yields somewhat

better results). Some partial numerical tests that we performed

suggest that this conclusion extends to (at least) all values of

a5 between 25 and 60.

11 Note that this “best” value of vpole (for a5 = 60 and ν = 1/4) happens

to be numerically close to the best fitting vpole ! 0.53 value that Ref. [24]

found in the test-mass limit ν → 0.

Some of the numbers quantifying the EOB/NR agreement

are:

(i) the (two-sided) EOB-NR phase difference over the time

interval (500M, 1550M) (which covers about 13 GW cycles

of inspiral, plunge, and most of the ring-down) is smaller than

about ± 1
20.13 radians, which corresponds to ±0.01 GW cy-

cles;

(ii) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies between −0.8% and

+0.55%. After tNR = 1400M , this fractional difference in-

creases from +0.55% to a maximum of +23% (reached at

tNR " 1511M ) and then decreases to take values of order

+6% during the observationally relevant part of the ringdown.
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posed. Though it is generally expected that the significance
of such limitations on the final merger simulations should
be reduced if the black holes begin sufficiently far apart,
there is no clear way to assess just how significant such
effects will be on the results, including the gravitational
waveforms, before carrying out the evolutions.

Our simulations, begun with varying initial separations,
should be affected by any initial modeling error in varying
amounts, but should agree to the degree that they represent
the ideal astrophysical spacetime. A key objective in our
analysis is to identify universal characteristics among the
different runs which, we reason, are then likely to correctly
represent those aspects of the astrophysical equal-mass
nonspinning binary black hole merger spacetime.

A. Overview of simulations

Our comparative analysis covers four simulations
labeled R1 to R4 in Table I. We evolved them all using
the medium resolution of hf ! !=3 except for R1, where
we have applied the higher hf ! !=4 resolution. In all runs
we used an initial grid setup and adaptive mesh refinement
as described in Sec. III. We evolved all the runs to well
after the wave signal had passed the extraction region; the
actual amount of time is noted as Tsim in Table IV. For the
time-slicing condition used in our simulations, the region
where the lapse satisfies the condition " ! 0:3 corre-
sponds roughly with the apparent horizon location. We
thus used the moment when the two " ! 0:3 regions
around the black holes merge to specify a merger time
Tmerge. The number of orbits for each run, Norbits, was
estimated from the trajectories shown in Fig. 4 and is taken
up to the point at which the merger occurs.

A graphical overview of our four simulations is pre-
sented in Fig. 4 showing the paths traced by the black
hole punctures on the computational domain. These were
obtained by numerically integrating the equation of motion
_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
jectory of each puncture [9]. The value of the shift at the
location of the puncture ~## ~xpunc$ was interpolated between
grid points as required.

For clarity, Fig. 4 shows only the track of one of the two
black holes from each simulation. We have oriented each
trajectory according to a physical reference discussed in

Sec. V B, so that they superpose at the radiation peak,
which occurs very near the end of the puncture trajectory.
R4 has the widest initial separation and completes the
largest number of orbits. Each of the other cases, after an

TABLE IV. Simulation parameters and general results. Tmerger

is the time at which the merger occurs, starting from the initial
time in each run.

R1 R2 R3 R4

L=M0 9.9 11.1 12.1 13.2
hf !=4 !=3 !=3 !=3
Tsim 421M 531M 530M 850M
Tmerger 160M 234M 396M 513M
Norbits 1.8 2.5 3.6 4.2
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FIG. 4 (color online). Paths of black holes starting from differ-
ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
holes follow the same tracks. The point of merger (estimated by
a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.
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FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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FIG. 1: Comparison between EOB and NR waveforms for a5 = 25 and vpole = 0.6241: frequencies (top–left), phase difference (top–right),

amplitudes (bottom–left) and real parts (bottom–right) of the two gravitational waveforms. The vertical line at tNR = 1509 locates the

maximum of (twice) the orbital frequency Ω (alias the “EOB-light-ring”) and indicates the center of our matching comb (whose total width is

indicated by the two neighboring vertical lines in the top–left panel). The vertical dashed line at tNR = 1482 indicates the crossing time of the

adiabatic LSO orbital frequency (ΩLSO = 0.1003).

found that vpole = 0.5356 yields an excellent EOB/NR agree-

ment 11.

We exhibit our results in the four panels of Fig. 2, which

are entirely parallel to those of Fig. 1. The remarkable level of

EOB/NR agreement that we get now, when a5 = 60, is rather

close to the one that we got above when a5 = 25. At this

stage, there is no rationale for saying that either value of a5

is preferred over the other (though a5 = 25 yields somewhat

better results). Some partial numerical tests that we performed

suggest that this conclusion extends to (at least) all values of

a5 between 25 and 60.

11 Note that this “best” value of vpole (for a5 = 60 and ν = 1/4) happens

to be numerically close to the best fitting vpole ! 0.53 value that Ref. [24]

found in the test-mass limit ν → 0.

Some of the numbers quantifying the EOB/NR agreement

are:

(i) the (two-sided) EOB-NR phase difference over the time

interval (500M, 1550M) (which covers about 13 GW cycles

of inspiral, plunge, and most of the ring-down) is smaller than

about ± 1
20.13 radians, which corresponds to ±0.01 GW cy-

cles;

(ii) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies between −0.8% and

+0.55%. After tNR = 1400M , this fractional difference in-

creases from +0.55% to a maximum of +23% (reached at

tNR " 1511M ) and then decreases to take values of order

+6% during the observationally relevant part of the ringdown.
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posed. Though it is generally expected that the significance
of such limitations on the final merger simulations should
be reduced if the black holes begin sufficiently far apart,
there is no clear way to assess just how significant such
effects will be on the results, including the gravitational
waveforms, before carrying out the evolutions.

Our simulations, begun with varying initial separations,
should be affected by any initial modeling error in varying
amounts, but should agree to the degree that they represent
the ideal astrophysical spacetime. A key objective in our
analysis is to identify universal characteristics among the
different runs which, we reason, are then likely to correctly
represent those aspects of the astrophysical equal-mass
nonspinning binary black hole merger spacetime.

A. Overview of simulations

Our comparative analysis covers four simulations
labeled R1 to R4 in Table I. We evolved them all using
the medium resolution of hf ! !=3 except for R1, where
we have applied the higher hf ! !=4 resolution. In all runs
we used an initial grid setup and adaptive mesh refinement
as described in Sec. III. We evolved all the runs to well
after the wave signal had passed the extraction region; the
actual amount of time is noted as Tsim in Table IV. For the
time-slicing condition used in our simulations, the region
where the lapse satisfies the condition " ! 0:3 corre-
sponds roughly with the apparent horizon location. We
thus used the moment when the two " ! 0:3 regions
around the black holes merge to specify a merger time
Tmerge. The number of orbits for each run, Norbits, was
estimated from the trajectories shown in Fig. 4 and is taken
up to the point at which the merger occurs.

A graphical overview of our four simulations is pre-
sented in Fig. 4 showing the paths traced by the black
hole punctures on the computational domain. These were
obtained by numerically integrating the equation of motion
_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
jectory of each puncture [9]. The value of the shift at the
location of the puncture ~## ~xpunc$ was interpolated between
grid points as required.

For clarity, Fig. 4 shows only the track of one of the two
black holes from each simulation. We have oriented each
trajectory according to a physical reference discussed in

Sec. V B, so that they superpose at the radiation peak,
which occurs very near the end of the puncture trajectory.
R4 has the widest initial separation and completes the
largest number of orbits. Each of the other cases, after an

TABLE IV. Simulation parameters and general results. Tmerger

is the time at which the merger occurs, starting from the initial
time in each run.

R1 R2 R3 R4

L=M0 9.9 11.1 12.1 13.2
hf !=4 !=3 !=3 !=3
Tsim 421M 531M 530M 850M
Tmerger 160M 234M 396M 513M
Norbits 1.8 2.5 3.6 4.2
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FIG. 4 (color online). Paths of black holes starting from differ-
ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
holes follow the same tracks. The point of merger (estimated by
a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.
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FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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FIG. 1: Comparison between EOB and NR waveforms for a5 = 25 and vpole = 0.6241: frequencies (top–left), phase difference (top–right),

amplitudes (bottom–left) and real parts (bottom–right) of the two gravitational waveforms. The vertical line at tNR = 1509 locates the

maximum of (twice) the orbital frequency Ω (alias the “EOB-light-ring”) and indicates the center of our matching comb (whose total width is

indicated by the two neighboring vertical lines in the top–left panel). The vertical dashed line at tNR = 1482 indicates the crossing time of the

adiabatic LSO orbital frequency (ΩLSO = 0.1003).

found that vpole = 0.5356 yields an excellent EOB/NR agree-

ment 11.

We exhibit our results in the four panels of Fig. 2, which

are entirely parallel to those of Fig. 1. The remarkable level of

EOB/NR agreement that we get now, when a5 = 60, is rather

close to the one that we got above when a5 = 25. At this

stage, there is no rationale for saying that either value of a5

is preferred over the other (though a5 = 25 yields somewhat

better results). Some partial numerical tests that we performed

suggest that this conclusion extends to (at least) all values of

a5 between 25 and 60.

11 Note that this “best” value of vpole (for a5 = 60 and ν = 1/4) happens

to be numerically close to the best fitting vpole ! 0.53 value that Ref. [24]

found in the test-mass limit ν → 0.

Some of the numbers quantifying the EOB/NR agreement

are:

(i) the (two-sided) EOB-NR phase difference over the time

interval (500M, 1550M) (which covers about 13 GW cycles

of inspiral, plunge, and most of the ring-down) is smaller than

about ± 1
20.13 radians, which corresponds to ±0.01 GW cy-

cles;

(ii) during the interval (1100M, 1400M) the fractional

EOB-NR amplitude difference varies between −0.8% and

+0.55%. After tNR = 1400M , this fractional difference in-

creases from +0.55% to a maximum of +23% (reached at

tNR " 1511M ) and then decreases to take values of order

+6% during the observationally relevant part of the ringdown.

INSPIRAL RING DOWN

Exponentially dumped 
oscillation (QNM)

Merger/PLUNGE

Merger/
PLUNGE
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Numerical General Relativity

7

Tµν = (ρ(1 + ε) + p)uµuν + pgµν

Rµν −
1
2
gµνR = 8πG Tµν

∇µTµν = 0

p = p(ρ, ε)

Einstein Equations

Conservation of energy momentum

Equation of state

Introduce a foliation of space-time

write as a 3+1 evolution equation

solve them on a computer !

Conservation of baryon density

7
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Why Numerical Relativity is hard!

No obviously “better” formulation of Einstein's equations
ADM, conformal decomposition, first-order hyperbolic 
form,.... ???

Coordinates (spatial and time) do not have a special 
meaning
this gauge freedom need to be carefully handled
gauge conditions must avoid singularities
gauge conditions must counteract “grid-stretching” 

Einstein’s Field equations are highly non-linear
Essentially unknown in this regime

Physical singularity are difficult to deal with

8

8



Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008

3+1 formulation

9

:: lapse

:: shift vector

:: 3-metric

9
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ADM evolution

10

2

about 1.2 solar masses the bar was non persistent but nowwith

a dominant mode 1 instability in the final part of the simula-

tion.

So we explored the region of high betas instabilities (β !
0.255 without corotation point, see for example [23]) in non
too compact cores of about 1.5 solar masses.

In this parameters region as expected the barmode instabil-

ity is the dominant one and it can start without any pertur-

bation and also with a pre-existent m=1 perturbation and this

make more plausible it’s developement after the collapse, but

we claim that near the threshold it’s possible to see a strong

non-linear interaction between the modes and although the

bar might be here a persistent one it is erased in a dynami-

cal timescale by the growth of a competing mode 1 instability.

This implies that also in this favourable case the potential

strong persistent quasi-periodic signal seems to be suppressed

by the appearance of a weaker one-arm instability which pro-

duce a much lower gravitational signal then the barmode one.

Commentare il fatto che ci possono volere diversi millisec-

ondi prima che l’instabilit parta e che quindi potrebbe essere

necessaria una finestra temporale sufficiente nell’evoluzione

della stella. NOTARE che anche Saijo in [24] perturba tutte le

simulazioni con una perturbazione di modo 2

For reviews on the expected gravitational wave from neu-

tron stars instability see, for example, refs, [25, 26] and [27].

This work is organized as follow. In section II we give det-

tails on the evoultion methods used. In section III we discuss

the initial models and their properties used in this study. In

section IV we discuss the methodology used to analize the

numerical results of the simulations. In section V we discuss

the general dynamics of the bar-mode instability and its prop-

erties. In section VI we discuss the stability of the code and

the accuracy of the obtained results. In section VII we present

two different determination of the critical value for the onset

of instability. In section VIII we give dettails for the expected

gravitational radiation signal from the unstable models. In

section IX we disccus the implication of our results and of the

open problem still present.

We have consistently used the following convention. We

used a space like signature (−, +, +, +) for the four dimen-
sional metric. Greek indices (µ, ν . . .) are taken to run from
0 to 3, Latin indices (i, j, k, . . .) from 1 to 3 and we adopt

the standard convention for the summation over repeated in-

dices. We consistently used the notation xi = (x, y, z) for
spatial coordinates, x0 = t for the temporal coordinate and
r =

√

x2 + y2 + z2, # =
√

x2 + y2, θ = arctan(#/z),
ϕ = arctan(y/x) for the axial and spherical coordinates.
All the quantities are expressed in the system of adimensional

units in which c = G = M! = 1 (unless explicitly stated).

