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1 Historical Introduction

After the formulation of quantum mechanics the quantization rules were also ap-
plied to the electromagnetic field and its interaction with electrons and positrons.
After the elimination of the infinities through the renormalization procedure one
could compute quantities as for instance the Lamb shift and the anomalous mag-
netic moment of the electron and muon obtaining results that are in very good
agreement with the experimental data [1]. In order to give an idea of the spectac-
ular agreement between theory and experiments we give here the number for the
theoretical predictions and the experimental data for both the anomalous magnetic
moment of the electron and the Lamb shift.

The interaction energy of an electron in an external magnetic field is given by

E = − e

2mc
g~S · ~H (1.1)

where g is the gyromagnetic ratio that is equal to g = 2 in the Dirac theory of the
electron, but that gets modified from the quantum corrections in QED. If we write
g as

g = 2(1 + ae) (1.2)

the theoretical predictions for ae up to four loops are

aTH
e =

α

2π
− 0.328478445

(
α

π

)2

+ 1.181241456
(
α

π

)3

− 1.557(70)
(
α

π

)4

(1.3)

Using the value of the inverse of the fine structure constant:

1

α
= 137.0359979(32) (1.4)

we get
aTH

e = 1159652201.2(2.1)(27.1)10−12 (1.5)

to be compared with the experimental result:

aEX
e = 1159652188.4(4.3)10−12 (1.6)

Concerning the Lamb shift the Dirac theory predicts that in the hydrogen atom
the levels 2S1/2 and 2P1/2 have the same energy. The experiments give for the
difference of energy between the two levels

(E2S1/2
− E2P1/2

)EX = 1057.862± 0.020MHZ (1.7)

to be compared with the result of the theoretical calculations:

(E2S1/2
− E2P1/2

)TH = 1057.864± 0.014MHZ (1.8)

The successful application of the quantization procedure to the electromagnetic
phenomena open the way to apply them also to the strong interactions. Yukawa
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formulated the hypothesis that the pion, as the photon in QED, is the meson
responsible for the interaction between protons and neutrons. However the use of
a field theory for describing the interaction among hadrons met pretty soon serious
problems:

1. Because of the strength of the strong coupling constant (pion-nucleon coupling
constant) it was clear that perturbation theory, so successful in QED, would
not work for strong interactions.

2. The experiments showed the existence of a big number of hadrons and if we
associate an elementary field to each one of them we would obtain a very
complicated theory.

Mainly because of these problems, in the sixties it was proposed to forget field theory
and Lagrangians and to concentrate on the S-matrix elements that are the quantities
that are directly observed in the experiments [2]. In field theory the fundamental
objects are the fields and the Lagrangian describing their interaction. However
what one observes in the experiments are particles and their S-matrix elements.
The spectrum of particles and their interaction can be in principle computed from
the original Lagrangian. However because of the problems 1. and 2. this may be
very difficult.

It was therefore proposed to construct directly the S-matrix elements starting
from a number of postulates, that they were supposed to satisfy. They were the
following:

1. Invariance under the Poincaré group and under T,C and P.

2. Unitarity

3. Crossing Symmetry

4. Analyticity of first kind implying that a particle corresponds to a simple pole
in the scattering amplitude, while two or many particle thresholds correspond
to branch points.

5. Analyticity of second kind or Regge behaviour. This implies that at high
energy (s → ∞) and small transverse momentum (t small) the scattering
amplitude behaves as sα(t).

The physical S-matrix was supposed to satisfy the previous rules, but unlike field
theory, where the S-matrix is constructed in a very clear way from the Lagrangian,
no precise rule was given on how to implement its construction in the S-matrix the-
ory. It was mentioned the principle of bootstrap, but the procedure for constructing
the S-matrix remained always very vague.

The very great result of the S-matrix theory was the construction of a model
for the process ππ → πω performed by Veneziano [3] in the attempt to implement
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the previous postulates of the S-matrix theory with an infinite number of narrow
width resonances lying on linearly rising Regge trajectories.

The scattering amplitude for the process ππ → πω that Veneziano proposed is
given by

T (ππ → πω) = εµνρσε
µpν

1p
ρ
2p

σ
3A(s, t, u) (1.9)

where pi are the momenta of the three pions, εµ is the polarization vector of the ω
particle and

A(s, t, u) = A(s, t) + A(s, u) + A(t, u) (1.10)

with

A(s, t) =
Γ(1− αs)Γ(1− αt)

Γ(2− αs − αt)
(1.11)

s, t, u are the Mandelstam variables

s = −(p1 + p2)
2 , t = −(p3 + p2)

2 , u = −(p1 + p3)
2

and
αs = α0 + α′s (1.12)

is a linearly rising Regge trajectory. This feature is in very good agreement with
the high energy data in a wide range of energies.

The scattering amplitude (1.9) provides a realization of the postulates of S-
matrix theory with only one particle narrow width states. Only unitarity was not
satisfied; it was supposed to be implemented only at a later stage.

Immediately after its discovery the Veneziano model was extended to the scat-
tering of four scalar particles:

A(s, t, u) = A(s, t) + A(s, u) + A(t, u) (1.13)

with

A(s, t) =
Γ(−αs)Γ(−αt)

Γ(−αs − αt)
(1.14)

and later to the scattering of N external scalar particles [4] including also an internal
flavour symmetry through the multiplication with Chan-Paton factors [5].

The enthusiasm for the construction of the dual resonance model, that repro-
duced many important features of hadron physics, led many people to believe that
it was possible to construct the scattering amplitude for N pions incorporating
current algebra with the right physical parameters. But unfortunately up to now
only a partial success was obtained in this direction through the construction by
Lovelace and Shapiro [6] of the ππ → ππ scattering amplitude. For the π+π+ elastic
scattering they proposed:

A(π+π+ → π+π+) =
Γ(1− αs)Γ(1− αt)

Γ(1− αs − αt)
(1.15)
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that has the good feature of incorporation the Adler zeroes if, in the chiral limit,
the intercept of the ρ Regge trajectory is taken to be α0 = 1

2
. This value is in good

agreement with the experimental value. Another very interesting feature of (1.15)
is the presence of ghosts if the space-time dimension D > 4 [7]. Although this
model has interesting physical features, a realistic model for pions is still lacking
because nobody has been able to extend it to an arbitrary number of external pions
keeping α0 = 1

2
. Actually an extension of (1.14) for an arbitrary number of external

particles corresponds to the Neveu-Schwarz-Ramond model [8], that is consistent
however only if α0 = 1 and D = 10.

After few years of research in the dual resonance models essentially two models,
i.e. the Veneziano model and the Neveu-Schwarz-Ramond model, were constructed,
that although not quite matching the experimental data, presented a high degree
of consistency deserving an intensive study.

In this investigation it was realized that a relativistic string [9] was the structure
underlying the dual resonance model. This observation makes much easier today
to teach the dual resonance models to those who did not partecipate in the early
days of duality. In fact it is now possible to describe their properties starting from
the fundamental string action.

After so many attempts toward more realistic models it became clear in the mid-
dle of the seventies that it would be very difficult to construct completely realistic
models for the strong interacting particles.

The following diseases were present in the internally consistent models:

1. The lowest state of the spectrum was always a tachyon.

2. All kind of massless particles (photon, graviton etc.) were present in the
spectrum. The only massless hadron expected in the chiral limit, the pion,
was impossible to accommodate in the spectrum as already discussed.

3. It was impossible to quantize the various string models for values of the space-
time dimensions that are not the critical ones 26, 10, 2.1

These problems together with the discovery of pointlike structures in deep inelastic
experiments giving a hard structure at large transverse momentum and with the
proof of renormalizability of non abelian gauge theories made many people to go
back to field theory and in particular to non abelian gauge theories and to try to use
them for strong interactions. As a result of these attempts QCD was proposed in
1973, that has been up to now very successful in explaining the physics of strong in-
teractions. In the subsequent years its perturbative and nonperturbative properties
were studied. These results brought back people to field theory. In the beginning of
the seventies pratically everybody went back to work in field theory by using it both

1An attempt to quantize the string for non critical values of the space-time dimension is due

to Polyakov [10].
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for strong interactions, building up QCD, and for the weak and electromagnetic in-
teractions, building up the Weinberg-Salam model. This brought to the formulation
of the standard model of strong, electromagnetic and weak interactions, that is a
gauge field theory based on the gauge group:

SU(3)⊗ SU(2)⊗ U(1) (1.16)

with coupling constants g3, g2 and g1 respectively. It has been very successful in
predicting the existence of neutral currents, of the W and Z gauge bosons, of jets
etc.. All experiments performed up to an energy of about 210GeV at LEP are in
perfect agreement with it. The success of the standard model shows that, at least
up to an energy of 210GeV , the world is successfully described by a field theory.
The introduction in the quantum theory of the Planck constant

h = 6.62510−27erg · gr (1.17)

that appears in the De Broglie relation between the momentum and energy of a
massless particle and the wave lenght and frequency of a wave

p =
h

λ
E = hν (1.18)

gives the possibility of relating, through the relation E = pc, lenghts with energies

λ =
hc

E
(1.19)

If we express energies E in eV and lenghts L in cm we get the relation

L(cm) =
1.95 · 10−5cm · eV

E(eV )
(1.20)

Using the previous relation it is easy to check that an energy of 200GeV corresponds
to a distance of about 10−16cm = 10−3Fermi. This means that we have checked
the validity of field theory up to a distance of 10−3Fermi. Remember that the
dimension of a proton is of about 1Fermi corresponding to an energy of about
200MeV .