II. EVOLUTION OF FIELDS ANDMATTER

The code and the method of the evolution is the same of the

one used in Baiotti et.all. [28] and therein described. For self

consistency we report here the main properties and character-

istic of the used simulation method. We have used the gen-

eral relativistic hydrodynamics Whisky code in which the

Einstein and hydrodynamics equations are written as finite-

differences on a Cartesian grid and solved using shock cap-

turing numerical schemes (a first description of the code was

given in [28]) and is a result of a collaboration among several

European Institutes [29].

The code has been constructed within the framework of

the Cactus Computational Toolkit (see [30] for details), de-

veloped at the Albert Einstein Institute (Golm) and at the

Louisiana State University (Baton Rouge). This public do-

main code provides high-level facilities such as paralleliza-

tion, input/output, portability on different platforms and sev-

eral evolution schemes to solve general systems of partial dif-

ferential equations. Clearly, special attention is dedicated to

the solution of the Einstein equations, whose matter-terms in

non-vacuum space-times are handled by the Whisky code.

While the Whisky code is entirely new, its initial develop-

ment has benefited in part from the release of a public ver-

sion of the general relativistic hydrodynamics code described

in [31, 32], and developed mostly by the group at the Wash-

ington University (St. Louis).

A. Evolution of Einstein equations

The original ADM formulation casts the Einstein equations

into a first-order (in time) quasi-linear [33] system of equa-

tions. The dependent variables are the three-metric γij and

the extrinsic curvature Kij , with first-order evolution equa-

tions given by

∂tγij = −2αKij + ∇iβj + ∇jβi, (2.1)

∂tKij = −∇i∇jα + α

[

Rij + K Kij − 2KimKm
j

−8π

(

Sij −
1

2
γijS

)

− 4πρ
ADM

γij

]

+βm∇mKij + Kim∇jβ
m + Kmj∇iβ

m.

(2.2)

Here, ∇i denotes the covariant derivative with respect to the

three-metric γij ,Rij is the Ricci curvature of the three-metric,

K ≡ γijKij is the trace of the extrinsic curvature, Sij is

the projection of the stress-energy tensor onto the space-like

hyper-surfaces and S ≡ γijSij (for a more detailed discus-

sion, see [34]). In addition to the evolution equations, the

Einstein equations also provide four constraint equations to

be satisfied on each space-like hyper-surface. These are the

Hamiltonian constraint equation

(3)R + K2 − KijK
ij − 16πρ

ADM
= 0 , (2.3)

and the momentum constraint equations

∇jK
ij − γij∇jK − 8πji = 0 . (2.4)

In equations (2.1)–(2.4), ρ
ADM

and ji are the energy density

and the momentum density as measured by an observer mov-

ing orthogonally to the space-like hyper-surfaces.
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In equations (2.1)–(2.4), ρ
ADM

and ji are the energy density

and the momentum density as measured by an observer mov-

ing orthogonally to the space-like hyper-surfaces.

Hamiltonian +  Momentum constraints

6 equations 
for the metric 

+1 constrain  equation

+3 constrain  equation

+6 equations for the 
time-coordinate 
derivative of the 
metric (extrinsic 
curvature) 
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ADM evolution is not stable !

11

Use BSSN rewriting of the evolution equation

or Use Harmonic evolution equations
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Other schemes (beside BSSN)

See Hisa-aki Shinka, 
Formulations of the 
Einstein equations for 
numerical simulations,  
arXiv:0805.0068 
for a review. 
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FIG. 3: Chronological table of formulations and their numerical tests (∼ 2001). Boxed ones are of proposals of formulation,
circled ones are related numerical experiments. Please refer Table 1 in [65] for each references.

scheme is to solve the elliptic constraints for preparing
the initial data, and to apply the free evolution (solving
only the evolution equations). The constraints are used
to monitor the accuracy of simulations.

The ADM formulation was the standard formulation
for numerical relativity up to the middle 90s. Numerous
successful simulations were obtained for the problems of
gravitational collapse, critical behavior, cosmology, and
so on. However, stability problems have arisen for the
simulations such as the gravitational radiation from com-
pact binary coalescence, because the models require quite
a long-term time evolution.

The origin of the problem was that the above state-
ment in Italics is true in principle, but is not always true
in numerical applications. A long history of trial and er-
ror began in the early 90s. From the next subsection we
shall look back of them by summarizing “three strate-
gies”. We then unify these three roads as “adjusted sys-
tems”, and as its by-product we show that the standard
ADM equations has a constraint violating mode in its
constraint propagation equations even for a single black-
hole (Schwarzschild) spacetime [64]. Figure 3 and 4 are
chronological maps of the researches.

B. Strategy 1: Modified ADM formulation by
Nakamura et al (The BSSN formulation)

Up to now, the most widely used formulation for
large scale numerical simulations is a modified ADM
system, which is now often cited as the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation. This

re-formulation was first introduced by Nakamura et al.
[52, 53, 61]. The usefulness of this re-formulation was
re-introduced by Baumgarte and Shapiro [15], then was
confirmed by other groups to show a long-term stable
numerical evolution [4, 5].

1. Basic variables and equations

The widely used notation[15] introduces the variables
(ϕ, γ̃ij ,K,Ãij ,Γ̃i) instead of (γij ,Kij), where

ϕ =
1

12
log(detγij), (12)

γ̃ij = e−4ϕγij , (13)

K = γijKij , (14)

Ãij = e−4ϕ(Kij − (1/3)γijK), (15)

Γ̃i = Γ̃i
jk γ̃jk. (16)

The new variable Γ̃i is introduced in order to calcu-
late Ricci curvature more accurately. In BSSN formu-
lation, Ricci curvature is not calculated as RADM

ij =

∂kΓk
ij−∂iΓk

kj+Γl
ijΓ

k
lk−Γl

kjΓ
k
li, but as RBSSN

ij = Rϕ
ij+R̃ij ,

where the first term includes the conformal factor ϕ while
the second term does not. These are approximately
equivalent, but RBSSN

ij does have wave operator appar-
ently in the flat background limit, so that we can expect
more natural wave propagation behavior.

Additionally, the BSSN requires us to impose the con-
formal factor as γ̃(:= detγ̃ij) = 1, during evolution. This

12
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Situation NOW: from 0805.0068
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hyperbolic formulation
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FIG. 4: Chronological table of formulations and their numerical tests (2001 ∼). Boxed ones are of proposals of formulation,
circled ones are related numerical experiments.

is a kind of definition, but can also be treated as a con-
straint.
!The BSSN formulation [15, 52, 53, 61]:
The fundamental dynamical variables are
(ϕ, γ̃ij ,K,Ãij ,Γ̃i).
The three-hypersurface Σ is foliated with gauge func-
tions, (α, βi), the lapse and shift vector.

• The evolution equations:

∂B
t ϕ = −(1/6)αK + (1/6)βi(∂iϕ) + (∂iβ

i), (17)

∂B
t γ̃ij = −2αÃij + γ̃ik(∂jβ

k) + γ̃jk(∂iβ
k)

−(2/3)γ̃ij(∂kβk) + βk(∂kγ̃ij), (18)

∂B
t K = −DiDiα + αÃijÃ

ij + (1/3)αK2 + βi(∂iK),(19)

∂B
t Ãij = −e−4ϕ(DiDjα)TF + e−4ϕα(RBSSN

ij )TF

+αKÃij − 2αÃikÃk
j + (∂iβ

k)Ãkj + (∂jβ
k)Ãki

−(2/3)(∂kβk)Ãij + βk(∂kÃij), (20)

∂B
t Γ̃i = −2(∂jα)Ãij + 2α

(

Γ̃i
jkÃkj − (2/3)γ̃ij(∂jK)

+6Ãij(∂jϕ)
)

− ∂j

(

βk(∂k γ̃ij) − γ̃kj(∂kβi)

−γ̃ki(∂kβj) + (2/3)γ̃ij(∂kβk)
)

. (21)

• Constraint equations:

HBSSN = RBSSN + K2 − KijK
ij , (22)

MBSSN
i = MADM

i , (23)

Gi = Γ̃i − γ̃jkΓ̃i
jk, (24)

A = Ãij γ̃
ij , (25)

S = γ̃ − 1. ! (26)

(22) and (23) are the Hamiltonian and momentum con-
straints (the “kinematic” constraints), while the latter
three are “algebraic” constraints due to the requirements
of BSSN variables.

2. Remarks, Pros and Cons

Why BSSN is better than the standard ADM? To-
gether with numerical comparisons with the standard
ADM case[5], this question has been studied by many
groups using different approaches.

• Using numerical test evolutions, Alcubierre et al.
[4] found that the essential improvement is in the
process of replacing terms by the momentum con-
straints. They also pointed out that the eigenvalues
of BSSN evolution equations have fewer “zero eigen-
values” than those of ADM, and they conjectured
that the instability might be caused by these “zero
eigenvalues”.

• Miller[49] reported that BSSN has a wider range of
parameters that gives us stable evolutions in von
Neumann’s stability analysis.

• An effort was made to understand the advantage
of BSSN from the point of hyperbolization of the
equations in its linearized limit [4, 57], or with a
particular combination of slicing conditions plus
auxiliary variables[43]. If we define the 2nd order
symmetric hyperbolic form, then the principal part
of BSSN can be one of them[41].
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Code Used 

CACTUS/BSSN: (www.cactuscode.org)
Mainly developed at AEI (Golm, Germany) and LSU (USA)

WHISKY: (http://www.aei-potsdam.mpg.de/~hawke/Whisky.html)
Whisky is a code to evolve the equations of hydrodynamics on curved 
space. It is being written by and for members of the EU Network on 
Sources of Gravitational Radiation and is based on the Cactus 
Computational Toolkit.

Gauge choice for the lapse and shift variables:
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about 1.2 solar masses the bar was non persistent but nowwith

a dominant mode 1 instability in the final part of the simula-

tion.

So we explored the region of high betas instabilities (β !
0.255 without corotation point, see for example [23]) in non
too compact cores of about 1.5 solar masses.

In this parameters region as expected the barmode instabil-

ity is the dominant one and it can start without any pertur-

bation and also with a pre-existent m=1 perturbation and this

make more plausible it’s developement after the collapse, but

we claim that near the threshold it’s possible to see a strong

non-linear interaction between the modes and although the

bar might be here a persistent one it is erased in a dynami-

cal timescale by the growth of a competing mode 1 instability.

This implies that also in this favourable case the potential

strong persistent quasi-periodic signal seems to be suppressed

by the appearance of a weaker one-arm instability which pro-

duce a much lower gravitational signal then the barmode one.

Commentare il fatto che ci possono volere diversi millisec-

ondi prima che l’instabilit parta e che quindi potrebbe essere

necessaria una finestra temporale sufficiente nell’evoluzione

della stella. NOTARE che anche Saijo in [24] perturba tutte le

simulazioni con una perturbazione di modo 2

For reviews on the expected gravitational wave from neu-

tron stars instability see, for example, refs, [25, 26] and [27].

This work is organized as follow. In section II we give det-

tails on the evoultion methods used. In section III we discuss

the initial models and their properties used in this study. In

section IV we discuss the methodology used to analize the

numerical results of the simulations. In section V we discuss

the general dynamics of the bar-mode instability and its prop-

erties. In section VI we discuss the stability of the code and

the accuracy of the obtained results. In section VII we present

two different determination of the critical value for the onset

of instability. In section VIII we give dettails for the expected

gravitational radiation signal from the unstable models. In

section IX we disccus the implication of our results and of the

open problem still present.

We have consistently used the following convention. We

used a space like signature (−, +, +, +) for the four dimen-
sional metric. Greek indices (µ, ν . . .) are taken to run from
0 to 3, Latin indices (i, j, k, . . .) from 1 to 3 and we adopt

the standard convention for the summation over repeated in-

dices. We consistently used the notation xi = (x, y, z) for
spatial coordinates, x0 = t for the temporal coordinate and
r =

√

x2 + y2 + z2, # =
√

x2 + y2, θ = arctan(#/z),
ϕ = arctan(y/x) for the axial and spherical coordinates.
All the quantities are expressed in the system of adimensional

units in which c = G = M! = 1 (unless explicitly stated).

II. EVOLUTION OF FIELDS ANDMATTER

The code and the method of the evolution is the same of the

one used in Baiotti et.all. [28] and therein described. For self

consistency we report here the main properties and character-

istic of the used simulation method. We have used the gen-

eral relativistic hydrodynamics Whisky code in which the

Einstein and hydrodynamics equations are written as finite-

differences on a Cartesian grid and solved using shock cap-

turing numerical schemes (a first description of the code was

given in [28]) and is a result of a collaboration among several

European Institutes [29].

The code has been constructed within the framework of

the Cactus Computational Toolkit (see [30] for details), de-

veloped at the Albert Einstein Institute (Golm) and at the

Louisiana State University (Baton Rouge). This public do-

main code provides high-level facilities such as paralleliza-

tion, input/output, portability on different platforms and sev-

eral evolution schemes to solve general systems of partial dif-

ferential equations. Clearly, special attention is dedicated to

the solution of the Einstein equations, whose matter-terms in

non-vacuum space-times are handled by the Whisky code.

While the Whisky code is entirely new, its initial develop-

ment has benefited in part from the release of a public ver-

sion of the general relativistic hydrodynamics code described

in [31, 32], and developed mostly by the group at the Wash-

ington University (St. Louis).

A. Evolution of Einstein equations

The original ADM formulation casts the Einstein equations

into a first-order (in time) quasi-linear [33] system of equa-

tions. The dependent variables are the three-metric γij and

the extrinsic curvature Kij , with first-order evolution equa-

tions given by

∂tγij = −2αKij + ∇iβj + ∇jβi, (2.1)

∂tKij = −∇i∇jα + α

[

Rij + K Kij − 2KimKm
j

−8π

(

Sij −
1

2
γijS

)

− 4πρ
ADM

γij

]

+βm∇mKij + Kim∇jβ
m + Kmj∇iβ

m.