In the standard model, if we neglect quark masses, there are two fundamental
scales:

1. The QCD scale Λ ∼ 200MeV that corresponds to the dimension of the
hadrons ∼ 1Fermi.

2. The Fermi scale given by the v.e.v. of the Higgs field

< Φ >∼ 246GeV (1.21)

This is both the scale in which the original group SU(2) ⊗ U(1) gets broken
into the electromagnetic U(1) and the scale for which the elementary particles
get a mass. For energies higher than the Fermi scale they can be treated as
massless.
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In conclusion the hadrons of QCD get a mass given by cΛ, while the particles of
the standard model get a mass given by α < Φ >, where c and α are dimensionless
constants.

In the meantime some dualists continued to work in the dual string models
trying to eliminate the problems 1. , 2. and 3., persuaded that such a rich and
interesting structure could be of physical relevance in some future.

In order to bypass problem 2. it was proposed in 1974 by Scherk and Schwarz [11]
to use the dual models not as models for hadrons but as a unified theory for all
interactions including gravity. In this case the Regge slope does not correspond
anymore to the dimension of an hadron 10−13 cm; but it is related to the Planck
mass being 10−33cm. Then in order to get rid of problem (3) it was resurrected the
old Kaluza-Klein mechanism [12].

Finally in 1976 Gliozzi, Olive and Scherk [13] proposed to consider a subsector
of the Neveu-Schwarz-Ramond model, that is consistent by itself obtaining the first
dual string model without a tachyon in the spectrum. The consistency and the
supersymmetry properties of this submodel were shown only later by Green and
Schwarz [14].

By the end of seventies it was clear that superstring was a consistent theory; it
was not describing strong interactions, but rather a unified theory including gauge
theories and the Einstein’s theory of general relativity.

But what about gravity from the field theory point of view?
It was known that gravity is described by the Einstein’s theory of general rela-

tivity through the Einstein’s action

S =
c3

16πGN

∫
d4x
√
−gR (1.22)

GN is the Newton constant equal to 6.67 · 10−8cm3gm−1sec−2. In the Newtonian
limit the gravitational interaction between two particles with the same mass M is
given by the Newton force:

~F = −GM
2

R2

~R

R
(1.23)

For small masses the gravitational interactions are weak. They become strong when
the dimensionless constant becomes of the order 1:

GNM
2

h̄c
∼ 1 →MP =

√
h̄c

GN

= 1.22 · 1019GeV (1.24)

This is happening when the two particles have a mass equal to the Planck mass MP

corresponding to the Planck lenght:

LP =
h̄

MP c
= 1.6 · 10−33cm (1.25)

Gravitational interactions become relevant in subatomic physics for particles having
a mass of the order of the Planck mass and having a dimension of the order of the
Planck lenght.
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Apart from the QCD scale we have therefore two scales, the Fermi scale cor-
responding to an energy of ∼ 103GeV and the Planck scale corresponding to an
energy of ∼ 1019GeV . What is happening in between? Do we have other scales? Is
the region in between described by a quantum field theory?

Let us say what we know and what are our prejudices about what is going to
happen at an energy higher than the Fermi scale. First of all, if field theory provides
also a consistent description of gravity, we must be able to construct a quantum
theory for gravity. But gravity has a dimensional constant, the Newton constant
GN , that has dimension of a [mass]−2, as the Fermi constant GF of weak interaction,
and therefore exactly as the Fermi four-fermion theory of weak interaction is not
renormalizable. In weak interactions the problem was solved by introducing the
gauge bosons and later on also the Higgs field in order to arrive at a renormalizable
theory. But, unlike the gauge interactions coupled to a charge, gravity couples to
energy and although we introduce the gravitons we are not able to construct a
renormalizable theory for gravity. But, if a theory is nonrenormalizable, we must
introduce a cutoff Λ ∼ MP at high energy and the theory can only be used for
energy much smaller than the cutoff. When we reach the energy of the cutoff, new
physics must show up. A theory with cutoff is only an effective theory valid for
energy much smaller than the cutoff. In conclusion the first fact is that nobody has
yet been able to construct a renormalizable field theory including gravity.

The second point is that by using the fact that coupling constants in a gauge
theory run with the energy at which we perform our experiments, if we extrapolate
the three couplings of the standard model using the low-energy particle spectrum,
we see that they have the tendency of meeting together at an energy of about
1016GeV . This brought Georgi and Glashow to construct a unified theory of the
strong and electro-weak interaction with a single gauge coupling constant based
on the gauge group SU(5). But, in order to break the original SU(5) symmetry,
one must introduce additional Higgs fields that break the symmetry by acquiring
a non-zero v.e.v < Φ >∼ MGUT ∼ 1016GeV . In such a theory or in any other
grand-unified theory one has the scale of grand-unification as an intermediate scale
between the Fermi scale and the Planck scale. In this way we have not explained
the Planck scale at all. In addition we have introduced some other problems that
are strongly related to each other. They are:

1. Hierarchy problem

Why do we have two scales so different as the Fermi and the grand-unification
scale? Not to talk about the Planck scale that is even higher.

2. Naturalness problem

In the grand-unified theory we need two kinds of Higgs particles. The first kind
are those that break the original grand-unified theory and get a mass of the
order of the scale of grand-unification. In addition we need also other scalar
Higgs particles, that remain massless after the breaking of grand unification
and that break the symmetry of the standard model. But it is unnatural to
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have massless scalar particles in a theory with a grand-unified scale. Scalars
are in this respect different from fermions because there is no symmetry pro-
tecting them from getting a mass.

3. Fine tuning problem

Theories with scalars have quadratic divergences and therefore at each order
of perturbation theory, if we want them to be massless, we need a fine tuning.

One possible way out of these problems is to extend the standard model in the
supersymmetric standard model by introducing a supersymmetric partner for each
particle of the standard model. But, there is no evidence of it in the experiments and
therefore it must be broken. One can see that the previous problems can be solved
also in the case of broken supersymmetry provided that the scale of supersymmetry
breaking is of the same order of the Fermi scale. In addition, in the minimal
supersymmetric standard model the unification of the three gauge coupling can be
made to happen at a single point. Therefore the new prediction is that we expect to
find the supersymmetric particles in the near future at LEP 200 or at LHC. After
that we have a desert up the scale of grand unification and after that we have also
to explain gravity. We have introduced supersymmetric particles and another scale,
but we have not learned anything about gravity.

The problems of quantum gravity are due to the short distance infinities that
we have in most field theories and that are due to the pointlike structure of the fun-
damental constituents. This problem appears already in classical electromagnetism
and is solved by introducing the classical electron radius:

e2

r0
= mc2 =⇒ r0 =

e2

mc2
= α

h̄

mc
(1.26)

where α = e2

h̄c
is the fine structure constant.

We could therefore think of solving this problem by introducing a theory in which
the fundamental objects are not pointlike, but have an extension. Is it possible to
extend field theory to another theory that reduces to field theory in some limit?
We could think for instance of having a theory with an additional dimensional
parameter that acts as a cutoff, but it is not a cutoff because it has a physical
meaning and when this cutoff goes to infinity we recover field theory. In this way
we would have a theory that would extend field theory and at the same time we
could hope in this theory to solve the problems of quantum gravity. We will see that
a fundamental theory based on one-dimensional objects, called strings, is precisely
a theory that is able to solve the short distance problems of gravity and at the
same time to provide an extension of field theory by having a parameter, the string
tension T that is an energy per unit lenght. When T →∞, string theory reduces to
field theory pretty much in the same way as quantum mechanics reduces to classical
mechanics when h→ 0 or as special relativity reduces to gallilean mechanics when
c→∞.
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There is strong evidence nowdays that the fundamental theory is not a pure
string theory, but rather what is now called M-theory. Why should then we discuss
string theory? As we will see later M-theory is not a clearly defined theory and
it reduces to one of the consistent string theories in some limit. For this reason
many of the quantities that one computes in M-theory are actually computed in
string theory. Finally string theory is a non trivial extension of field theory that
sometimes can be used to compute field theoretical quantities in a simpler way.

2 Free bosonic string

2.1 Spinless point particle

A spinless free point particle is described by the coordinates of its position xµ(τ)
in Minkowski space and by an action that is proportional to the length of its world
line:

S = −mc
∫ √

−dxµdxµ = −mc
∫
dτ
√
−ẋ2 (2.27)

τ is an arbitrary parameter describing the motion of the particle. It does not have
any physical meaning since S is invariant under an arbitrary reparametrization
τ → f(τ). This follows from the fact that, if we perform a reparametrization
xµ(τ) → xµ(f(τ)) then the Lagrangian in eq.(2.27) will transform as:

dτ
√
−ẋ2(τ) → df(τ)

√√√√−( dxµ

df(τ)

)2

(2.28)

that implies that the action is invariant.
The identification of τ with some physical parameter corresponds to a gauge

choice. A possible and often used gauge corresponds to taking τ proportional to
the time: τ ∼ x0 ≡ ct. In this gauge the action (2.27) becomes:

S = −mc2
∫
dt

√
1− ~v2

c2
~v =

d~x

dt
(2.29)

Since we have treated the time component of xµ(τ) differently from the space com-
ponents the action (2.29) is not anymore manifestly Lorentz covariant. But from it
we can derive the dynamics of a free relativistic particle by introducing the three-
momentum and the hamiltonian:

~p =
dL

d~v
=

m~v√
1− v2

c2

; H = E =
mc2√
1− v2

c2

(2.30)

that satisfy the mass-shell relation:

E2

c2
− p2 = m2c2 (2.31)
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In order to keep the manifest Lorentz covariance of the original theory one can
choose the proper time gauge characterized by ẋ2 = −1 or one can work directly
with the gauge invariant action (2.27).