(2.2)

Here, ∇i denotes the covariant derivative with respect to the

three-metric γij ,Rij is the Ricci curvature of the three-metric,

K ≡ γijKij is the trace of the extrinsic curvature, Sij is

the projection of the stress-energy tensor onto the space-like

hyper-surfaces and S ≡ γijSij (for a more detailed discus-

sion, see [34]). In addition to the evolution equations, the

Einstein equations also provide four constraint equations to

be satisfied on each space-like hyper-surface. These are the

Hamiltonian constraint equation

(3)R + K2 − KijK
ij − 16πρ

ADM
= 0 , (2.3)

and the momentum constraint equations

∇jK
ij − γij∇jK − 8πji = 0 . (2.4)

In equations (2.1)–(2.4), ρ
ADM

and ji are the energy density

and the momentum density as measured by an observer mov-

ing orthogonally to the space-like hyper-surfaces.
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In particular we are using the BSSN variant of the ADM

evolution [35–37] which is conformal traceless reformulation

of the above system of evolution equation where the evolved

variable are the conformal factor (φ), the trace of the extrinsic
curvature (K), the conformal 3-metric (γ̃ij), the conformal
traceless extrinsic curvature (Ãij) and the conformal connec-
tion functions (Γ̃i) defined as:

φ =
1

4
log( 3

√
γ) (2.5)

K = γijKij (2.6)

γ̃ij = e−4φγij (2.7)

Ãij = e−4φ(Kij − γijK) (2.8)

Γ̃i = γ̃ij
,j (2.9)

The code is designed to handle arbitrary shift and lapse con-

ditions, which can be chosen as appropriate for a given space-

time simulation. More information about the possible families

of space-time slicings which have been tested and used with

the present code can be found in [38? ]. Here, we limit our-

selves to recalling details about the specific foliations used in

the present evolutions. In particular, we have used hyperbolic

K-driver slicing conditions of the form

(∂t − βi∂i)α = −f(α) α2(K − K0), (2.10)

with f(α) > 0 and K0 ≡ K(t = 0). This is a generalization
of many well known slicing conditions. For example, setting

f = 1 we recover the “harmonic” slicing condition, while,
by setting f = q/α, with q an integer, we recover the gener-
alized “1+log” slicing condition [39]. In particular, all of the
simulations discussed in this paper are done using condition

(2.10) with f = 2/α. This choice has been made mostly be-
cause of its computational efficiency, but we are aware that

“gauge pathologies” could develop with the “1+log” slic-
ings [40, 41].

As for the spatial gauge, we use one of the “Gamma-driver”

shift conditions proposed in [38] (see also [42]), that essen-

tially act so as to drive the Γ̃i to be constant. In this re-

spect, the “Gamma-driver” shift conditions are similar to the

“Gamma-freezing” condition ∂tΓ̃k = 0, which, in turn, is
closely related to the well-knownminimal distortion shift con-

dition [43]. The differences between these two conditions in-

volve the Christoffel symbols and are basically due to the fact

that the minimal distortion condition is covariant, while the

Gamma-freezing condition is not.

In particular, all of the results reported here have been ob-

tained using the hyperbolic Gamma-driver condition,

∂2
t βi = F ∂tΓ̃

i − η ∂tβ
i, (2.11)

where F and η are, in general, positive functions of space
and time. For the hyperbolic Gamma-driver conditions it is

crucial to add a dissipation term with coefficient η to avoid
strong oscillations in the shift. Experience has shown that by

tuning the value of this dissipation coefficient it is possible to

almost freeze the evolution of the system at late times. We

typically choose F = 3
4α and η = 2 and do not vary them in

time.

B. Evolution of the hydrodynamics equations

In this work we have considered the space time described

in the standard 3+1 metric decomposition variables γij , α, βi

andmatter is assumed described by a perfect fluid EnergyMo-

mentum tensor:

T µν = ρhuµuν + pgµν (2.12)

h = 1 + ε +
p

ρ
(2.13)

and an equation of state of type p = p(ρ, ε). The code has
been written to use any EOS, but all of the simulation per-

formed so far have been performed using either a (isoentropic)

polytropic EOS

p = KρΓ , (2.14)

e = ρ +
p

Γ − 1
, (2.15)

or an “ideal fluid” (Γ-law) EOS

p = (Γ − 1)ρ ε . (2.16)

Here, e = ρ(1+ε) is the energy density in the rest-frame of the
fluid,K the polytropic constant and Γ the adiabatic exponent.
In the case of the polytropic EOS (2.14), Γ = 1+1/N , where
N is the polytropic index (we have always used N = 1, i.e.,
Γ = 2 that is a good approximation for a quite stiff equation of
state) and the evolution equation for τ needs not be solved. In
the case of the ideal-fluid EOS (2.16), on the other hand, non-

isentropic changes can take place in the fluid and the evolution

equation for τ (see below) needs to be solved. This means that
matter is described by the five dynamical variables ρ, ε, uµ

(where uµuµ = −1) with the equation of motions

!µT µν = 0 ,

!µ(ρuµ) = 0 .
(2.17)

An important feature of the Whisky code is the imple-

mentation of a conservative formulation of the hydrodynam-

ics equations [44–46], in which the set of equations (2.17) is

written in a hyperbolic, first-order and flux-conservative form

of the type

∂tq + ∂if
(i)(q) = s(q) , (2.18)

where f (i)(q) and s(q) are the flux-vectors and source terms,
respectively [47]. Note that the right-hand side (the source

terms) depends only on the metric, and its first derivatives,

and on the stress-energy tensor. Furthermore, while the sys-

tem (2.18) is not strictly hyperbolic, strong hyperbolicity is

recovered in a flat space-time, where s(q) = 0.
As shown by [45], in order to write system (2.17) in the

form of system (2.18), the primitive hydrodynamical variables

(i.e. the rest-mass density ρ and the pressure p (measured in
the rest-frame of the fluid), the fluid three-velocity vi (mea-

sured by a local zero-angular momentum observer), the spe-

cific internal energy ε and the Lorentz factor W ) are mapped
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variable are the conformal factor (φ), the trace of the extrinsic
curvature (K), the conformal 3-metric (γ̃ij), the conformal
traceless extrinsic curvature (Ãij) and the conformal connec-
tion functions (Γ̃i) defined as:

φ =
1

4
log( 3

√
γ) (2.5)

K = γijKij (2.6)

γ̃ij = e−4φγij (2.7)

Ãij = e−4φ(Kij − γijK) (2.8)

Γ̃i = γ̃ij
,j (2.9)

The code is designed to handle arbitrary shift and lapse con-

ditions, which can be chosen as appropriate for a given space-

time simulation. More information about the possible families

of space-time slicings which have been tested and used with

the present code can be found in [38? ]. Here, we limit our-

selves to recalling details about the specific foliations used in

the present evolutions. In particular, we have used hyperbolic

K-driver slicing conditions of the form

(∂t − βi∂i)α = −f(α) α2(K − K0), (2.10)

with f(α) > 0 and K0 ≡ K(t = 0). This is a generalization
of many well known slicing conditions. For example, setting

f = 1 we recover the “harmonic” slicing condition, while,
by setting f = q/α, with q an integer, we recover the gener-
alized “1+log” slicing condition [39]. In particular, all of the
simulations discussed in this paper are done using condition

(2.10) with f = 2/α. This choice has been made mostly be-
cause of its computational efficiency, but we are aware that

“gauge pathologies” could develop with the “1+log” slic-
ings [40, 41].

As for the spatial gauge, we use one of the “Gamma-driver”

shift conditions proposed in [38] (see also [42]), that essen-

tially act so as to drive the Γ̃i to be constant. In this re-

spect, the “Gamma-driver” shift conditions are similar to the

“Gamma-freezing” condition ∂tΓ̃k = 0, which, in turn, is
closely related to the well-knownminimal distortion shift con-

dition [43]. The differences between these two conditions in-

volve the Christoffel symbols and are basically due to the fact

that the minimal distortion condition is covariant, while the

Gamma-freezing condition is not.

In particular, all of the results reported here have been ob-

tained using the hyperbolic Gamma-driver condition,

∂2
t βi = F ∂tΓ̃

i − η ∂tβ
i, (2.11)

where F and η are, in general, positive functions of space
and time. For the hyperbolic Gamma-driver conditions it is

crucial to add a dissipation term with coefficient η to avoid
strong oscillations in the shift. Experience has shown that by

tuning the value of this dissipation coefficient it is possible to

almost freeze the evolution of the system at late times. We

typically choose F = 3
4α and η = 2 and do not vary them in

time.

B. Evolution of the hydrodynamics equations

In this work we have considered the space time described

in the standard 3+1 metric decomposition variables γij , α, βi

andmatter is assumed described by a perfect fluid EnergyMo-

mentum tensor:

T µν = ρhuµuν + pgµν (2.12)

h = 1 + ε +
p

ρ
(2.13)

and an equation of state of type p = p(ρ, ε). The code has
been written to use any EOS, but all of the simulation per-

formed so far have been performed using either a (isoentropic)

polytropic EOS

p = KρΓ , (2.14)

e = ρ +
p

Γ − 1
, (2.15)

or an “ideal fluid” (Γ-law) EOS

p = (Γ − 1)ρ ε . (2.16)

Here, e = ρ(1+ε) is the energy density in the rest-frame of the
fluid,K the polytropic constant and Γ the adiabatic exponent.
In the case of the polytropic EOS (2.14), Γ = 1+1/N , where
N is the polytropic index (we have always used N = 1, i.e.,
Γ = 2 that is a good approximation for a quite stiff equation of
state) and the evolution equation for τ needs not be solved. In
the case of the ideal-fluid EOS (2.16), on the other hand, non-

isentropic changes can take place in the fluid and the evolution

equation for τ (see below) needs to be solved. This means that
matter is described by the five dynamical variables ρ, ε, uµ

(where uµuµ = −1) with the equation of motions

!µT µν = 0 ,

!µ(ρuµ) = 0 .
(2.17)

An important feature of the Whisky code is the imple-

mentation of a conservative formulation of the hydrodynam-

ics equations [44–46], in which the set of equations (2.17) is

written in a hyperbolic, first-order and flux-conservative form

of the type

∂tq + ∂if
(i)(q) = s(q) , (2.18)

where f (i)(q) and s(q) are the flux-vectors and source terms,
respectively [47]. Note that the right-hand side (the source

terms) depends only on the metric, and its first derivatives,

and on the stress-energy tensor. Furthermore, while the sys-

tem (2.18) is not strictly hyperbolic, strong hyperbolicity is

recovered in a flat space-time, where s(q) = 0.
As shown by [45], in order to write system (2.17) in the

form of system (2.18), the primitive hydrodynamical variables

(i.e. the rest-mass density ρ and the pressure p (measured in
the rest-frame of the fluid), the fluid three-velocity vi (mea-

sured by a local zero-angular momentum observer), the spe-

cific internal energy ε and the Lorentz factor W ) are mapped

h = 1 + ε +
p

ρ

Tµν
= ρhuµuν

+ pgµν
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to the so called conserved variables q ≡ (D, Si, τ) via the re-
lations

D ≡ ρ∗ =
√

γWρ ,

Si ≡
√

γρhW 2vi , (2.19)

τ ≡
√

γ
(

ρhW 2 − p
)

− D ,

where h ≡ 1+ ε+p/ρ is the specific enthalpy and αu0 = W ,

αui = W
(

αvi − βi
)

, W ≡ (1 − γijvivj)−1/2. Note that

only five of the seven primitive variables are independent.

In order to close the system of equations for the hydrody-

namics an EOS which relates the pressure to the rest-mass

density and to the energy density must be specified.

In the case of the polytropic EOS (2.14), Γ = 1 + 1/N ,
where N is the polytropic index and the evolution equation

for τ needs not be solved. In the case of the ideal-fluid EOS
(2.16), on the other hand, non-isentropic changes can take

place in the fluid and the evolution equation for τ needs to
be solved.

Note that polytropic EOSs (2.14), do not allow any transfer

of kinetic energy to thermal energy, a process which occurs in

physical shocks (shock heating). However, we have verified,

by performing simulations with the more general EOS (2.16),

on some selected cases, that for the physical systems treated

here, shock heating is indeed not so important in the dynamics

of the bar.

Additional details of the formulation we use for the hydro-

dynamics equations can be found in [47]. We stress that an

important feature of this formulation is that it has allowed to

extend to a general relativistic context the powerful numer-

ical methods developed in classical hydrodynamics, in par-

ticular HRSC schemes based on linearized Riemann solvers

(see [47]). Such schemes are essential for a correct represen-

tation of shocks, whose presence is expected in several as-

trophysical scenarios. Two important results corroborate this

view. The first one, by Lax and Wendroff [48], states that

a stable scheme converges to a weak solution of the hydrody-

namical equations. The second one, by Hou and LeFloch [49],

states that, in general, a non-conservative scheme will con-

verge to the wrong weak solution in the presence of a shock,

hence underlining the importance of flux-conservative formu-

lations. For a full introduction to HRSC methods the reader is

also referred to [50–52].

III. INITIAL DATA

The initial configuration were generated on a code based

on the 2D Komatsu-Eriguch-Hachisu (KEH) method for con-

structing models of rotating neutron stars and details on the

code can be found in ref. [53]. Most of these models used are

described in [54]. The data are then transformed to Cartesian

coordinates using standard coordinate transformations. The

same initial data routines have been used in previous 3D sim-

ulations [53] and details on the accuracy of the code can be

found in [53].