Starting from (2.27) one can compute the momentum of the particle:

pµ =
∂L

∂ẋµ
=
mcẋµ√
−ẋ2

(2.32)

that implies the following primary constraint:

p2 +m2c2 = 0 (2.33)

corresponding to the mass-shell condition for the particle.
Because of the reparametrization invariance the canonical Hamiltonian is iden-

tically vanishing and therefore, following the Dirac procedure of quantization of a
system with constraints, the Hamiltonian of our particle is given by:

H = −1

2
e(τ)(p2 +m2c2) (2.34)

where e(τ) is an arbitrary function of τ , that reflects the reparametrization invari-
ance of (2.27). A choice of e(τ) corresponds to a gauge choice in the Hamiltonian
formalism. For instance in the proper time gauge e(τ) = constant.

The theory is quantized by requiring the following commutation relations:

[xµ(τ), pν(τ)] = ih̄gµν (2.35)

Using them it is easy to see that H generates the equation of motion for our dy-
namical variable xµ(τ) and pµ(τ). A realization of (2.35 ) is obtained by choosing

pµ = −ih̄ ∂

∂xµ
(2.36)

acting on the wave function Φ(xµ).
In the quantum theory the constraint (2.33 ) becomes a condition defining the

physical states:

(−∂µ∂µ +
m2c2

h̄2 )Φ(x) = 0 (2.37)

that is the Klein-Gordon equation valid for a scalar particle.
In conclusion we have shown that the quantization of the system described by

eq. (2.27) reproduces the well known Klein-Gordon theory for a scalar particle.
The previous formulation works only for a massive particle. In the case of a

massless particle we have to modify the action (2.27).
By introducing the additional dynamical variable e(τ) we can rewrite eq. (2.27)

as follows [15]:

S =
∫
dτ

[
−1

2

ẋ2

e
+

1

2
m2c2e

]
(2.38)
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Eq. (2.27) follows from eq. (2.38) if we write the algebraic equation of motion for
e(τ):

ẋ2 = −m2c2e2 (2.39)

and if we insert it in eq. (2.38) after having chosen the negative root e = −
√
−ẋ2/(mc).

Therefore action (2.38) is completely equivalent to the original action (2.27). Notice
that, using the momentum of the particle pµ = −ẋµ/e obtained from eq. (2.38) in
(2.39), one reproduces the mass shell condition (2.33).

The Hamiltonian corresponding to the action (2.38) can be easily computed.
One gets:

H = −e
2
(p2 +m2c2) (2.40)

that is identical to (2.34) provided that one identifies the two functions e(τ) ap-
pearing in the two equations. Again the appearance of the arbitrary function e(τ)
corresponds to the reparametrization invariance of (2.38 ) under the following finite
transformations:

ẋµ(τ) → ḟ(τ)
dxµ(f(τ))

df(τ)
; e(τ) → ḟ(τ)e(f(τ)) (2.41)

that reduce to

δxµ(τ) = ε(τ)ẋµ(τ) , δe(τ) = ε̇(τ)e(τ) + ε(τ)ė(τ) (2.42)

for infinitesimal ones (f(τ) = τ + ε(τ)).
The action in eq. (2.38) allows us to describe also massless particles for which

the ”cosmological term” in eq. (2.38) vanishes. In this case one gets:

S = −1

2

∫
dτ
ẋ2

e
(2.43)

and it is not possible to eliminate e(τ) from S. The quantization proceeds as
explained in the case of action (2.27) and the equation of motion for e(τ) [eq.
(2.39)] becomes a constraint that must be imposed on the physical states giving the
Klein-Gordon equation.

In the previous equations e is a dimensional quantity. It is convenient to intro-
duce a dimensionless einbein:

E = m2c2e (2.44)

The action in eq.(2.38) becomes:

S =
1

2

∫
dτ

[
− ẋ

2m2c2

E
+ E

]
(2.45)

The proper time gauge corresponds to the choice where E(τ) is a constant, but
this constant depends on the lenght of the path. If we parameterize it by taking τ
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variable in the interval 0 ≤ τ ≤ 1 and we take E constant then the lenght of the
path is given by:

L =
∫ 1

0
dτ

E

mc
→ E = mcL (2.46)

In this gauge the action becomes:

S =
mc

2

∫
dτ

[
ẋ2

L
+ L

]
(2.47)

where we have gone to euclidean space (τ → iτ). Using the previous action we can
compute the probability amplitude to find the particle at the point x′ for τ = 1 if
it was at x for τ = 0 and the two points are connected by a path of lenght L. This
probability amplitude is given by:

< x|x′ >L= N
∫ x(1)=x′

x(0)=x
Dxµe

−mc
2

∫
dτ

[
ẋ2

L
+L

]
(2.48)

The previous functional integral can be computed by expanding xµ around a clas-
sical solution:

xµ(τ) ≡ xµ
cl + δxµ(τ) = xµ + ((x′)µ − xµ)τ + δxµ(τ) (2.49)

where the classsical solution satisfies the conditions xµ
cl(0) = xµ and xµ

cl(1) = x′

and the fluctuation satisfies the following ones δxµ(0) = δxµ(1) = 0. Inserting the
expansion in eq. (2.49) in eq. (2.48) we can perform the gaussian functional integral
getting:

< x|x′ >L=
N

[det(−∂2
τ

L
]D/2

e
−mc

2

[
(x−x′)2

L
+L

]
(2.50)

In order to compute the determinant we have to solve the eigenvalue equation:

− 1

L
∂2

τψ(τ) = λψ(τ) (2.51)

with the boundary conditions ψ(0) = ψ(1) = 0. It is easy to get the following
eigenfunctions and eigenvalues:

ψn(τ) = cn sin(nπτ) ; λn =
n2π2

L
(2.52)

From them we can compute the determinant by using the ζ-function regularization:

det(−∂
2
τ

L
) = [

∞∏
n=1

n2π2

L
]2 =

(
π2

L

)2
∑∞

n=1
1

e−4
∑∞

n=1
log n =

(
π2

L

)2ζ(0)

e−4ζ′(0) (2.53)

where

ζ(s) =
∞∑

n=1

n−s , ζ(0) =
∞∑

n=1

1 → −1

2
, ζ ′(0) = −

∞∑
n=1

log n→ −1

2
log(2π) (2.54)
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Using the previous equations we get

det(−∂
2
τ

L
) = 4L (2.55)

Inserting it in eq.(2.50) we get:

< x|x′ >L= N e
−mc

2

[
(x−x′)2

L
−L

]
L−D/22−D (2.56)

The normalization constant can be determined by requiring that:

< x|x′ >L1+L2=
∫
dDx′′ < x|x′′ >L1< x′′|x′ >L2 (2.57)

Inserting eq.(2.56) in the previous equation one gets:

N =
(

2mc

π

)D/2

(2.58)

In conclusion we get

< x|x′ >L=
(
mc

2Lπ

)D/2

e
−mc

2

[
(x′−x)2

L
+L

]
(2.59)

The propagator in configuration space is obtained by computing

∫ ∞

0

dL

2mc
< x|x′ >L=

∫ ∞

0

dL

2mc

(
mc

2Lπ

)D/2

e
−mc

2

[
(x′−x)2

L
+L

]
(2.60)

From it we can compute the propagator in momentum space given by:

< p|p′ >=
∫
dDx

∫
dDx′e−i(p·x−p′x′)

∫ ∞

0

dL

2mc
< x|x′ >L= (2π)Dδ(D)(p−p′) 1

p2 +m2c2

(2.61)
We have shown that the propagator of a spinless particle can be obtained from its
particle description without needing to talk about field theory.

2.2 String action and elementary considerations

We have seen in the previous section that the basic structure used to construct
an action for a spinless point particle is the infinitesimal line element dxµ. If we
consider a one dimensional extended object as a string the natural generalization
of the line element is the infinitesimal area element

dσµν = dxµ ∧ dxν (2.62)
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Choosing a system of coordinates one can write dσµν as follows:

dσµν =
∂xµ

∂ζα

∂xν

∂ζβ
dζα ∧ dζβ =

∂xµ

∂ζα

∂xν

∂ζβ
εαβdσdτ (2.63)

where xµ(σ, τ) are the coordinates of the world sheet of a string described by the
variables σ and τ with ζ0 = τ and ζ1 = σ. εαβ is an antisymmetric tensor with
ε01 = 1.

Proceeding in analogy with the point particle we can use the area element (2.62)
to write an action for a string, that is proportional to the area spanned by the string

S ∼
∫ √

−dσµνdσµν (2.64)

Inserting eq. (2.63) in (2.64) and fixing the proportionality constant one gets the
Nambu-Goto action [16].

S = −cT
∫ τf

τi

dτ
∫ π

0
dσ
√

(ẋ · x′)2 − ẋ2x′2 (2.65)

where

ẋµ ≡ ∂xµ

∂τ
x′

µ ≡ ∂xµ

∂σ
(2.66)

and T is the string tension, that replaces the mass appearing in the case of a point
particle. In going from eq.(2.64) to eq.(2.65) we have used the relation:

εαβεγδ = ηαδηβγ − ηαγηβδ (2.67)

where ηαβ is the flat world sheet metric chosen to be −η00 = η11 = 1.
It is convenient to use the variable σ in the interval 0 ≤ σ ≤ π. In the case of

a closed string we must impose the periodicity condition xµ(τ, 0) = xµ(τ, π) while
in the case of an open string the points σ = 0 and σ = π parametrize the two end
points of the string.

The previous action can also be expressed in terms of the world sheet induced
metric:

gαβ =
∂xµ

∂ζα

∂xµ

∂ζβ
(2.68)

One gets

S = −cT
∫
dτ
∫
dσ
√
− det(gαβ) (2.69)

The variables ζα are arbitrary variables that parametrize the world sheet of a
string. We can choose another set of variables δζα = εα(ζα) without changing the
physics of the system. This is reflected in the fact that the action (2.65) is invariant
under the following transformation:

δxµ = εα(ζ)∂αx
µ (2.70)
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where ε(ζ) are arbitrary infinitesimal functions of ζα.
The classical equations of motion of the string can be obtained by imposing the

least action principle that requires:

δS = 0 (2.71)

for those variations such that δxµ(τi) = δxµ(τf ) = 0. Starting from eq. (2.65) after
a partial integration we get:

δS =
∫ τf

τi

[∫ π

0
dσ

(
− ∂

∂τ

∂L

∂ẋµ
− ∂

∂σ

∂L

∂x′µ

)
δxµ +

∂L

∂x′µ
δxµ|σ=π

σ=0

]
= 0 (2.72)

Since δxµ is arbitrary from eq. (2.71) the Euler-Lagrange equation follows

∂

∂τ

∂L

∂ẋµ
+

∂

∂σ

∂L

∂x′µ
≡ ∂

∂ζα

 ∂L

∂(∂xµ

∂ζα )

 = 0 (2.73)

The surface terms appearing in eq. (2.72) vanish if

∂L

∂x′µ
= 0 or δxµ = 0 at σ = 0, π (2.74)

for an open string and if
xµ(τ, 0) = xµ(τ, π) (2.75)

in the case of a closed string. In the case of an open string the first kind of boundary
condition in eq.(2.74) correspond to Neumann boundary condition, while the second
one to Dirichlet boundary conditions. In the following we will consider only the
Neumann ones because they are preserving Poincare invariance. We will come back
to the Dirichlet ones when we will be considering D-branes.

From eq. (2.65) it is easy to compute:

∂L

∂ẋµ
≡ Pµ = cT

ẋµx
′2 − x′µ(ẋ · x′)√

(ẋ · x′)2 − ẋ2x′2
(2.76)

and
∂L

∂x′µ
= cT

x′µẋ
2 − ẋµ(ẋ · x′)√

(ẋ · x′)2 − ẋ2x′2
(2.77)

The relativistic invariance of the string action (2.65) implies that the four momen-
tum:

pµ =
∫ π

0
dσPµ(τ, σ) (2.78)

and the angular momentum

Mµν =
∫ π

0
dσ(xµPν − xνPµ) (2.79)
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are constant of motion
ṗµ = Ṁµν = 0 (2.80)

as a consequence of the eqs. of motion of the string.
Squaring eq. (2.77) we get the following constraint(

∂L

∂x′µ

)2

+ c2T 2ẋ2 = 0 (2.81)

implying, because of the boundary condition (2.74), that the end points of an open
string move with the speed of light.

As in the case of a point particle we get in the Hamiltonian formalism two pri-
mary constraints between the dynamical variables, that can be obtained by squaring
(2.76) and by multiplying (2.76) with x′µ. They are given by:

c2T 2x′
2
+ P 2 = x′ · P = 0 (2.82)

We could proceed to quantize the string as we have sketched in the case of a point
particle using the Dirac procedure of quantization of a system with constraints. It
is however for many respects more convenient to rewrite the action (2.65) in a form,
that is quadratic in the string variable xµ. This will be done in the next section.

In the last part of this section we study some simple motion of a string.
Let us choose the orthonormal gauge specified by the conditions:

ẋ2 + x′
2

= ẋ · x′ = 0 (2.83)

In this gauge eqs. (2.76) and (2.77) become:

Pµ = cT ẋµ
∂L

∂x′µ
= −cTx′µ (2.84)

and therefore the eq. of motion in eq.(2.73) becomes:

ẍµ − x′′µ = 0 (2.85)

while the boundary condition in eq.(2.74) becomes:

x′µ(σ = 0, π) = 0 (2.86)

Let us consider now some simple motion consisting of a straight open string of
length 2a rigidly rotating around its center in the plane x1x2. The coordinates of
the string are given by:

x1 = a cosσ cos τ x2 = a cosσ sin τ

x3 = 0 x0 ≡ ct = aτ (2.87)
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where r = acosσ is the coordinate along the string that varies in the interval
−a ≤ r ≤ a . The end points of the string move with the speed of light since:(

dx1

dt

)2

+

(
dx2

dt

)2

=
c2r2

a2
= c2 if r2 = a2 (2.88)

It is easy to check that (2.87) satisfy the equation of motion in eq.(2.85), the bound-
ary conditions in eq.(2.86) and also the orthonormal gauge conditions in eq.(2.83).
In conclusion the motions described by (2.87) are allowed motions of a string. The
total momentum of the string is obtained from eq.(2.78). For the particular solution
in eq.(2.87) one obtains:

pµ =
∫ π

0
dσcT ẋµ = cTaπδµ0 (2.89)

Since we are in the c.o.m. frame the total three-momentum is zero, while from the
energy of the string we can compute the mass

m ≡ p0

c
= Taπ (2.90)

On the other hand the angular momentum of a rigidly rotating string has a non
vanishing component only in the direction orthogonal to the plane in which the
string rotates. It is given by:

J12 =
∫ π

0
dσ (x1P2 − x2P1) = πcTa2/2 (2.91)

implying the following relation between mass and angular momentum:

J = α′h̄(mc2)2 (2.92)

with

T =
1

2πα′h̄c3
(2.93)

The previous two relations, that have been deduced for a particular set of motions
of the string, are actually valid in general implying that the states of a string lie on
linearly rising Regge trajectories. Eq. (2.93) gives the relation between the string
tension and the Regge slope.

Another interesting feature of a string is that, if we put a charge g at one end
point and we compute the gyromagnetic ratio G we find the result that G = 2. The
string has therefore no anomalous magnetic moment. This property will be now
checked for a rigidly rotating string, that generates a current given by:

j = g
c

2πa
(2.94)
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corresponding to a dipole magnetic moment

µ =
j

c
A (2.95)

where A = πa2 is the area spanned by the string. Inserting (2.94) in (2.95) one
obtains

µ =
g

2mc
GJ = ga/2 (2.96)

Using the expressions for the mass and the angular momentum in eqs.(2.90) and
(2.91) for J and m we get the final result:

G = 2 (2.97)

This result, explicitly shown for some particular motion, holds in fact for an arbi-
trary motion of the string.

Finally in the last part of this section we want to show the following relation
between the slopes of open and closed string:

α′cl =
1

2
α′op (2.98)

Using the argument already used for an open string it is easy to show that an
allowed motion for a closed string is the one consisting of two straight open strings
attached at the end points and rotating together around this common center.

Since the energy density for such closed string is twice the one of an open string,
its squared mass will be four times the one of an open string:

m2
closed = 4m2

open (2.99)

On the other hand its angular momentum is only twice of that of an open string:

Jclosed = 2Jopen (2.100)

Combining eqs. (2.99) (2.100) with eq. (2.92) we get eq. (2.98).

2.3 Classical theory in the conformal gauge

In many considerations instead of the Nambu-Goto action (2.65) it is more conve-
nient to use an action for the string that is quadratic in the coordinate xµ(σ, τ).
This alternative action that is the generalization to the string of eq. (2.43) for a
point particle is given by [17]:

S(xµ, gαβ) = −T
2

∫
dτ
∫ π

0
dσ
√
−ggαβ∂αx

µ∂βx
νηµν (2.101)
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where ηµν = (1, 1...1,−1) is the D-dimensional metric [µ, ν = 1, 2, ...D], T =
1/(2πα′)2, g = det(gαβ), and gαβ is the world sheet metric tensor.

Viewed as a two dimensional field theory the action in eq. (2.101) describes the
interaction of a set of D massless fields with an external gravitational field. In this
case the D-dimensional Lorentz index plays the role of a flavour index.