In generating these equilibrium models the metric describ-

ing an axisymmetric relativistic star is assumed to have the

usual form:

ds2 = −eγ+ρdt2 + eγ−ρr2 sin2 θ(dϕ − ωdt)2

+e2α(dr2 + r2dθ2)
(3.1)

and an angular velocity distribution of the form:

Ωc − Ω =
r2
e

Â2

[

(Ω − ω)r2 sin2 θe−2ρ

1 − (Ω − ω)2r2 sin2 θe−2ρ

]

(3.2)

with Â = 1. On the the xy-plane the expression forΩ in terms
of used 3+1 variable is given by:

Ω =
uϕ

u0
=

uy cosϕ − ux sin ϕ

u0
√

x2 + y2
P =

2π

Ω
. (3.3)

In order to determine the characteristic group time and fre-

quency of the bar-mote instability and a precise measurement

of the critical value βd we have also considered density per-

turbations of the type:

δρ(x, y, z) = ρ × δ ×
x2 − y2

r2
e

(3.4)

that have the effect of creating initials data with an already big

enough (m = 2) bar-mode perturbations already active.
In order to test the effect of a pre-existing mode 1 perturba-

tion we instead used a density perturbation of the type:

δρ(x, y, z) = ρ × δm=1 × sin

(

ϕ ± n2π
,

re

)

. (3.5)

Notice that for n = 0 this is just

δρ(x, y, z) = ρ × δm=1 ×
y

re
. (3.6)

In this cases we have first generated the unperturbed model

with the methods described above, and we have then super-

imposed a perturbation of the type of Eq. (3.4) we have then

solved the super-Hamiltonian and super-momentums con-

straints using the standard technique described in... This is

exactly the same initial state density perturbation used in [19]

and [21].

On the initial (axisymmetric) condition one can compute

the barioninicmass (M0), the gravitational mass (M ), the an-

gular momentum (J), the rotational kinetic energy (T) and the
gravitational binding energy (W) as [55]:

M0 =

∫

ρ∗d
3x (3.7)

M =

∫

(

−2T 0
0 + T µ

µ

)

α
√

γd3x (3.8)

J =

∫

T 0
ϕα

√
γd3x (3.9)

T =
1

2

∫

ΩT 0
ϕα

√
γd3x (3.10)

W =

∫

ρ∗εd
3x + M0 + T − M (3.11)

β = T/|W| (3.12)

4

to the so called conserved variables q ≡ (D, Si, τ) via the re-
lations

D ≡ ρ∗ =
√

γWρ ,

Si ≡
√

γρhW 2vi , (2.19)

τ ≡
√

γ
(

ρhW 2 − p
)

− D ,

where h ≡ 1+ ε+p/ρ is the specific enthalpy and αu0 = W ,

αui = W
(

αvi − βi
)

, W ≡ (1 − γijvivj)−1/2. Note that

only five of the seven primitive variables are independent.

In order to close the system of equations for the hydrody-

namics an EOS which relates the pressure to the rest-mass

density and to the energy density must be specified.

In the case of the polytropic EOS (2.14), Γ = 1 + 1/N ,
where N is the polytropic index and the evolution equation

for τ needs not be solved. In the case of the ideal-fluid EOS
(2.16), on the other hand, non-isentropic changes can take

place in the fluid and the evolution equation for τ needs to
be solved.

Note that polytropic EOSs (2.14), do not allow any transfer

of kinetic energy to thermal energy, a process which occurs in

physical shocks (shock heating). However, we have verified,

by performing simulations with the more general EOS (2.16),

on some selected cases, that for the physical systems treated

here, shock heating is indeed not so important in the dynamics

of the bar.

Additional details of the formulation we use for the hydro-

dynamics equations can be found in [47]. We stress that an

important feature of this formulation is that it has allowed to

extend to a general relativistic context the powerful numer-

ical methods developed in classical hydrodynamics, in par-

ticular HRSC schemes based on linearized Riemann solvers

(see [47]). Such schemes are essential for a correct represen-

tation of shocks, whose presence is expected in several as-

trophysical scenarios. Two important results corroborate this

view. The first one, by Lax and Wendroff [48], states that

a stable scheme converges to a weak solution of the hydrody-

namical equations. The second one, by Hou and LeFloch [49],

states that, in general, a non-conservative scheme will con-

verge to the wrong weak solution in the presence of a shock,

hence underlining the importance of flux-conservative formu-

lations. For a full introduction to HRSC methods the reader is

also referred to [50–52].

III. INITIAL DATA

The initial configuration were generated on a code based

on the 2D Komatsu-Eriguch-Hachisu (KEH) method for con-

structing models of rotating neutron stars and details on the

code can be found in ref. [53]. Most of these models used are

described in [54]. The data are then transformed to Cartesian

coordinates using standard coordinate transformations. The

same initial data routines have been used in previous 3D sim-

ulations [53] and details on the accuracy of the code can be

found in [53].

In generating these equilibrium models the metric describ-

ing an axisymmetric relativistic star is assumed to have the

usual form:

ds2 = −eγ+ρdt2 + eγ−ρr2 sin2 θ(dϕ − ωdt)2

+e2α(dr2 + r2dθ2)
(3.1)

and an angular velocity distribution of the form:

Ωc − Ω =
r2
e

Â2
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turbations of the type:

δρ(x, y, z) = ρ × δ ×
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enough (m = 2) bar-mode perturbations already active.
In order to test the effect of a pre-existing mode 1 perturba-

tion we instead used a density perturbation of the type:

δρ(x, y, z) = ρ × δm=1 × sin
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Notice that for n = 0 this is just

δρ(x, y, z) = ρ × δm=1 ×
y

re
. (3.6)

In this cases we have first generated the unperturbed model

with the methods described above, and we have then super-

imposed a perturbation of the type of Eq. (3.4) we have then

solved the super-Hamiltonian and super-momentums con-

straints using the standard technique described in... This is

exactly the same initial state density perturbation used in [19]

and [21].

On the initial (axisymmetric) condition one can compute

the barioninicmass (M0), the gravitational mass (M ), the an-

gular momentum (J), the rotational kinetic energy (T) and the
gravitational binding energy (W) as [55]:
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M =
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Write hydrodynamic equation in a flux 
conservative form 

Use HRSC methods to solve the equations 

[*] J. A. Font, Living Rev. Relativity 6, 4 (2003).
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Stable evolutions of stable star!

β Full GR CFC [1]

A9

A10

0.189 791 Hz 809 Hz

0.223 674 Hz 685 Hz
[1]  Dimmelmeier, Stergioulas, Font: astro-ph/0511394

ρ(0,y,0)

vx(0,y,0)

ρc(t)/ρc(0) as function of t for stable model A10
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node01

node02

node16

......

Front-end

DISKS
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standard workstation nodes: 
e.g., biprocessor Opteron/Intel 
with 4-8 GBytes of RAM

Fast interconnection, e.g., 
Infiniband

A front-end workstation

MPI communication Library

Huge storage space to save 
results of the simulations

WE NEED A LOT OT MEMORY !
See Movie
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http://www.fis.unipr.it/numrel/BarMode/MovieUb11carpet.mov
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Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008

Computers for Numerical Relativity

20

posed. Though it is generally expected that the significance
of such limitations on the final merger simulations should
be reduced if the black holes begin sufficiently far apart,
there is no clear way to assess just how significant such
effects will be on the results, including the gravitational
waveforms, before carrying out the evolutions.

Our simulations, begun with varying initial separations,
should be affected by any initial modeling error in varying
amounts, but should agree to the degree that they represent
the ideal astrophysical spacetime. A key objective in our
analysis is to identify universal characteristics among the
different runs which, we reason, are then likely to correctly
represent those aspects of the astrophysical equal-mass
nonspinning binary black hole merger spacetime.

A. Overview of simulations

Our comparative analysis covers four simulations
labeled R1 to R4 in Table I. We evolved them all using
the medium resolution of hf ! !=3 except for R1, where
we have applied the higher hf ! !=4 resolution. In all runs
we used an initial grid setup and adaptive mesh refinement
as described in Sec. III. We evolved all the runs to well
after the wave signal had passed the extraction region; the
actual amount of time is noted as Tsim in Table IV. For the
time-slicing condition used in our simulations, the region
where the lapse satisfies the condition " ! 0:3 corre-
sponds roughly with the apparent horizon location. We
thus used the moment when the two " ! 0:3 regions
around the black holes merge to specify a merger time
Tmerge. The number of orbits for each run, Norbits, was
estimated from the trajectories shown in Fig. 4 and is taken
up to the point at which the merger occurs.

A graphical overview of our four simulations is pre-
sented in Fig. 4 showing the paths traced by the black
hole punctures on the computational domain. These were
obtained by numerically integrating the equation of motion
_~xpunc ! " ~## ~xpunc$, which analytically gives the exact tra-
jectory of each puncture [9]. The value of the shift at the
location of the puncture ~## ~xpunc$ was interpolated between
grid points as required.

For clarity, Fig. 4 shows only the track of one of the two
black holes from each simulation. We have oriented each
trajectory according to a physical reference discussed in

Sec. V B, so that they superpose at the radiation peak,
which occurs very near the end of the puncture trajectory.
R4 has the widest initial separation and completes the
largest number of orbits. Each of the other cases, after an

TABLE IV. Simulation parameters and general results. Tmerger

is the time at which the merger occurs, starting from the initial
time in each run.

R1 R2 R3 R4

L=M0 9.9 11.1 12.1 13.2
hf !=4 !=3 !=3 !=3
Tsim 421M 531M 530M 850M
Tmerger 160M 234M 396M 513M
Norbits 1.8 2.5 3.6 4.2
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FIG. 4 (color online). Paths of black holes starting from differ-
ent initial separations. For clarity, we show only the track of one
of the black holes from each simulation. The paths are very
similar for approximately the last orbit, indicating that the black
holes follow the same tracks. The point of merger (estimated by
a single connected isosurface of " ! 0:3) is indicated by an
asterisk in the plot.
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FIG. 5 (color online). Waveforms from runs R1–R4. The figure
shows nearly perfect agreement after t ! "50Mf. For the pre-
ceding 500Mf, shown in an inset, the waveforms agree in phase
and amplitude within about 10% except for a brief initial pulse at
the beginning of each run.
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Numerical relativity at work
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Neutron star merger: low-mass merger to NS + disk 

http://arxiv.org/pdf/0804.0594

Credits:  R. Kaehler & B. Giacommazzo 
& L. Rezzolla

Matter dynamics
high-mass binary

soon after the merge the torus is 
formed and undergoes oscillations

long after the merger a BH is 
formed surrounded by a torus

low-mass binary

See Movie
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http://arxiv.org/pdf/0707.2559
http://arxiv.org/pdf/0707.2559
http://numrel.aei.mpg.de/Visualisations/Archive/BinaryNeutronStars/Relativistic_Meudon/index.html
http://numrel.aei.mpg.de/Visualisations/Archive/BinaryNeutronStars/Relativistic_Meudon/index.html
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Neutron star merger: high-mass merger to BH + disk 

http://arxiv.org/pdf/
0804.0594

Credits:  R. Kaehler & B. 
Giacommazzo & L. 

Rezzolla

Matter dynamics
high-mass binary

soon after the merge the torus is 
formed and undergoes oscillations

long after the merger a BH is 
formed surrounded by a torus

low-mass binary

See Movie
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Numerical relativity at work
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Rezzolla

Neutron star merger: high-mass merger to BS + disk
                                     

(Ideal Fluid EOS)

Different EOS

See Movie
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SNR BH-BH @ 100Mpc
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SNR 3M+3M @ 100Mpc
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SNR Dual SiC=1.4

SNR QUAD Si=3.9

SNR2 = 4
∫

df
|h̃(f)|2

Shh(f)
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Two bodies merging of NS-NS

Shibata et all., Phys.Rev. D71,084021 (2005)

Shibata-Taniguchi, Phys.Rev. D73, 064027 (2006)
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These have the unit of length and provide the amplitude of
a given mode measured by an observer located in the most
optimistic direction. The amplitude of gravitational waves
hgw observed at a distance of r along the optimistic direc-
tion (" " 0) is written as
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$ """"""""""""""""""""
R2
! ! R2

&
q

0:31 km

%$
100 Mpc

r

%
: (17)

D. Definitions of quantities and methods for calibration

In numerical simulations, we refer to the total baryon
rest-mass, the ADM mass, and the angular momentum of
the system, which are given by
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where dSj " r2@jrd#cos"$d’, ’j " %y#@x$j ! x#@y$j,
#H " #&utê, Ji " #ûi, and ~Rk

k denotes the Ricci scalar
with respect to ~%ij. To derive the expressions forM and J in
the form of volume integral, the Gauss law is used.

The notationsM,1 andM,2 are used to denote the baryon
rest-mass of the primary and secondary neutron stars,
respectively. In terms of them, the baryon rest-mass ratio
is defined by QM * M,2=M,1#- 1$.

In numerical simulation, M and J are computed using
the volume integral shown in Eqs. (19) and (20). Since the
computational domain is finite, they are not constant and
decrease after gravitational waves propagate away from the
computational domain. Therefore, for t > 0, M and J are
not equal to the ADM mass and the total angular momen-
tum defined at spatial infinity, but quasilocal quantities.
However, in this paper, we refer to them simply as the
ADM mass and the total angular momentum.

The decrease rates of M and J should be equal to the
emission rates of the energy and the angular momentum by
gravitational radiation according to the conservation law.
Denoting the radiated energy and angular momentum from
the beginning of the simulation to the time t as !E#t$ and
!J#t$, the conservation relations are

M#t$ !!E#t$ " M0; (21)

J#t$ ! !J#t$ " J0; (22)

where M0 and J0 are the initial values of M and J. We
check that these conservation laws approximately hold
during the simulation.

During merger of binary neutron stars (from the last one
orbit to a relaxed state formed after the merger), the
angular momentum is dissipated by 15%–30%
(cf. Sec. V). Obviously, the dissipation effect plays a
crucial role in determining the final outcome. Therefore,
checking that Eq. (22) holds in a simulation is one of the
most important procedures to confirm that the numerical
results are reliable.

In addition to checking the conservation of the mass and
the angular momentum, we monitor the violation of the
Hamiltonian constraint in the same manner as in [16,17,21]
in the absence of black hole. In its presence, the violation is
defined for a region outside the excision surface. As dem-
onstrated in [17,21], the typical magnitude of the violation
is of order 1% throughout the simulation in the absence of
black hole. In its presence, the violation is amplified.
However, the typical magnitude is still .10% in the early
phase of the excision run. The magnitude gradually in-
creases until the crash of computation.

E. Equations of state

Following [21], we adopt a hybrid EOS for modeling
neutron stars’ EOS; namely, we write the pressure and the
specific internal energy in the form

P " Pcold ! Pth; (23)

" " "cold ! "th: (24)

Here Pcold and "cold are the cold (zero-temperature) parts,
and are written as a function of #. For them, we assign
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tabulated data sets. The relative error between two results
is within !10% for !> 1010 g=cm3 and less than 2% for
supranuclear density with ! * 2" 1014 g=cm3.

In Fig. 2, we show the relations among the ADM mass
M, the total baryon rest-mass M#, the central density !c,
and the circumferential radius R for cold and spherical
neutron stars in the APR and SLy EOSs. The maximum
ADM mass (baryon rest-mass) for the APR and SLy EOSs
is about 2.18 and 2:04M$, respectively. It is worthy to note
that for the APR EOS, the radius is in a narrow range
(11.2–11.4 km) for the ADM mass from !0:5M$ to
!1:7M$, while for the SLy EOS, it decreases with increas-
ing the ADM mass. This results in the difference on disk
formation in the merger of unequal-mass neutron stars.

Pth and "th in Eqs. (23) and (24) are the thermal (finite-
temperature) parts. During the simulation, ! and " are
computed from hydrodynamic variables !# and ê. Thus,
"th is determined by "% "cold. The thermal part of the
pressure Pth is related to the specific thermal energy "th &
"% "cold as

Pth ' (!th % 1)!"th; (27)

where !th is an adiabatic constant for which we set !th ' 2
taking into account the fact that the EOSs for high-density
nuclear matter are stiff. Since !th * 5=3 for the ideal
nonrelativistic Fermi gas [48], it is reasonable to consider
that it is much larger than 5=3 for the nuclear matter. We
note that in [21], we also chose !th ' 1:3 and 1.65 and
found that the numerical results depend only weakly on its
value.

III. INITIAL CONDITION AND SETTING FOR
SIMULATION

In Table II, we summarize several quantities that char-
acterize irrotational binary neutron stars in quasiequili-
brium circular orbits used as initial conditions for the
present simulations. Since the lifetime of binary neutron
stars from the birth to the merger is longer than !108 yr for
the observed systems [49], the temperature of each neutron
star will be very low ( & 105 K) [50] at the onset of
merger; i.e., the thermal energy per nucleon is much
smaller than the Fermi energy of neutrons. Hence, cold
nuclear EOSs are employed in giving the initial condition.

We choose binaries of an orbital separation which is
slightly larger than that for an innermost orbit. Here, the
innermost orbit is defined as a close orbit for which
Lagrange points appear at the inner edge of at least one
of two neutron stars [42,51]. If the orbital separation
becomes smaller than that of the innermost orbit, mass
transfer sets in and a dumbbell-like structure is formed.
Until the innermost orbit is reached, the circular orbit is
stable, and hence, the innermost stable circular orbit
(ISCO) does not exist outside the innermost orbit for the
present cases. However, the ISCO seems to be close to the
innermost orbit since the decrease rates of the energy and
the angular momentum as a function of the orbital separa-
tion along the quasiequilibrium sequences are close to zero
near the innermost orbit.

The ADM mass of each neutron star, when it is in
isolation (i.e., when the orbital separation is infinity), is
denoted by M1, and chosen in the range between 1:2M$
and 1:8M$. The labels APR and SLy denote the binary

TABLE II. List of several quantities for initial data (binary neutron stars in quasicircular orbits). The ADM mass of each star when
they are in isolation M1, the maximum density for each star, the baryon rest-mass ratio QM & M#2=M#1, the total baryon rest-mass,
the total ADM mass M0, nondimensional spin parameter q0 ' J0=M2

0 , orbital period P0, the orbital compactness [C0 & (M0")2=3],
and the ratio of the total baryon rest-mass to the maximum allowed mass for a spherical and cold neutron star (Q# & M#=M

sph
#max).

Model M1(M$) !max(1014 g=cm3) QM M#(M$) M0(M$) q0 P0 (ms) C0 Q#

APR1313 1.30, 1.30 8.62, 8.62 1.00 2.858 2.568 0.918 2.064 0.114 1.075
APR1214 1.20, 1.40 8.28, 9.10 0.842 2.861 2.569 0.920 2.158 0.111 1.076
APR135135 1.35, 1.35 8.85, 8.85 1.00 2.981 2.665 0.906 1.992 0.120 1.125
APR1414 1.40, 1.40 9.09, 9.09 1.00 3.106 2.762 0.896 1.923 0.125 1.173
APR1515 1.50, 1.50 9.59, 9.56 1.00 3.360 2.957 0.879 1.838 0.135 1.269
APR145155 1.45, 1.55 9.34, 9.86 0.927 3.360 2.959 0.886 1.969 0.129 1.269
APR1416 1.40, 1.60 9.09, 10.14 0.862 3.363 2.960 0.892 1.969 0.129 1.270
APR135165 1.35, 1.65 8.85, 10.43 0.800 3.366 2.960 0.888 1.968 0.129 1.271
APR1317 1.30, 1.70 8.62, 10.74 0.743 3.370 2.960 0.883 2.057 0.126 1.272
APR125175 1.25, 1.75 8.40, 11.09 0.690 3.377 2.962 0.885 2.145 0.122 1.275
APR1218 1.20, 1.80 8.17, 11.44 0.639 3.378 2.957 0.861 2.189 0.120 1.275

SLy1313 1.30, 1.30 8.57, 8.57 1.00 2.847 2.568 0.922 2.110 0.112 1.175
SLy1414 1.40, 1.40 9.16, 9.16 1.00 3.093 2.763 0.902 2.012 0.122 1.277
SLy135145 1.35, 1.45 8.85, 9.48 0.923 3.094 2.763 0.901 2.013 0.122 1.277
SLy1315 1.30, 1.50 8.56, 9.80 0.851 3.096 2.764 0.904 2.104 0.118 1.278
SLy125155 1.25, 1.55 8.42, 10.15 0.786 3.099 2.765 0.904 2.150 0.117 1.278
SLy1216 1.20, 1.60 8.02, 10.54 0.726 3.103 2.765 0.903 2.242 0.113 1.279
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Simulation  APR1515

28

locity vectors in the y ! 0 plane for models APR1313,
APR1414, APR1515, APR1416, APR135165, and
APR1317 at a late time when the mass accretion rate
relaxes approximately to a constant. This shows that
(i) the hypermassive neutron stars have a highly flattened

structure and (ii) the disk surrounding the black hole is
geometrically thin for the mass ratio close to unity but can
be thick for the smaller-mass ratios with QM & 0:8.

Figure 10 shows the angular velocity along the x and y
axes (a) of relaxed hypermassive neutron stars for models

FIG. 6 (color online). The same as Fig. 4 but for model APR1515. The outermost (green) dotted curves denote 1" 1010 g=cm3. The
thick circles around the origin in the last three panels denote the location of the apparent horizon.

FIG. 5 (color online). The same as Fig. 4 but for model APR1414.

MERGER OF BINARY NEUTRON STARS TO A BLACK . . . PHYSICAL REVIEW D 73, 064027 (2006)

064027-11

fmerger = 6.5 kHz

28



Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008

Simulation  APR1313
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[21] suggests an empirical relation Mthr=Msph ! 1:30–1:35
for these stiff nuclear EOSs.

We note that this relation is highly different from that for
the !-law EOS with ! ! 2 [17] for which Mthr=Msph "
1:7. As discussed in [21], the compactness of each neutron
star in the stiff nuclear EOSs is larger than that with the
! ! 2 EOS for a given mass. Accordingly, for a given total
mass, the binary system at the onset of the merger is more
compact. This implies that the angular momentum is dis-
sipated more before the merger sets in with the stiff nuclear
EOSs. The dissipation of the angular momentum by
#0:1J0 before the merger helps the prompt black hole
formation, since the hypermassive neutron star formation
requires a substantial centrifugal force to sustain the self-
gravity.

In recent papers [53], the ratio of the maximum mass of
hypermassive neutron stars in equilibrium to Msph has been

investigated in detail. These works coincidently show a
similar dependence of the ratio Mthr=Msph on the EOSs.
Hence, the small value of Mthr=Msph may be partly due to
the absence of high-mass differentially rotating neutron
stars in equilibrium.

In Figs. 4–8, we display the snapshots of the density
contour curves and the velocity vectors in the equatorial
plane at selected time slices for models APR1313,
APR1414, APR1515, APR1416, and APR1317, respec-
tively. In the first two cases, a hypermassive neutron star
is formed, while a black hole is a prompt outcome in other
three cases. For models APR1515, APR1416, and
APR1317, the ADM mass of the system is approximately
identical while the mass ratio is different. The structure and
density of disk surrounding the formed black hole depend
significantly on the mass ratio as found from Figs. 6–8.
Figure 9 displays the density contour curves and the ve-

FIG. 4 (color online). Snapshots of the density contour curves for ! in the equatorial plane for model APR1313. The solid contour
curves are drawn for ! ! 2$ 1014 $ i g=cm3%i ! 1; 2; 3; & & &' and for 1$ 1014(0:5i g=cm3%i ! 1# 6'. The (blue) thick dotted and
solid curves denote 1$ 1014 g=cm3 and 1$ 1012 g=cm3, respectively. The number in the upper left-hand side denotes the elapsed
time from the beginning of the simulation in units of ms. Vectors indicate the local velocity field %vx; vy', and the scale is shown in the
upper right-hand corner.
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fmerger=3.2 kHz
scale of gravitational waves, a black hole is formed (i.e., a
SGRB should be generated) after a long-term emission of
quasiperiodic gravitational waves from the hypermassive
neutron star. As we will discuss in Sec. V, such gravita-
tional waves may be detected by advanced laser-
interferometric detectors. If quasiperiodic gravitational
waves and subsequent SGRB are detected coincidently in
the same direction with a small time lag, thus, this scenario
may be confirmed.

The results for the disk mass in this paper suggest that a
merger between a black hole and a neutron star could form
a system composing a black hole and surrounding massive
disk by tidal disruption [73]. Indeed, if the mass of the
black hole is small enough [MBH & 4M!"R0=10 km#3=2
for q $ 0 and MBH & 20M!"R0=10 km#3=2 for q $ 0:9
where q and R0 are a spin parameter of the black hole
and a neutron star radius [74]], the neutron star will be
tidally disrupted before reaching the ISCO. If the event rate
(though it is not clear at present because black hole-neutron
star binary has not been observed so far) is large enough,
such a merger could be a promising source for producing a
central engine of SGRBs. However, a detailed simulation
in full general relativity is necessary to confirm this sce-
nario since the disk mass depends crucially on the location
of the ISCO.

V. GRAVITATIONAL WAVEFORMS

A. Gravitational waves from hypermassive neutron
stars

1. Waveform and luminosity

In Fig. 14, we present gravitational waveforms in the
formation of hypermassive neutron stars (models
APR1313 and APR1414) as a function of a retarded
time. Throughout this paper, the retarded time tret is de-

fined by t% robs where robs is the coordinate radius of the
wave extraction. In the early phase (tret & 2 ms), gravita-
tional waves associated with the inspiral motion are emit-
ted, while for tret * 2 ms, those by the rotating and
oscillating hypermassive neutron star are emitted. In the
following, we focus only on the waveforms for tret * 2 ms.

For model APR1313, a hypermassive neutron star of
ellipsoidal shape is formed after the merger sets in. As a
result, quasiperiodic gravitational waves with an approxi-
mately constant frequency & 3:2 kHz are emitted. Also,

FIG. 14. Gravitational waveforms, R' and R(, (a) for model APR1313 at robs $ 36M0 and (b) for model APR1414 at robs $ 32M0.

FIG. 15 (color online). Energy and angular momentum emis-
sion rates, dE=dt and dJ=dt, of gravitational waves for models
APR1313 (solid curves) and APR1414 (dashed curves). The
units are erg=s and g cm2=s2, respectively.
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tion processes (cf. the discussion in the last paragraph of
IV B 1).

For model APR1414, on the other hand, the emission
rates decrease quickly since the hypermassive neutron star
relaxes to an approximately axisymmetric spheroid for t *
6 ms. For this model, the dissipation time scale of the
angular momentum is much longer than 50 ms at t !
10 ms. Therefore, other dissipation processes such as mag-
netically induced angular momentum transport will trigger
the collapse to a black hole.

By the time integral of dE=dt and dJ=dt, the total
energy and angular momentum radiated are computed
and found to be about 0:03M0 and 0:30J0 for model
APR1313 and 0:03M0 and 0:26J0 for model APR1414,
respectively. This indicates that the angular momentum is
significantly dissipated, illustrating that the angular mo-
mentum dissipation plays an important role in the evolu-
tion of the system. To confirm that the radiation reaction is
followed in the simulation, we display J"t# and J0 $ !"t#
as a function of time for models APR1313 and APR1414 in
Fig. 16. This shows that the angular momentum computed
from Eq. (20) agrees approximately with J0 $!J (within
%2% error), proving that radiation reaction is computed
with a good accuracy.