Tha action in eq. (2.101) is invariant under arbitrary reparametrizations of the
coordinates of the world sheet of the string. They act in the following way on the
variables xµ and gαβ:

xµ(ξ) → xµ(ξ′) , gαβ)(ξ) →
∂(ξ′)γ

∂ξα

∂(ξ′)δ

∂ξβ
gγδ(ξ

′) (2.102)

that reduce to

δxµ = εα∂αx
µ δgαβ = εγ∂γgαβ + ∂aε

γgγβ + ∂βε
γgαγ (2.103)

for infinitesimal transformations (ξ′ = ξ + ε). The equivalence of (2.101) with
the Nambu-Goto action can be immediately seen by writing down the algebraic
equations of motion for gαβ . They imply the vanishing of the two dimensional
energy-momentum tensor

θαβ = ∂αx · ∂βx−
1

2
gαβg

γδ∂γx · ∂δx = 0 (2.104)

that is a consequence of the fact that, because of the reparametrization invariance,
there is no physical degree of freedom in the two dimensional space of the world
sheet of the string. In deriving eq.(2.104) we have used the relation:

δ
√
−g

δgαβ
= −1

2
gαβ

√
−g (2.105)

From eq. (2.104) it follows

det(∂αx · ∂βx) =
g

4

[
gγδ∂γx · ∂δx

]2
(2.106)

that, when inserted in eq. (2.101), reproduces the Nambu-Goto action (2.65).
In conclusion the two classical actions (2.65) and (2.101) are completely equiv-

alent. The action (2.101) has the big advantage of being quadratic in the ”matter
field” xµ and therefore the functional integration over xµ in the quantum theory
can be easily performed.

It must be stressed here, that although the action (2.101) describes a string
moving in a D-dimensional Minkowski space, it can also be viewed as a two dimen-
sional general invariant theory and therefore all the machinery of two dimensional
field theories can be used in the string theories.

2In the following we will use units where h̄ = c = 1
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In particular, because of reparametrization invariance, it is convenient to choose
the conformal gauge where

gαβ = ρ(ζ)ηαβ η11 = −η00 = 1 (2.107)

In this gauge the vanishing of the two dimensional energy-momentum tensor (2.104)
implies the conditions:

ẋ · x′ = ẋ2 + x′
2

= 0 (2.108)

that correspond to the choice of an orthonormal system of coordinates in the world
sheet of the string. For this reason the conformal gauge has been also called the
orthonormal gauge.

In this gauge the Lagrangian in eq. (2.101) becomes a ”conformal invariant
theory”3:

L = −T
2
∂αx · ∂αx (2.109)

and the equation of motion (2.73) becomes(
∂2

∂σ2
− ∂2

∂τ 2

)
xµ(σ, τ) = 0 (2.110)

The boundary conditions (2.74) reduce to

∂

∂σ
xµ(τ, σ)|σ=0,π = 0 (2.111)

for an open string, while for a closed string we must impose the periodicity condition

xµ(τ, 0) = xµ(τ, π) (2.112)

The most general solution of the eq. of motion and of the boundary conditions can
be written as follows:

xµ(τ, σ) = qµ + 2α′pµτ + i
√

2α′
∞∑

n=1

[aµ
ne

−inτ − a+µ
n einτ ]

cosnσ√
n

(2.113)

for an open string and

xµ(τ, σ) = qµ + 2α′pµτ +
i

2

√
2α′

∞∑
n=1

[ãµ
ne

−2in(τ+σ) − ã+µ
n e2in(τ+σ)]

1√
n

+

+
i

2

√
2α′

∞∑
n=1

[aµ
ne

−2in(τ−σ) − a+µ
n e2in(τ−σ)]

1√
n

(2.114)

3In the following, when not explicitly mentioned, we will be using units where α′ = 1/2 and

T = 1/π.
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for a closed string.
The choice of the conformal gauge does not fix uniquely the gauge; we can

still perform gauge transformations that leave in the conformal gauge. They are
the conformal transformations characterized by a parameter εα(σ, τ) in eq. (2.103)
satisfying the conditions

∂αεβ + ∂βεα − ηαβ∂
γεγ = 0 (2.115)

They are more transparent if we introduce light-cone coordinates:

ζ± = ζ0 ± ζ1 , ε± = ε0 ± ε1 ,
∂

∂ζ±
=

1

2

(
∂

∂ζ0
± ∂

∂ζ1

)
(2.116)

In terms of those variables the conditions (2.115) reduce to

∂

∂ζ−
ε+ =

∂

∂ζ+
ε− = 0 (2.117)

In conclusion the transformations that leave in the conformal gauge are character-
ized by two arbitrary functions ε+(ζ+) and ε−(ζ−), that transform the variables ζ±

as follows:
δζ+ = ε+(ζ+) δζ− = ε−(ζ−) (2.118)

In the case of an open string we must impose additional restrictions on these func-
tions. In fact in this case we have parametrized the end points of the string with
the values σ = 0, π and it is convenient to require that this parametrization is not
changed by a reparametrization. From eq. (2.118) it follows that:

δσ =
1

2
[ε+(τ + σ)− ε−(τ − σ)] (2.119)

and we require that δσ|σ=0,π = 0. This implies that the two functions ε+ and ε−

are restricted by

ε+(τ) = ε−(τ) ≡ ε(τ) ε(τ − π) = ε(τ + π) (2.120)

The generators of the conformal transformations that leave unchanged the para-
metrization of the end points of the string can be written in terms of the two
independent components of θαβ:

Lε =
1

8α′π

∫ π

0
dσ
[
(ẋ+ x′)2(τ + σ)ε(τ + σ) + (ẋ− x′)2(τ − σ)ε(τ − σ)

]
(2.121)

(ẋ± x′)2 are only functions of τ ± σ respectively as follows from the eq. of motion
(2.110), that implies:(

∂

∂τ
+

∂

∂σ

)
(ẋ− x′)2 =

(
∂

∂τ
− ∂

∂σ

)
(ẋ+ x′)2 = 0 (2.122)

21



They express the conservation of the two dimensional energy-momentum tensor,
and they imply that Lε is independent of τ . As it will be shown in Section (2.5)
the previous equations hold in any two dimensional conformal invariant theory.

Using the explicit solution (2.113) it is easy to see that:

(ẋ+ x′)2(τ, σ) = (ẋ− x′)2(τ,−σ) (2.123)

We can therefore rewrite (2.121) in more compact form:

Lε =
1

8α′π

∫ π

−π
dσ(ẋ+ x′)2(τ + σ)ε(τ + σ) (2.124)

Finally, because of the symmetry between τ and σ, we can integrate over τ instead
of σ and put σ = 0. In so doing we get:

Lε =
1

8α′π

∫ π

−π
dτ ẋ2(τ)ε(τ) (2.125)

where we have used the boundary conditions (2.111).
Using the explicit expression for ẋµ in terms of the oscillators

ẋµ(τ, 0) = 2α′pµ +
√

2α′
∞∑

m=1

√
m[aµ

me
−imτ + a+µ

m eimτ ] (2.126)

and choosing ε(τ) = einτ we get from eq. (2.125):

Ln =
1

2

∞∑
m=−∞

αn−m · αm (2.127)

where

αµ
n =



√
naµ

n if n > 0
√

2α′pµ if n = 0
√
na+µ

n if n < 0

(2.128)

Finally introducing the variable z = eiτ we can rewrite eq. (2.125) in the final form:

Ln =
1

2πi

∮
dzzn+1

− 1

4α′

(
∂xµ

∂z

)2
 (2.129)

In the string theory the conformal invariance is not a classification symmetry as
isospin or the Poincarè group. It is instead a residual gauge invariance correspond-
ing to the reparametrizations that leave in the conformal gauge. It is a situation
rather similar to a gauge field theory when one chooses the temporal or the Lorentz
gauge. In this cases in fact the gauge is not completely fixed; one can still perform
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gauge transformations staying in those gauges and the generators of this residual
invariance are identically vanishing.

The same is true in the case of the string in the conformal gauge, where in fact,
because of the conditions (2.108), the generators of the conformal transformations
(2.121) are identically vanishing implying that

Ln = 0 (2.130)

for any integer n.
The previous considerations can be extended to the closed string, where the

generators of the conformal transformations are characterized by two independent
functions ε+(τ + σ) ≡ ε(τ + σ) and ε−(τ − σ) ≡ ε̃(τ − σ) and they are given by

L̃ε =
1

16α′π

∫ π

0
dσ(ẋ+ x′)2(τ + σ)ε̃(τ + σ) (2.131)

and

Lε =
1

16α′π

∫ π

0
dσ(ẋ− x′)2(τ − σ)ε(τ − σ) (2.132)

Introducing the two variables

z = e2iζ+

z̄ = e2iζ− (2.133)

and using the relations

(ẋ+ x′)2 = −16z2

(
∂x

∂z

)2

(ẋ− x′)2 = −16z̄2

(
∂x

∂z̄

)2

(2.134)

we can rewrite eqs. (2.131) and (2.132) in the following way:

L̃n =
1

2πi

∮
dzzn+1

− 1

α′

(
∂xµ

∂z

)2
 (2.135)

Ln =
1

2πi

∮
dz̄z̄n+1

− 1

α′

(
∂xµ

∂z̄

)2
 (2.136)

where we have chosen ε(τ + σ) = zn and ε̃(τ − σ) = z̄n. In terms of the harmonic
oscillators introduced in eq. (2.114) we get

Ln =
1

2

∞∑
m=−∞

αm · αn−m ; L̃n =
1

2

∞∑
m=−∞

α̃m · α̃n−m (2.137)

where for the non zero modes we have used the convention in (2.128), while the
zero mode is given by:

αµ
0 = α̃µ

0 =
√

2α′
pµ

2
(2.138)

23



Notice the different overall factors in the brackets (2.129) and (2.135) and (2.136)
related to a different normalization used for the coordinate xµ for the open and
closed string. We would have found the same normalization if we had chosen for
the closed string the variable σ to vary in the interval 0 ≤ σ ≤ 2π. This is a
more natural choice since a closed string can always be thought as two open strings
attached at the end points.