2. Fourier spectrum

In the real data analysis of gravitational waves, a
matched filtering technique [3] is employed. In this
method, the signal of the identical frequency can be accu-

mulated using appropriate templates. As a result, the ef-
fective amplitude increases by a factor of N1=2 where N
denotes an approximate number of the cycle of gravita-
tional waves for a given frequency.

To determine the characteristic frequency of gravita-
tional waves, we carry out a Fourier analysis. In Fig. 17,
the power spectrum dE=df is presented for models
APR1313 and APR1414. Since the simulations were
started with the initial condition of the orbital period
%2 ms (i.e., frequency of gravitational waves is
%1 kHz), the spectrum of inspiraling binary neutron stars
for f < 1 kHz cannot be correctly computed. Thus, only
the spectrum for f * 1 kHz should be paid attention. As a
plausible spectrum for f & 1 kHz, we plot the Fourier
power spectrum of two point particles in circular orbits
in the second post Newtonian approximation (the dotted
curve) [75] (the third post Newtonian terms does not sig-
nificantly modify the spectrum since their magnitude is
%0:01 of the leading-order term).

Figure 17 shows that a sharp characteristic peak is
present at f & 3:2 and 3.8 kHz for models APR1313 and
APR1414, respectively. This is associated with quasiperi-
odic gravitational waves emitted by the formed hypermas-
sive neutron stars. Two side-band peaks are present at
f & 3:2 and 4.7 kHz for model APR1414. Thus, the spec-
tral shape is qualitatively different from that for model
APR1313. The reason is that the amplitude of the quasir-
adial oscillation of the hypermassive neutron star is out-
standing and the characteristic radius varies for a wide
range for model APR1414, inducing the modulation of
the wave frequency.

An effective amplitude of gravitational waves observed
from the most optimistic direction (which is parallel to the
axis of the angular momentum) is proportional to

!!!!!!!!!!!!!!!
dE=df

p

in the manner

heff '
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
j "R(j2 ( j "R)j2
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! 1:8) 10$21
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1051 erg=Hz
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1=2

"
100 Mpc

r

#
; (37)

where r denotes the distance from the source, and "R(;) are
the Fourier spectrum of R(;). In Fig. 18, we show heff as a
function of f for a hypothetical distance of 50 Mpc. This
shows that the effective amplitude of the peak is %3 times
larger than that at %1:3–1:5 kHz which corresponds to the
frequency of the last inspiral motion.

For model APR1313, furthermore, the amplitude of the
peak in reality should be larger than that presented here,
since we stopped simulations at t% 10 ms to save the
computational time, and hence, the integration time ( %
10 ms) is much shorter than the realistic value.
Extrapolating the decrease rate of the angular momentum,
the hypermassive neutron star will dissipate sufficient an-
gular momentum by gravitational radiation until a black
hole or a spheroidal star is formed. As indicated in

FIG. 18 (color online). Nondimensional effective amplitude of
gravitational waves from hypermassive neutron stars for models
APR1313 (solid curve) and APR1414 (dashed curve). The
assumed distance is 50 Mpc. The dotted line denotes the planned
noise level of the advanced LIGO.
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tion processes (cf. the discussion in the last paragraph of
IV B 1).

For model APR1414, on the other hand, the emission
rates decrease quickly since the hypermassive neutron star
relaxes to an approximately axisymmetric spheroid for t *
6 ms. For this model, the dissipation time scale of the
angular momentum is much longer than 50 ms at t !
10 ms. Therefore, other dissipation processes such as mag-
netically induced angular momentum transport will trigger
the collapse to a black hole.

By the time integral of dE=dt and dJ=dt, the total
energy and angular momentum radiated are computed
and found to be about 0:03M0 and 0:30J0 for model
APR1313 and 0:03M0 and 0:26J0 for model APR1414,
respectively. This indicates that the angular momentum is
significantly dissipated, illustrating that the angular mo-
mentum dissipation plays an important role in the evolu-
tion of the system. To confirm that the radiation reaction is
followed in the simulation, we display J"t# and J0 $ !"t#
as a function of time for models APR1313 and APR1414 in
Fig. 16. This shows that the angular momentum computed
from Eq. (20) agrees approximately with J0 $!J (within
%2% error), proving that radiation reaction is computed
with a good accuracy.

2. Fourier spectrum

In the real data analysis of gravitational waves, a
matched filtering technique [3] is employed. In this
method, the signal of the identical frequency can be accu-

mulated using appropriate templates. As a result, the ef-
fective amplitude increases by a factor of N1=2 where N
denotes an approximate number of the cycle of gravita-
tional waves for a given frequency.

To determine the characteristic frequency of gravita-
tional waves, we carry out a Fourier analysis. In Fig. 17,
the power spectrum dE=df is presented for models
APR1313 and APR1414. Since the simulations were
started with the initial condition of the orbital period
%2 ms (i.e., frequency of gravitational waves is
%1 kHz), the spectrum of inspiraling binary neutron stars
for f < 1 kHz cannot be correctly computed. Thus, only
the spectrum for f * 1 kHz should be paid attention. As a
plausible spectrum for f & 1 kHz, we plot the Fourier
power spectrum of two point particles in circular orbits
in the second post Newtonian approximation (the dotted
curve) [75] (the third post Newtonian terms does not sig-
nificantly modify the spectrum since their magnitude is
%0:01 of the leading-order term).

Figure 17 shows that a sharp characteristic peak is
present at f & 3:2 and 3.8 kHz for models APR1313 and
APR1414, respectively. This is associated with quasiperi-
odic gravitational waves emitted by the formed hypermas-
sive neutron stars. Two side-band peaks are present at
f & 3:2 and 4.7 kHz for model APR1414. Thus, the spec-
tral shape is qualitatively different from that for model
APR1313. The reason is that the amplitude of the quasir-
adial oscillation of the hypermassive neutron star is out-
standing and the characteristic radius varies for a wide
range for model APR1414, inducing the modulation of
the wave frequency.

An effective amplitude of gravitational waves observed
from the most optimistic direction (which is parallel to the
axis of the angular momentum) is proportional to
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where r denotes the distance from the source, and "R(;) are
the Fourier spectrum of R(;). In Fig. 18, we show heff as a
function of f for a hypothetical distance of 50 Mpc. This
shows that the effective amplitude of the peak is %3 times
larger than that at %1:3–1:5 kHz which corresponds to the
frequency of the last inspiral motion.

For model APR1313, furthermore, the amplitude of the
peak in reality should be larger than that presented here,
since we stopped simulations at t% 10 ms to save the
computational time, and hence, the integration time ( %
10 ms) is much shorter than the realistic value.
Extrapolating the decrease rate of the angular momentum,
the hypermassive neutron star will dissipate sufficient an-
gular momentum by gravitational radiation until a black
hole or a spheroidal star is formed. As indicated in

FIG. 18 (color online). Nondimensional effective amplitude of
gravitational waves from hypermassive neutron stars for models
APR1313 (solid curve) and APR1414 (dashed curve). The
assumed distance is 50 Mpc. The dotted line denotes the planned
noise level of the advanced LIGO.
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Simulation  APR1313
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scale of gravitational waves, a black hole is formed (i.e., a
SGRB should be generated) after a long-term emission of
quasiperiodic gravitational waves from the hypermassive
neutron star. As we will discuss in Sec. V, such gravita-
tional waves may be detected by advanced laser-
interferometric detectors. If quasiperiodic gravitational
waves and subsequent SGRB are detected coincidently in
the same direction with a small time lag, thus, this scenario
may be confirmed.

The results for the disk mass in this paper suggest that a
merger between a black hole and a neutron star could form
a system composing a black hole and surrounding massive
disk by tidal disruption [73]. Indeed, if the mass of the
black hole is small enough [MBH & 4M!"R0=10 km#3=2
for q $ 0 and MBH & 20M!"R0=10 km#3=2 for q $ 0:9
where q and R0 are a spin parameter of the black hole
and a neutron star radius [74]], the neutron star will be
tidally disrupted before reaching the ISCO. If the event rate
(though it is not clear at present because black hole-neutron
star binary has not been observed so far) is large enough,
such a merger could be a promising source for producing a
central engine of SGRBs. However, a detailed simulation
in full general relativity is necessary to confirm this sce-
nario since the disk mass depends crucially on the location
of the ISCO.

V. GRAVITATIONAL WAVEFORMS

A. Gravitational waves from hypermassive neutron
stars

1. Waveform and luminosity

In Fig. 14, we present gravitational waveforms in the
formation of hypermassive neutron stars (models
APR1313 and APR1414) as a function of a retarded
time. Throughout this paper, the retarded time tret is de-

fined by t% robs where robs is the coordinate radius of the
wave extraction. In the early phase (tret & 2 ms), gravita-
tional waves associated with the inspiral motion are emit-
ted, while for tret * 2 ms, those by the rotating and
oscillating hypermassive neutron star are emitted. In the
following, we focus only on the waveforms for tret * 2 ms.

For model APR1313, a hypermassive neutron star of
ellipsoidal shape is formed after the merger sets in. As a
result, quasiperiodic gravitational waves with an approxi-
mately constant frequency & 3:2 kHz are emitted. Also,

FIG. 14. Gravitational waveforms, R' and R(, (a) for model APR1313 at robs $ 36M0 and (b) for model APR1414 at robs $ 32M0.

FIG. 15 (color online). Energy and angular momentum emis-
sion rates, dE=dt and dJ=dt, of gravitational waves for models
APR1313 (solid curves) and APR1414 (dashed curves). The
units are erg=s and g cm2=s2, respectively.
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tion processes (cf. the discussion in the last paragraph of
IV B 1).

For model APR1414, on the other hand, the emission
rates decrease quickly since the hypermassive neutron star
relaxes to an approximately axisymmetric spheroid for t *
6 ms. For this model, the dissipation time scale of the
angular momentum is much longer than 50 ms at t !
10 ms. Therefore, other dissipation processes such as mag-
netically induced angular momentum transport will trigger
the collapse to a black hole.

By the time integral of dE=dt and dJ=dt, the total
energy and angular momentum radiated are computed
and found to be about 0:03M0 and 0:30J0 for model
APR1313 and 0:03M0 and 0:26J0 for model APR1414,
respectively. This indicates that the angular momentum is
significantly dissipated, illustrating that the angular mo-
mentum dissipation plays an important role in the evolu-
tion of the system. To confirm that the radiation reaction is
followed in the simulation, we display J"t# and J0 $ !"t#
as a function of time for models APR1313 and APR1414 in
Fig. 16. This shows that the angular momentum computed
from Eq. (20) agrees approximately with J0 $!J (within
%2% error), proving that radiation reaction is computed
with a good accuracy.

2. Fourier spectrum

In the real data analysis of gravitational waves, a
matched filtering technique [3] is employed. In this
method, the signal of the identical frequency can be accu-

mulated using appropriate templates. As a result, the ef-
fective amplitude increases by a factor of N1=2 where N
denotes an approximate number of the cycle of gravita-
tional waves for a given frequency.

To determine the characteristic frequency of gravita-
tional waves, we carry out a Fourier analysis. In Fig. 17,
the power spectrum dE=df is presented for models
APR1313 and APR1414. Since the simulations were
started with the initial condition of the orbital period
%2 ms (i.e., frequency of gravitational waves is
%1 kHz), the spectrum of inspiraling binary neutron stars
for f < 1 kHz cannot be correctly computed. Thus, only
the spectrum for f * 1 kHz should be paid attention. As a
plausible spectrum for f & 1 kHz, we plot the Fourier
power spectrum of two point particles in circular orbits
in the second post Newtonian approximation (the dotted
curve) [75] (the third post Newtonian terms does not sig-
nificantly modify the spectrum since their magnitude is
%0:01 of the leading-order term).

Figure 17 shows that a sharp characteristic peak is
present at f & 3:2 and 3.8 kHz for models APR1313 and
APR1414, respectively. This is associated with quasiperi-
odic gravitational waves emitted by the formed hypermas-
sive neutron stars. Two side-band peaks are present at
f & 3:2 and 4.7 kHz for model APR1414. Thus, the spec-
tral shape is qualitatively different from that for model
APR1313. The reason is that the amplitude of the quasir-
adial oscillation of the hypermassive neutron star is out-
standing and the characteristic radius varies for a wide
range for model APR1414, inducing the modulation of
the wave frequency.

An effective amplitude of gravitational waves observed
from the most optimistic direction (which is parallel to the
axis of the angular momentum) is proportional to
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where r denotes the distance from the source, and "R(;) are
the Fourier spectrum of R(;). In Fig. 18, we show heff as a
function of f for a hypothetical distance of 50 Mpc. This
shows that the effective amplitude of the peak is %3 times
larger than that at %1:3–1:5 kHz which corresponds to the
frequency of the last inspiral motion.

For model APR1313, furthermore, the amplitude of the
peak in reality should be larger than that presented here,
since we stopped simulations at t% 10 ms to save the
computational time, and hence, the integration time ( %
10 ms) is much shorter than the realistic value.
Extrapolating the decrease rate of the angular momentum,
the hypermassive neutron star will dissipate sufficient an-
gular momentum by gravitational radiation until a black
hole or a spheroidal star is formed. As indicated in

FIG. 18 (color online). Nondimensional effective amplitude of
gravitational waves from hypermassive neutron stars for models
APR1313 (solid curve) and APR1414 (dashed curve). The
assumed distance is 50 Mpc. The dotted line denotes the planned
noise level of the advanced LIGO.
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S/N for the merger phase
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Blu-line is EOB
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Numerical relativity at work
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See Movie

33

http://www.fis.unipr.it/numrel/BarMode/MovieUb11carpet.mov
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Elipsoidal figures of equilibrium 
(Newtonian)
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Figure 4. A schematic summary of the instability results for rotating ellipsoids (a2/a1 represents
the axis ratio, i.e., the ellipticity of the configuration). For values of β greater than 0.14
the Maclaurin spheroids are secularly unstable. Viscosity tends to drive the system towards a
triaxial Jacobi ellipsoid, while gravitational radiation leads to an evolution towards a Dedekind
configuration. Indicated in the figure is an evolution of this latter kind. Above β ≈ 0.27 the
Maclaurin spheroids are dynamically unstable, as there exists a Riemann-S ellipsoid with lower
(free) energy. (For more details, see [54, 56].)

when β > βs . The gravitational-wave instability tends to drive the system towards the
Dedekind sequence (the members of which do not radiate gravitationally)5.

These classical secular instabilities set in through the quadrupole f-modes of the ellipsoids.
In figure 5 we show the frequencies of the l = |m| = 2 Maclaurin spheroid f-modes. These
modes are usually referred to as the ‘bar-modes’. The figure illustrates several general features
of the pulsation problem for rotating stars. In particular, we note that (i) the rotational splitting
of modes that are degenerate in the non-rotating limit, i.e., the m = ±2 modes become distinct
in the rotating case, and (ii) the symmetry with respect to ω = 0, which reflects the fact that
the governing equations are invariant under the change [ω,m] → [−ω,−m]. In figure 5 we
also show the pattern speed for the two modes that have positive frequency in the non-rotating
limit, cf (18). From this figure we see that the l = −m = 2 mode, which is always prograde
moving in the inertial frame, has zero pattern speed in the rotating frame at βs (σp = $). At
this point, the mode becomes unstable to the viscosity driven instability. That the instability
should set in at this point is natural since the perturbed configuration is ‘Jacobi-like’ when
the mode is stationary in the rotating frame. Meanwhile, the gravitational-wave instability
sets in through the originally retrograde moving l = m = 2 modes. At βs these modes have
zero pattern speed in the inertial frame (σp = 0). At this point, the perturbed configuration is
‘Dedekind-like’ since the mode is stationary according to an inertial observer.

The evolution of the secular instabilities depends on the relative strength of the
dissipation mechanisms. This tug-of-war is typical of these kinds of problems. Since the

5 Recent results concerning the stability of the Riemann-S ellipsoids complicate this picture considerably. These
results, due to Lebovitz and Lifschitz [57], show that the Riemann-S ellipsoids suffer a ‘strain’ instability in most of
the parameter space. In particular, the Dedekind ellipsoids are always unstable due to this new instability.
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Figure 5. Results for the l = |m| = 2 f-modes of a Maclaurin spheroid. In the left frame we show
the oscillation frequencies (solid lines) and imaginary parts (dashed lines) of the modes, while
the right frame shows the mode pattern speed σi for the two modes that have positive frequency
in the non-rotating limit (the pattern speeds for the modes which have negative frequency in the
non-rotating limit are obtained by reversing the sign of m). All results are according to an observer
in the inertial frame. The dashed curves in the right frame represent a vanishing pattern speed (i) in
the inertial frame (the horizontal line), and (ii) in the rotating frame (the circular arc, which shows
"/"K as a function of β). The points where the Maclaurin ellipsoid becomes secularly (βs ) and
dynamically (βd ) unstable are indicated by vertical dotted lines.

gravitational-wave driven mode involves differential rotation it is damped by viscosity, and
since the viscosity driven mode is triaxial it tends to be damped by gravitational-wave
emission. A detailed understanding of the dissipation mechanisms is therefore crucial for
any investigation into secular instabilities of spinning stars.

Given the competition between gravitational radiation and viscosity, one would expect
a ‘realistic’ star to be stabilized beyond the point βs . Also, the secular instabilities are no
longer realized in the extreme case of a perfect fluid which conserves both angular momentum
and circulation6. Then the Maclaurin sequence remains stable up to the point βd ≈ 0.27. At
this point, there exists a bifurcation to the x = +1 Riemann-S sequence. These equilibria
have lower ‘free energy’ [56] than the corresponding Maclaurin spheroid for the same angular
momentum and circulation. This means that a dynamical transition to a lower energy state
may take place without violating any conservation laws. In other words, at βd the Maclaurin
spheroids become dynamically unstable to m = 2 perturbations. This instability is usually
referred to as the dynamical bar-mode instability.

In terms of the pulsation modes, the dynamical instability sets in at a point where two
real-frequency modes merge, cf figure 5. At the bifurcation point βd the two modes have
identical oscillation frequencies and their angular momenta will vanish. Given this, one of the
degenerate modes can grow without violating the conservation of angular momentum. The
physical conditions required for the dynamical instability are easily understood. The instability
occurs when the originally backward moving f-mode (which has δJ < 0 for β < βd) has
been dragged forwards by rotation so much that it has ‘caught up’ with the originally forward

6 Note that in general relativity all non-axisymmetric modes of oscillation radiate gravitational waves. Hence, this
argument is only relevant in Newtonian gravity.
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FIG. 1: Characteristic of the studied stellar models. On the bottom

they are reported asM vs εc. On the top they are reported as T/|W |
vsM/R.

FIG. 2: Initial profiles of the rest mass density ρ of the angular veloc-
ity Ω for models A8,A9,A10,S2,U1,U3,U11 andU13. Indicated with
a thick dashed line is the profile for the first unstable model (U1) with

β = 0.255.

tified in terms of the distortion[65] parameters [21]:

η+ =
Ixx − Iyy

Ixx + Iyy

η× =
2 Ixy

Ixx + Iyy
(4.2)

η =
√

η2
+ + η2

×

Clearly these quantities present the advantage that for their

evaluation isn’t needed the execution of any numerical deriva-

tive and for this reasons they are usually preferred to the al-

most equivalent size of h for determination of the parameters
of the BAR instability. It is, in fact, possible to quantify the

growth time τB and the oscillation frequency fB of the un-

stable BAR mode by a non linear least square fit to the trial

form:

η×(t) = η0 et/τB cos(2π fB t + φ0) . (4.3)

Notice that in Eq. 4.3, and in the whole paper, t is the coordi-
nated time, and so the frequancies we obtain are approximate

frequencies with an expected error of the order of the relative

deviation of the lapse from 1. In our simulation the lapse (α) is
of order 1 within a few % at the border of the simulation grid

while at the center of the grid is of order 0.68 for simulation

of D’s models and of order 0.85 for all the other models.

In our evoultion scheme the simulated stars are not con-

strained to be centered at the origin of the coordinate system.

To monitor the movement of the star with respect to the Carte-

sian grid used the first momentum of the density distribution:

X i
cm =

1
M̃

∫
d3x ρ(x) xi (4.4)

where M̃ =
∫

d3x ρ(x). These quantities represent a sort
of center-of-mass of the Star but, since they are coordinate

dependent, they do not represent the physical position of the

star at the given time and there is no reason to be conserved.

This definition of the center-of-mass may be defined, in prin-

ciple, using either ρ, ρ∗ or the energy density T00 but there is

no reason to prefer one with respect to the other. We didn’t

noticed any real difference between these possible alternative

definition and this support the idea that this definition of the

center-of-mass is a good indicator on how well the coordinate

system is centered with respect to the star.

In order to make meaningful comparison we have indeed to

normalize this effect chosing a suitable comparison time-shift

and and angle. Indeed to make a superposition of η+(t) be-
tween two different simulation of the same model we should

chose a time shift ∆t and and angular shift∆φ in such a way
to have a maximal superposition of the two distortion param-

eters:

η(R)
+ (t) " αη+(t + ∆t) + βη×(t + ∆t) (4.5)

where α = cos(∆φ), β = sin(∆φ) and ηR
+(t) is the distortion

patameter of the reference model.

Simulated models .....
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[1] Shibata, Baumgarte, Shapiro, ApJ. 542,(2000)453.
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FIG. 1: Characteristic of the studied stellar models. On the bottom

they are reported asM vs εc. On the top they are reported as T/|W |
vsM/R.

FIG. 2: Initial profiles of the rest mass density ρ of the angular veloc-
ity Ω for models A8,A9,A10,S2,U1,U3,U11 andU13. Indicated with
a thick dashed line is the profile for the first unstable model (U1) with

β = 0.255.

tified in terms of the distortion[65] parameters [21]:

η+ =
Ixx − Iyy

Ixx + Iyy

η× =
2 Ixy

Ixx + Iyy
(4.2)

η =
√

η2
+ + η2

×

Clearly these quantities present the advantage that for their

evaluation isn’t needed the execution of any numerical deriva-

tive and for this reasons they are usually preferred to the al-

most equivalent size of h for determination of the parameters
of the BAR instability. It is, in fact, possible to quantify the

growth time τB and the oscillation frequency fB of the un-

stable BAR mode by a non linear least square fit to the trial

form:

η×(t) = η0 et/τB cos(2π fB t + φ0) . (4.3)

Notice that in Eq. 4.3, and in the whole paper, t is the coordi-
nated time, and so the frequancies we obtain are approximate

frequencies with an expected error of the order of the relative

deviation of the lapse from 1. In our simulation the lapse (α) is
of order 1 within a few % at the border of the simulation grid

while at the center of the grid is of order 0.68 for simulation

of D’s models and of order 0.85 for all the other models.

In our evoultion scheme the simulated stars are not con-

strained to be centered at the origin of the coordinate system.

To monitor the movement of the star with respect to the Carte-

sian grid used the first momentum of the density distribution:

X i
cm =

1
M̃

∫
d3x ρ(x) xi (4.4)

where M̃ =
∫

d3x ρ(x). These quantities represent a sort
of center-of-mass of the Star but, since they are coordinate

dependent, they do not represent the physical position of the

star at the given time and there is no reason to be conserved.

This definition of the center-of-mass may be defined, in prin-

ciple, using either ρ, ρ∗ or the energy density T00 but there is

no reason to prefer one with respect to the other. We didn’t

noticed any real difference between these possible alternative

definition and this support the idea that this definition of the

center-of-mass is a good indicator on how well the coordinate

system is centered with respect to the star.

In order to make meaningful comparison we have indeed to

normalize this effect chosing a suitable comparison time-shift

and and angle. Indeed to make a superposition of η+(t) be-
tween two different simulation of the same model we should

chose a time shift ∆t and and angular shift∆φ in such a way
to have a maximal superposition of the two distortion param-

eters:

η(R)
+ (t) " αη+(t + ∆t) + βη×(t + ∆t) (4.5)

where α = cos(∆φ), β = sin(∆φ) and ηR
+(t) is the distortion

patameter of the reference model.
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Movies
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See Movie See Movie See Movie

37

http://www.fis.unipr.it/numrel/BarMode/MovieUb11carpet.mov
http://www.fis.unipr.it/numrel/BarMode/MovieUb11carpet.mov
http://www.fis.unipr.it/numrel/BarMode/MovieVault/Ub11sim1036.mov
http://www.fis.unipr.it/numrel/BarMode/MovieVault/Ub11sim1036.mov
http://www.fis.unipr.it/numrel/BarMode/MovieVault/Ub13sim1053.mov
http://www.fis.unipr.it/numrel/BarMode/MovieVault/Ub13sim1053.mov


Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008

Simulation Ub11
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β = 0.2743
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Simulation Ub13
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(Movies: http://www.fis.unipr.it/numrel/)

β = 0.2821

39

http://www.fis.unipr.it/numrel/
http://www.fis.unipr.it/numrel/


Roberto De Pietri: Introduction to Numerical RelativityParma International School of Theoretical Physics, September 8 - 13, 2008

First Method 

5.4.2 Models on the threshold

Model S1 δ = .04

Right fits bases on distorsion paramters

Below fit based on mode 2.
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Model U1 δ = .04

Right fits bases on distorsion paramters

Below fit based on mode 2.
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5.4 Fits used in the main extrapolation

5.4.1 Stable models

Model S6 δ = .04

Right fits bases on distorsion paramters

Below fit based on mode 2.
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Model S5 δ = .04

Right fits bases on distorsion paramters

Below fit based on mode 2.
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S6

U1

14

FIG. 17: Effect of the position of borders on the dynamics of the

deformation parameter η(t) and modes P2(t) P1(t) for model U11.

tempi o alla scielta di diverse coordinate? meglio fare un

check veloce

VII. DETERMINATION OF THE THRESHOLD

A. First method: exponential grow of the distortion parameter

The first method we used to find the threshold is the fol-

lowing: we performed the set of 10 ms simulations of the

perturbed models S6, S5, S4, U1 reported in table III that

are characterized by values of β between β = 0.240 and
β = 0.255 where we expected the instability to be located.
In fact, from [19–21] we should expect that the critical value

for the onset of the instability should be located at βdyn =
0.24 . . .0.25.
We assumed as a criteria for instability that the distortion

parameter has an exponential growth like in eq. (4.3) with a

possible saturation stage during all the 10 ms.

For simulation near the threshold as it is possible to notice

frommodelU3 the suppression of the bar isn’t immediate and

this make this criterion meaningful.