Finally also for a closed string the conformal generators are vanishing quantities:

Ln = L̃n = 0 (2.139)

for any integer n.

2.4 Quantization in the light-cone gauge

In the previous section we have seen that the choice of the conformal gauge does
not fix uniquely the gauge. We can in fact still perform conformal transformations
and stay in the conformal gauge.

One way of quantizing the theory is to first fix completely the gauge in the
classical theory and then quantize only the independent left over physical degrees
of freedom.

A very convenient way of fixing completely the gauge is by choosing the light-
cone gauge characterized by the condition:

x+ = 2α′p+τ (2.140)

where

x± =
xD ± xD−1

√
2

x± =
xD ± xD−1√

2
(2.141)

The lightcone coordinates with upper and lower indices are related through the
relations: x+ = −x−, x− = −x+. In terms of the lightcone coordinates the scalar
product of two vectors can be written as:

AµB
µ = AiB

i − A+B− − A−B+ (2.142)

Although very similar to the gauge choice in the fourth eq.(2.87), (2.140) has the
advantage of allowing also the elimination of the degrees of freedom corresponding
to x− as we will see later on. This is a possible gauge choice inside the conformal
gauge as we show in the case of a closed string.This follows from the fact that
the most general solution of the equation of motion (2.110) and of the boundary
condition (2.112) is given by:

xµ = φ̃µ(τ + σ) + φµ(τ − σ) + 2α′pµτ (2.143)

and that under a conformal transformation xµ transforms as follows:

δxµ = ε+(τ + σ)
∂

∂ζ+
xµ + ε−(τ − σ)

∂

∂ζ−
xµ (2.144)
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where φ̃µ(τ +σ), φµ(τ −σ) and ε±(τ ±σ) are all periodic function with period equal
to 2π.

Therefore by performing a suitable conformal transformation with periodic func-
tions ε±(τ ± σ) we can bring one component of xµ(τ, σ) [say the component x+ ] in
a form where φ± = 0, that is in fact the form proposed in eq. (2.140).

In the case of an open string the two functions appearing in (2.143) and (2.144)
are not independent. They are both periodic with period equal to 2π and they must
be identified: φ(τ) = φ̄(τ) and ε+(τ) = ε−(τ). Therefore the gauge (2.140) can also
be chosen for an open string.

In the light-cone gauge the only independent degrees of freedom are the trans-
verse ones. The longitudinal and scalar ones can be in fact expressed in terms of
the transverse ones.

This follows from the constraints in eq.(2.108), that with the choice (2.140) allow
one to fix x− as a function of the transverse components xi[i = 1, ...D− 2], that are
orthogonal to both ± directions. We get

ẋ− =
1

4α′p+
(ẋ2

i + x′
2
i ) x′

−
=

1

2α′p+
ẋi · x′i (2.145)

that up to a constant of integration determine completely x− as a function of xi.
In the following we want to obtain the Hamiltonian of the string in the lightcone

gauge and from it determine its spectrum. The Hamiltonian can be determined in
various ways. The first one is the following.

Since the Hamiltonian of a system is the conjugate variable to the evolution
parameter, in the light-cone gauge, where the evolution parameter τ is proportional
to x+, the Hamiltonian density will be proportional to P−. More precisely we get:

H = −i ∂
∂τ

= (−i)2α′p+ ∂

∂x+
= 2α′p+P− (2.146)

From (2.109) we get:

P− =
ẋ−

2α′π
(2.147)

and therefore, using eqs.(2.146) and (2.147), the Hamiltonian of the string in the
light-cone gauge is given by:

H ≡
∫ π

0
dσH = 2α′p+

∫ π

0
dσP− = 2α′p+p− =

1

4α′π

∫ π

0
dσ[ẋ2

i + x′
2
i ] (2.148)

where we have used the first equation in (2.145).
A second way to get the string Hamiltonian is to start from the following action

containing only the transverse degrees of freedom, namely:

S = −T
2

∫
dτ
∫ π

0
dσηαβ∂αx

i∂βx
i (2.149)
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and then from it compute the corresponding Hamiltonian. In this way one gets the
same expression as in eq.(2.148).

Using the gauge choice (2.140) in the most general solution (2.113) and (2.114)
and remembering (2.128) we get that

α+
n = 0 n 6= 0 (2.150)

for an open string and

α+
n = α̃+

n = 0 n 6= 0 (2.151)

in the case of a closed string.
On the other hand eqs. (2.145) determine the oscillators α−n in terms of the

transverse ones. We get

√
2α′α−n =

1

2p+

∞∑
m=−∞

αi
n−mα

i
m n 6= 0 (2.152)

in the case of an open string and

√
2α′α−n =

1

2p+

∞∑
m=−∞

αi
n−mα

i
m

√
2α′α̃−n =

1

2p+

∞∑
m=−∞

α̃i
n−mα̃

i
m (2.153)

for a closed string. The previous expressions can also equivalently be obtained by
inserting eq.(2.152) in eq.s (2.127) and (2.130) for the open string and by inserting
eq. (2.153) in eq.s (2.137) and (2.139) for the closed string.

In conclusion in the light-cone gauge the only independent degrees of freedom
are the transverse oscillators supplemented by the zero modes pµ and qµ.

The open string can therefore be quantized by imposing the following commu-
tation relations:

[αi
n, α

j
m] = nδijδn+m,0 [qµ, pν ] = igµν (2.154)

In the case of a closed string we must add the commutation relations for the oscil-
lators ᾱi

n:
[α̃i

n, α̃
j
m] = nδijδn+m,0 (2.155)

The previous commutation relations for the transverse degrees of freedom can be
obtained starting from the action (2.149) and applying the standard quantization
procedure. This will be done explicitly when we will discuss the covariant quanti-
zation in Section 2.6) and therefore is not repeated here.

The spectrum of the open string can be computed from the Hamiltonian (2.148),
that in terms of the oscillators is given by

2α′p+p− = α′pipi +
∞∑

n=1

na+i
n a

i
n + c (2.156)
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where we have added an arbitrary constant to take into account of the arbitrariness
in the ordering of the harmonic oscillators.

In the usual harmonic oscillator the constant c is given by the zero point energy.
Here in the string theory the zero point energy is formally infinite being equal to

c =
D − 2

2

∞∑
n=1

n (2.157)

and it must be regularized.
Brink and Nielsen [19] have shown how to obtain a finite expression from (2.157).

Here we use another regularization scheme proposed by Gliozzi [20] called ζ-function
regularization, that amounts to replace (2.157) with

c =
D − 2

2
lim

s→−1

∞∑
n=1

n−s =
D − 2

2
lim

s→−1
ζR(s) (2.158)

where ζR(s) is the Riemann ζ-function, that is an analytic function for s = −1 and
its value is given by ζR(−1) = −1/12. Inserting this value in eq. (2.158) we get the
following expression for the zero point energy:

c = −D − 2

24
(2.159)

and therefore we can rewrite eq. (2.156) in the following form:

α(M2) =
∞∑

n=1

na+i
n a

i
n (2.160)

where
α(M2) = α0 + α′M2 (2.161)

with

α0 ≡= −c =
D − 2

24
M2 = −p2 (2.162)

Another way to obtain (2.160) is to use in eq. (2.130) for n = 0 the gauge choice
(2.150) written in terms of the oscillators allowing for a constant c as done in (2.156).
We get

L0 = α′p2 +
∞∑

n=1

na+i
n a

i
n = −c (2.163)

that coincides with eq. (2.156).
We have quantized the open string in the light-cone gauge loosing the manifest

Lorentz invariance of the original action (2.101).
We must therefore check that the quantization procedure preserves the Lorentz

invariance of the original theory by constructing the Lorentz generators and show
that they satisfy the Lorentz algebra.
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A natural expression for them is given by:

J ij = `ij − i
∞∑

n=1

1

n
(αi

−nα
j
n − αj

−nα
i
n)

J+− = `+− J i+ = `i+

J i− = `i− − i
∞∑

n=1

1

n
(αi

−nα
−
n − α−−nα

i
n) (2.164)

where
`µν = qµpν − qνpµ (2.165)

and α−n is given by eq. (2.152):
It can be shown that the operators in (2.164) satisfy the Lorentz algebra only

if:
c = −1 D = 26 (2.166)

Therefore only for those values of c and D we have succeeded in preserving the
Lorentz invariance in the quantum theory.

Inserting (2.166) in (2.160) we get the final expression for the masses of the
string states

α′M2 =
∞∑

n=1

na+i
n a

i
n − 1 = N − 1 (2.167)

The lowest state is given by the vacuum |0 > that corresponds to a tachyon with
M2 = − 1

α′
. The next level, corresponding M2 = 0, is given by the state a+

1;i|0 >,
that describes the transverse components of a massless spin 1 particle (”photon”).
At the level N = 2 we find the two states:

a+
1;ia

+
1;j|0 > a+

2;i|0 > (2.168)

that describe a massive spin 2 particle with M2 = 1
α′

.
Because of Lorentz invariance in the center of mass frame the states of various

levels must be classified according to the representations of SO(D − 1).
The number of states appearing at the level N = 2 can be obtained from eq.

(2.168) and it is given by

(D − 2)(D − 1)

2
+D − 2 =

(D − 2)(D + 1)

2
(2.169)

It is nice to see that it coincides with the number of components of a spin 2 in
SO(D − 1) given by D(D−1)

2
− 1.

The degeneracy of states at an arbitrary level N can be obtained from the
partition function:

G(w) =
1

w
[f(w)]2−D f(w) =

∞∏
n=1

(1− wn) (2.170)
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that is obtained from:

G(w) = Tr
(
w(
∑∞

n=1
na+i

n ai
n−1)

)
(2.171)

where the term −1 comes again from the zero point energy.
From (2.171) it follows that, if we fix the level N , the degeneracy Td(N) of states

at the level is the coefficient of the power wN−1 in the expansion of (2.170) in power
series around w = 0:

G(w) =
1

w

∞∑
N=0

Td(N)wN (2.172)

where d = D − 2.
The function G(w) is well known to the mathematicians, who called it ”partitio

numerorum”.
The degeneracy of states at the level N can be obtained from (2.172) and it is

given by:

Td(N) =
1

2πi

∮
dww−N−1[f(w)]d (2.173)

Since Td(N) has the following asymptotic behaviour for N →∞

Td(N) ∼ 1√
2

(
d

24

)d+1/2

N−( d+3
4

)e2π
√

dN
6 (2.174)

one is led to a density of states per unit of mass given by:

N(M) ∼ AM−Beβ0M (2.175)

where

B =
d+ 1

2
β0 = 2π

√
dα′

6
(2.176)

and we have used N ∼ α′M2.
The exponential increase of the density of states in eq. (2.175) implies the exis-

tence of a limiting temperature if we consider the partition function of an ensemble
of resonances:

Z(T ) =
∫ ∞

0
dMN(M)e−

M
T (2.177)

It is a well defined quantity only if the temperature is smaller than a limiting
temperature T0 = 1/β0.

Since the string describes the hadronic phase, T0 corresponds to the temperature
in which the constituents of the hadrons get liberated.

In the quantum theory of a closed string we can proceed analogously as in the
case of an open string and get the spectrum from the conditions (2.139) for n = 0,
that imply

L0 − 1 = L̃0 − 1 = 0 (2.178)
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where the arbitrary constant c and the space-time dimension D have been chosen
as for the open string in order to have a Lorentz invariant theory.

Summing the expressions in (2.178) after having written them in terms of the
oscillators we get:

2 +
α′

2
M2 =

∞∑
n=1

n[a+i
n a

i
n + ã+i

n ã
i
n] (2.179)

while if we subtract them we get:

N =
∞∑

n=1

na+i
n a

i
n = Ñ =

∞∑
n=1

nã+i
n ã

i
n (2.180)

Taking into account that αc
′ ≡ α′/2 we can rewrite the equations (2.179) and

(2.180) characterizing the spectrum of a closed string in the following final form

αc
′M2 = N + Ñ − 2 (2.181)

and
N = Ñ (2.182)

The lowest state of the spectrum is a tachyon with mass M2 = −2/αc
′ described

by the vacuum |0 >.
The first excited level containing massless states is described by the states:

a+
1;iã

+
1;j|0 > (2.183)

The symmetric and traceless state corresponds to the graviton, the trace of (2.183)
corresponds to a dilaton and finally the antisymmetric state describes an antisym-
metric tensor.

In general the degeneracy at an arbitrary level can be obtained from the ”par-
tition function”:

F (ρ) =
1

2π

∫ 2π

0
dθ

1

|z|2
∞∏

n=1

[
1

|1− zn|2

]D−2

(2.184)

where z = ρeiθ.
Notice that the integration over θ allows one to take into account of the condition

(2.182).

2.5 Conformal invariant theories

In Section (2.3) we have seen that a string in the conformal gauge is described by
a two-dimensional ”free massless bosonic theory”, that is conformal invariant.

In this section we want to give a general treatment of a conformal invariant
theory in two dimensions, that will be very useful for the covariant quantization
of the bosonic string described in Section (2.6) and that is also so general that it
would also be applied to more complicated string theories.
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A two dimensional conformal invariant quantum field theory is characterized by
the existence of a conserved symmetric and traceless energy-momentum tensor:

∂αθ
αβ = θα

α = 0 θαβ = θβα (2.185)

Since it is symmetric and traceless, it has only two independent components. If we
use light-cone coordinates:

A± = A0 ± A1 ζ± = ζ0 ± ζ1 (2.186)

the two independent components are

θ++ = θ0+1,0+1 = 2(θ01 + θ00) , θ−− = θ0−1,0−1 = 2(θ00 − θ01) (2.187)

while
θ+− = θ−+ = 0 (2.188)

The conservation equation (2.185) implies the two equations for θ++ and θ−−:

∂

∂ζ+
θ++ =

∂

∂ζ−
θ−− = 0 (2.189)

As a consequence θ++(ζ−)[θ−−(ζ+)] is only a function of ζ−[ζ+]. Equations (2.185)
imply that

∂

∂ζβ
[εαθαβ] = 0 (2.190)

if εα satisfies the condition (2.115) characterizing a conformal transformation. Be-
cause of (2.190) we can construct the following constants of motion:

Lε =
∫
dσεαθα0 (2.191)

depending on a function εα satisfying eq. (2.115). In terms of the light-cone vari-
ables (2.191) becomes:

Lε =
1

4

∫
dσ[ε+(ζ+)θ−−(ζ+) + ε−(ζ−)θ++(ζ−)] (2.192)

where we have chosen σ to vary in the interval 0 ≤ σ ≤ π and therefore the various
functions appearing in (2.192) are periodic functions of period π. It is convenient
in many cases as for instance in string theories to introduce the new variables:

z = e2iζ− z̄ = e2iζ+

ζ± = τ ± σ (2.193)

related to the original ones by a conformal transformation. In euclidean space where
τ → iτ z̄ becomes the complex conjugate of z.
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A conformal or primary field Φ(z, z̄) in the notation of Ref. [21] is defined as an
object that transforms in the following way under a finite conformal transformation:

Φ(z, z̄) →
(
dw

dz

)∆ (
dw̄

dz̄

)∆̄

Φ(w, w̄) (2.194)

where w = w(z) and w̄ = w̄(z̄). (2.194) implies the infinitesimal transformations:

δΦ(z, z̄) = [ε(z)
∂

∂z
+ ∆ε′(z)]Φ(z, z̄) + [ε̄(z̄)

∂

∂z̄
+ ∆̄ε̄′(z̄)]Φ(z, z̄) (2.195)

where w(z) = z+ε(z) and w̄(z̄) = z̄+ε̄(z̄), with ε(z) and ε̄(z̄) infinitesimal quantities.
The parameters ∆ and ∆̄ are the left and right conformal dimensions of Φ(z, z̄).
Since there is a complete symmetry between left and right variable and trans-

formations, for the sake of simplicity we will omit in the following the dependence
on the variable z̄.

It is very useful to rewrite the transformation (2.195) in terms of the operator
product expansion (OPE) of the energy momentum tensor with Φ(z, z̄). First of all
it is easy to rewrite the first term of (2.192) in terms of the variable (2.193):

Ln =
1

2πi

∮
dzzn+1T (z) (2.196)

where ε+(τ+σ) = zn+1, θ−−(τ+σ) ≡ 2
π
z2T (z) and the integral is performed around

the origin.
Let us then introduce the notion of radially ordered OPE between two fields in

euclidean space:

R (A(z)B(ζ)) =

 A(z)B(ζ) if |z| > |ζ|

±B(ζ)A(z) if |z| < |ζ|
(2.197)

where the minus sign must be chosen only if both fields are fermions.
The OPE between a primary field and the energy-momentum tensor T (z) is

given by:

R(T (z)Φ(ζ)) =
∂/∂ζΦ(ζ)

z − ζ
+ ∆

Φ(ζ)

(z − ζ)2
+ · · · (2.198)

It is in fact easy to prove that it implies the transformation (2.195). Since

δΦ ≡ [Lε,Φ(ζ)] (2.199)

we can rewrite Lε as in (2.196) with ε(z) = zn+1 and get:

δΦ =
1

2πi

(∮
|z|>|ζ|

dzε(z)T (z)Φ(ζ)−
∮
|z|<|ζ|

dzε(z)Φ(ζ)T (z)

)
=
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=
1

2πi

∮
ζ
dzε(z)R(T (z)Φ(ζ)) = ε(ζ)

∂

∂ζ
Φ(ζ) + ∆ε′(ζ)Φ(ζ) (2.200)

where the integral has been performed in the complex z plane around the point ζ
and we have used eq. (2.198).

In conclusion we have shown that the singular terms in the OPE (2.198) between
T (z) and a primary field Φ(ζ) are completely fixed by the conformal invariance of
the theory.