Near the threshold only a stable enough star should show

a diminishing eta in a short time-scale related to its coming

back to the axisymmetric stable configuration. Provided that

the perturbation is small enough the star should reach the sta-

ble axisymmetric configuration without needing to emit angu-

lar momentum and energy throwgh the gravitational radiation

and without needing nonlinear coupling between the modes

or viscosity. ricordare se il caso che l’ HRSC introduce poca

viscosit

We imposed a perturbation with δ = 0.04 in such a way
that the modulus of mode 2 are above of discretization mode

4 already at the beginning of the simulation. We observed that

the only model where the mode 2 was growing for all the du-

Model β notes ti tf η τB fB

ms ms (max) (ms) Hz

S6 0.240 δ = .04 3 9 0.02 —– 740

S5 0.245 δ = .04 3 9 0.02 —– 705

S4 0.250 δ = .04 3 9 0.03 —– 656

S3 0.252 δ = .04 3 9 0.04 —– 611

S2 0.253 δ = .04 3 9 0.05 —– 588

S1 0.254 δ = .04 3 9 0.09∗ 9.71 578

U1 0.255 δ = .04 3 9 0.15∗ 5.26 567

S1 0.254 45 63 0.02 —– 599

U1 0.255 45 63 0.13∗ 22.1 588

TABLE III: Maximum distortion, grow rate and frequency of the Bar

mode during the initial part of the instability for the models with

dx=0.5 and without π-sym utilized to determine the threshold. The
grow times τB and the frequency fB of the BAR mode are obtained

making a least square fit of lnP2(t) (eq.4.6) and sin(φ2) (eq. 4.7).
Here the maximum values of η signed with * are maximum just be-
cause the evolution was stopped.

ration of the simulation was model U1. We refined our search

with the intermediate models S3, S2, S1 that are characterized

by the values of β equal to 0.252, 0.253, 0.254, respectively.
We observed that the only model with a growing mode 2 for

all the 10msec simulation time was model S1. However it
was apparent the mode 2 growing rate was decreasing at the

end of the simulation.

However it is not possible to classify these models as un-

stable but models S1 and U1.

We indeed performed two unperturbed long simulations of

models S1 and U1.

As it is possible to see from Fig. 18 in the second case only

the mode 2 is able to get separated from other modes, among

which we reported only mode 1.

B. Second method: critical fit

Attenzione alle unità di misura: Gπ ρ.

B11 =
3 e − 5 e3 + 2 e5 +

√
1 − e2

(
−3 + 4 e2

)
arcsin(e)

4 e5

Ω2 =
−6

(
1 − e2

)

e2
+

2
(
3 − 2 e2

) √
1 − e2 arcsin(e)
e3

Commenti: le simulazioni sono con π − symmetry e non
vicino alla soglia, qui non si sono mai notate differenze sui

tempi di crescit dovute alla presenza o meno della simme-

tria. Inoltre durante la crescita anche l’effetto della discretiz-

zazione sembra trascurabile (vedi invarianza per rotazioni e

risoluzione). La teoria di Chandrasekhar predice un certo

5

FIG. 2: Initial profiles of the rest-mass density ρ (left panel) and of the angular velocity Ω (right panel) for models S8, S7, S2, U1, U3, U11
and U13. Indicated with a dot-dashed line is the profile for the first unstable model (U1) with β = 0.255. Note that this is not the first model
have a toroidal topology.

tations. In order to determine the effect of the introduction
of perturbation on the barmode evolution and the determina-
tion of the characteristic time and frequency of the barmode
instability and a precise measurement of the critical value βc

we have also considered in some cases initial density pertur-
bations of the type

δρ2(x, y, z) = δ2

(
x2 − y2

r2
e

)
ρ , (3.9)

where δ2 is the magnitude of the m = 2 perturbation (which
we usually set to be δ2 = 0.01 − 0.3) and re is the radial co-
ordinate on the equatorial plane. This perturbation has then
the effect of superimposing on the axially symmetryc ini-
tial model a barmode deformation perturbations that is much
larger than the (unavoidable) m = 4-mode perturbation in-
troduced by the Cartesian grid discretization. In addition to a
barmode deformation and in order to test the effect of a pre-
existing m = 1-mode perturbation we also used in some case
discussed in Section ??? m = 1-mode density perturbation of
the type

δρ1(x, y, z) = δ1 sin
(

φ± n
2π&

re

)
ρ , (3.10)

with δ1 = 0.01. Finally, we note that in all those cases when
a perturbation of the type (3.9) or (3.10), we have then solved
the Hamiltonian and momentum constraints equations have
been solved to to enforce that the constraint violation is at the
truncation-error level.

IV. METHODOLOGY OF THE ANALYSIS

A number of different quantities are calculated during the
evolution to monitor the dynamics of the instability. Among
them is the quadrupole moment of the matter distribution,
which we compute in terms of the conserved density D rather
than of the rest-mass density ρ or of the tt-component of the
stress energy momentum tensor

Ijk =
∫

d3x D xjxk . (4.1)

Of course, the use of D in place of ρ or of T00 is arbitrary and
all of the three expressions would have the same Newtonian
limit. However, we priviledge the form (4.1) because D is a
quantity whose conservation is guaranteed by the form chosen
for the hydrodynamic equations (2.17).

Once the quadrupole moment distribution is known, the
presence of a bar and its size may be usefully quantified in
terms of the distortion parameters [21]

η+ =
Ixx − Iyy

Ixx + Iyy
(4.2)

η× =
2 Ixy

Ixx + Iyy
(4.3)

η =
√

η2
+ + η2

× , (4.4)

whose time variation (most notably, suitable combinations of
their second time derivatives) will then be used in Section ???
to characterize the gravitational-wave emission from the insta-
bility. In addition, the quantity (4.2) can be conveniently used
to quantify both the growth-time τB of the instability and the

40
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Un-perturbate dynamics at the threshold 

β = 0.254
β = 0.255

Unperturbed dynamics

Different value of β

Importance of non linear 
coupling at the threshold
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Second Method
Model U6 π-sym dx = .625

Right fits bases on distorsion paramters

Below fit based on mode 2.
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Model U7 π-sym dx = .625

Right fits bases on distorsion paramters

Below fit based on mode 2.
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η(t) = η0 et/tg sin(2πf t + φ)
tg = 1.5774(msec) f = 528Hz

U6  dx=0.625

6

FIG. 1: Characteristic of the studied stellar models. On the bottom

they are reported asM vs εc. On the top they are reported as T/|W |
vsM/R.

FIG. 2: Initial profiles of the rest mass density ρ of the angular veloc-
ity Ω for models A8,A9,A10,S2,U1,U3,U11 andU13. Indicated with
a thick dashed line is the profile for the first unstable model (U1) with

β = 0.255.

tified in terms of the distortion[65] parameters [21]:

η+ =
Ixx − Iyy

Ixx + Iyy

η× =
2 Ixy

Ixx + Iyy
(4.2)

η =
√

η2
+ + η2

×

Clearly these quantities present the advantage that for their

evaluation isn’t needed the execution of any numerical deriva-

tive and for this reasons they are usually preferred to the al-

most equivalent size of h for determination of the parameters
of the BAR instability. It is, in fact, possible to quantify the

growth time τB and the oscillation frequency fB of the un-

stable BAR mode by a non linear least square fit to the trial

form:

η×(t) = η0 et/τB cos(2π fB t + φ0) . (4.3)

Notice that in Eq. 4.3, and in the whole paper, t is the coordi-
nated time, and so the frequancies we obtain are approximate

frequencies with an expected error of the order of the relative

deviation of the lapse from 1.

We saw in our simulations maximumdeviations of the lapse

from 1 of the order of xx% .

Rimangono da controllare le deviazioni da 1 del lapse (ma

lo shift? pi o meno stessa incertezza? entra a correggere le

velocita’ che determinano i periodi, vedi corotazione)

cmq in [22] del tutto evidente che c’e’ poca differenza,

inoltre essendo la barra un fenomeno globale la differenza

dovrebbe essere la differenza da 1 del lapse mediata su tutta

la stella

However we have noticed no difference in using the ηs or
the hs for the determination of the BAR mode parameters τB

and fB .

In our evoultion scheme the simulated stars are not con-

strained to be centered at the origin of the coordinate system.

To monitor the movement of the star with respect to the carte-

sian grid used the first momentum of the density distribution:

X i
cm =

1
M̃

∫
d3x ρ(x) xi (4.4)

where M̃ =
∫

d3x ρ(x). These quantities represent a sort
of center-of-mass of the Star but, since they are coordinate

dependent, they do not represent the physical position of the

star at the given time and there is no reason to be conserved.

This definition of the center-of-mass may be defined, in prin-

ciple, using either ρ, ρ∗ or the energy density T00 but there is

no reason to prefer one with respect to the other. We didn’t

noticed any real difference between these possible alternative

definition and this support the idea that this definition of the

center-of-mass is a good indicator on how well the coordinate

system is centered with respect to the star.

In order to make meaningful comparison we have indeed to

normalize this effect chosing a suitable comparison time-shift

and and angle. Indeed to make a superposition of η+(t) be-
tween two different simulation of the same model we should
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Instability Diagram in full GR

1
τ

=
√

k(β − βc)

Ω = fc + f ′
c(β − βc) + f ′′

c (β − βc)2

16

FIG. 20: Critical diagram: in red the unperturbed models of the Us

series reported in Table IV, in blue the perturbed models reported in

Table III. The continuos lines represent the fits, the dotted lines the

extrapolations below the threshold.

Model β ti tf η τB fB

ms ms (max) (ms) Hz

U2 0.2581 16.9 22.4 0.3734 3.438 552

U3 0.2595 19.9 24.2 0.4241 2.678 544

U4 0.2621 15.3 18.3 0.5496 1.854 540

U5 0.2631 16.2 19.0 0.5788 1.748 538

U6 0.2651 14.5 17.1 0.6305 1.574 528

U7 0.2671 14.2 16.4 0.6694 1.408 522

U8 0.2686 12.2 14.3 0.7027 1.319 518

U9 0.2701 13.2 15.2 0.7223 1.269 512

U10 0.2721 13.7 15.6 0.7482 1.184 503

U11 0.2743 12.9 14.7 0.7749 1.116 493

U12 0.2761 12.0 13.7 0.7999 1.066 486

U13 0.2812 11.2 12.7 0.8551 0.952 453

TABLE IV: Maximum distortion and grow rate of the Bar mode dur-

ing the initial part of the instability for the models at dx=0.625 with

pi-sym utilized to determine the threshold. The grow times τB of

the BAR instability is obtained computing the mean value of the first

derivative of the natural logarithm of the η of eq. (4.2) on the interval
[ti, tf ] where it is between the 5% and the 25% of its first maximum.

the four unstable models U3, U11, U13 and D2. As it can be

seen the expected GW signal is of the form of a gravitational-

wave burst whose intesity and frequency depend on the mass

of the star end the instability parameter β.
A convenient measure of the strength of the signal is given

by the root-sum-square amplitude of the plus polarization

hrss =
[∫ +∞

−∞
dth2

+(t)
]1/2

. (8.1)

FIG. 21: Comparison between durations, forms, frequencies, lumi-

nosity of various models.

FIG. 22: Comparison between ‖h̃(f)‖f1/2 and the square-root of

the power spectrum of the noise of Virgo (continue), 4km (dotted)

and Advanced Ligo (dashed) when the designed sensitivity will be

reached.

In table V we reported the size of hrss for a signal coming

from a distance of the source of the same order of magnitude

of our distance from the center of the milky-way, i.e., 10 kpar-
sec.

The hrss has the same units as the strain noise amplitude

spectrum of the detectors and so it is possible to obtain a rough

estimation of the signal to noise ratio (SNR) dividing it by

spectrum of the noise at the frequency of the obtained signal:

this ratio is now about 10 and should become 130 when the

designed sensitivity will be reached. It is worth to note that

the signals are narrow-band.

..... event rate, upper limits from Ligo and Tama .....
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Extending parameter space
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Dynamical non-axisymmetric instabilities in rotating relativistic stars S173

Figure 1. Position on the (M/Re, β) plane of the considered stellar models. Indicated respectively
with stars and filled circles are the m = 2-stable and m = 2-unstable models belonging to the four
sequences of constant rest mass. Triangles refer instead to models where the m = 3 deformation
is the fastest growing one. Indicated with a solid line is the threshold of the bar-mode instability,
while the dashed region represents the region of our estimated error-bars.

where

T µν = ρ

(
1 + ε +

p

ρ

)
uµuν + pgµν, (2)

and uµ is the fluid 4-velocity, p is the fluid pressure, ε the specific internal energy and
ρ the rest-mass density, so that e = ρ(1 + ε) is the energy density in the rest frame of
the fluid. The evolution of the spacetime must be supplemented by the evolution of the
relativistic hydrodynamics equations: the conservation laws for the energy–momentum tensor
∇µT µν = 0 and the baryon number ∇µ(ρuµ) = 0, complemented with an equation of state
(EOS) of type p = p(ρ, ε).

The initial data for our simulations are computed as stationary equilibrium solutions for
axisymmetric and rapidly rotating relativistic stars in polar coordinates [7]. In generating
these equilibrium models the metric describing an axisymmetric relativistic star is assumed to
have the form

ds2 = −eµ+ν dt2 + eµ−νr2 sin2 θ(dφ − ω dt)2 + e2ξ (dr2 + r2 dθ2), (3)

where µ, ν, ω and ξ are space-dependent metric functions. As in paper I, we assume the
matter to be characterized by a non-uniform angular-velocity distribution of the form

)c − ) = r2
e

Â2

[
() − ω)r2 sin2 θ e−2ν

1 − () − ω)2r2 sin2 θ e−2ν

]
, (4)

where re is the coordinate equatorial stellar radius and the coefficient Â is a measure of the
degree of differential rotation, which we set to Â = 1. All the equilibrium models considered
here have been calculated using the relativistic polytropic EOS (p = Kρ*) with K = 100
and * = 2 and are members of four sequences having a constant rest mass M∗ equal to
1.0M$, 1.51M$, 2M$ and 2.5M$, respectively. The main properties of the four sequences
are reported in tables 1–4. The baryonic mass M∗, the gravitational mass M, the angular
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Conclusions
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Numerical relativity is ready to simulate real 
physics

A lot of work to do:
NS-NS merger with realistic EOS
MAGNETO-HYDRODYNAMICS
INSTABILITIES of isolated stars 
Accretion driven collapse (of a NS to a BH)
.........
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