The energy-momentum tensor is also a primary field with conformal dimension
∆ = 2 implying the following OPE:

R(T (z)T (ζ)) =
∂/∂ζT (ζ)

z − ζ
+ 2

T (ζ)

(z − ζ)2
+

c/2

(z − ζ)4
+ · · · (2.201)

The last term in (2.201) containing an arbitrary parameter c is allowed for a primary
field with conformal dimension ∆ = 2 being consistent with closure of the conformal
algebra.

From eqs. (2.200) and (2.201) we get:

δT (ζ) ≡ [Lε, T (ζ)] =
∮

ζ

dz

2πi
ε(z)

[
∂/∂ζT (ζ)

z − ζ
+ 2

T (ζ)

(z − ζ)2
+

c/2

(z − ζ)4

]
(2.202)

Performing the integral we get

[Lε, T (ζ)] ≡ δT (ζ) = [ε(ζ)
∂

∂ζ
+ 2ε′(ζ)]T (ζ) +

c

12
ε′′′(ζ) (2.203)

that implies the Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m;0 (2.204)

containing an arbitrary parameter c that depends on the particular conformal theory
that we consider.

As an explicit application of the previous considerations let us consider a free
massless bosonic theory described by the following action:

S = − 1

2π

∫
dτ
∫ π

0
dσ∂αΦ∂αΦ (2.205)

The two independent components of the energy-momentum tensor are:

θ++ =
1

2π
: (Φ̇− Φ′)2 : θ−− =

1

2π
: (Φ̇ + Φ′)2 : (2.206)

and therefore

T (z) = −1

2
:

(
∂Φ

∂z

)2

: (2.207)
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The propagator of the field Φ can be easily computed and it is given by:

< Φ(z, z̄)Φ(ζ, ζ̄) >= − log[(z − ζ)(z̄ − ζ̄)] (2.208)

Neglecting the dependence on the variables z̄ and ζ̄ and using the contractions:

< Φ(z)Φ(ζ) >= − log(z − ζ) < Φ(z)
∂

∂ζ
Φ(ζ) >=

1

z − ζ
(2.209)

it is easy to check that ∂Φ(z) is a primary field with dimension ∆ = 1 by computing
its OPE with (2.207) and the the c-number in the Virasoro algebra has the value
c = 1.

2.6 Old covariant quantization

In this section we want to quantize the string in the conformal gauge obtaining a
quantum theory that is manifestly Lorentz covariant.

The starting point is the Lagrangian (2.109), from which we can compute the
four-momentum density:

Pµ(τ, σ) =
∂L

∂ẋµ
=

1

2πα′
ẋµ (2.210)

The theory is then quantized by requiring the canonical commutation relations:

[xµ(τ, σ), P ν(τ, σ′)] = igµνδ(σ − σ′) (2.211)

Inserting the expansion (2.113) in (2.211) we see that (2.211) is satisfied if the oscil-
lators and the center of mass variables satisfy the following commutation relations:

[an,µ, a
+
m,ν ] = gµνδnm (2.212)

[qµ, pν ] = igµν (2.213)

The connection between (2.211) and (2.212) and (2.213) can be easily established
by using the following definition of the δ-function.

∞∑
n=−∞

cosnσ cosnσ′ = πδ(σ − σ′) (2.214)

valid for functions expandable in a Fourier series of cosnσ.
The generators Ln of the conformal transformations given in the classical theory

by introducing a normal ordered expression:

Ln =
1

2πi

∮
dzzn+1T (z) (2.215)
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where

T (z) = − 1

4α′
:

(
∂x

∂z

)2

: (2.216)

as already done in the free massless bosonic theory at the end of last section.
Using the results of the last section with the contraction given by

< xµ(z)xν(ζ) >= −2α′ log(z − ζ) (2.217)

it is easy to show that the Virasoro generators satisfy the Virasoro algebra with
c = D [22], where D is the dimension of the space-time. Notice that the contraction
in eq. (2.217) can be obtained using the commutation relations in eq.s (2.212) and
(2.213) by computing the following correlator:

< q = 0|xµ(z)xν(ζ)|p = 0 > (2.218)

where the bra (ket) is an eigenstate of the operator q (p) with vanishing eigenvalue
and is annihilated by the creation (annihilation) operators. The Virasoro generators
have the following expression in terms of the harmonic oscillators:

Ln =
√

2α′p ·an

√
n+

∞∑
m=1

√
m(m+ n)an+m ·a+

m +
1

2

n−1∑
m=1

√
m(n−m)am ·an−m n > 0

L−n = L+
n L0 = α′p2 +

∞∑
n=1

na+
n · an (2.219)

Notice that, because of the Lorentz metric, the commutation relations are real-
ized in a linear space with indefinite metric exactly as in QED when one quantizes
the theory à la Gupta-Bleuler.

However the physical states span a subspace of the entire space, that is charac-
terized by the conditions [23]

Ln|Phys >= (L0 − 1)|Phys >= 0 (2.220)

In fact the conditions (2.130) cannot be imposed in the quantum theory as operator
identities. They can only be imposed as conditions between physical states:

< Phys′|Ln|Phys >=< Phys′|(L0 − 1)|Phys >= 0 (2.221)

where n 6= 0. Eqs. (2.221) are satisfied if (2.220) are required.
As in the quantization in the light-cone gauge an arbitrary constant can be

added to L0, that in the covariant gauge must be chosen to be equal to 1 if we
require the same spectrum as in the light-cone gauge. The value 1 can be obtained
in the conformal gauge only if we add the coordinate of the ghost as we will show
in Chapter 4. This is the first sign of the incompleteness of the old covariant
quantization.

35



The mass shell condition (L0 − 1)|Phys >= 0 determines the spectrum of the
theory, that is given by:

[1 + α′M2 −
∞∑

n=1

na+
n · an]|Phys >= 0 (2.222)

Notice that all Lorentz components of the oscillators are present in (2.222), while
in (2.156) we had only the transverse oscillators.

In order to eliminate the negative norm states present among the solutions of
(2.222) we need to impose the additional constraints:

Ln|Phys >= 0 n > 0 (2.223)

The state with lowest mass is the vacuum state |0 > that satisfies (2.223) for
any positive n and (2.222) if M2 = −1/α′. Therefore |0 > corresponds to a tachyon.

The next level is spanned by the states εµa+
1µ|0 > corresponding to a massless

gauge particle. The only nontrivial condition that we get from eq. (2.223) on a
combination of photon states come from L1 and reduces to:

L1ε
µa+

1µ|0 >= (p · a1)ε
µa+

1µ|0 > (2.224)

where εµ are arbitrary coefficients and pµ is the four-momentum of the photon.
(2.224) is the Lorentz condition imposed on the physical states in the Gupta-Bleuler
quantization of QED. It requires a restriction of the parameters εµ:

p · ε = 0 (2.225)

If we choose a frame of reference where the momentum of the photon is given by
pµ ≡ (0, 0....0, p, p) , (2.225) implies that the only physical states are:

εia+
1i|0 > +ε(a+

1;D−1 − a1;D)|0 > (2.226)

where εi and ε are arbitrary parameters.
(2.226) is the most general state of the level N = 1 satisfying the conditions

(2.223). The first state in eq. (2.226) has positive norm, while the second one has
zero norm contains states with positive norm and is orthogonal to all other physical
states since it can be written as follows:

(a+
1;D−1 − a+

1;D)|0 >= L+
1 |0 > (2.227)

in the frame of reference where pµ ≡ (0, ...0, p, p).
Because of the previous property it is decoupled from the physical states together

with its conjugate:
(a+

1,D−1 + a+
1,D)|0 > (2.228)

In conclusion we are left with only transverse physical states given by the first
term in (2.226), that are exactly those found at the level N = 1 in the light-cone
gauge.
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Finally let us analyze the level N = 2, where the most general state with
M2 = 1/α′ is given by:

[αµνa+
1,ν + βµa+

2,µ]|0 > (2.229)

where αµν and bµ are arbitrary parameters.
In the center of mass frame where pµ = (~0,M) the most general physical state

satisfying the conditions (2.223) is given by:

|Phys >= αij[a+
1,ia

+
1,j −

1

(D − 1)
δij

D−1∑
k=1

a+
1,ka

+
1,k]|0 > +

+βi[a+
2,i + a+

1,Da
+
1,i]|0 > +

+
D−1∑
i=1

αii

[
D−1∑
i=1

a+
1,ia

+
1,i +

D − 1

5
(a+2

1,D − 2a+
2,D)

]
|0 > (2.230)

where the indices i, j run over the D − 1 space components.
The first term in (2.230) correspond to a spin 2 in (D−1) dimensional space and

has a positive norm being made with space indices. The second term has zero norm
and is orthogonal to the other physical state since it can be written in the form
L+

1 a
+
1,i|0 >. It must be therefore eliminated from the physical spectrum together

with its conjugate, as already explained in the case of the state (2.227) at the level
N = 1. Finally the last state in (2.230) is spinless and has a norm given by:

2(D − 1)(26−D) (2.231)

If D < 26 it corresponds to physical spin zero particle with positive norm. If D > 26
it is a ghost. Finally if D = 26 it has a zero norm and is also orthogonal to the
other physical states since it can be written in the form:

(2L+
2 + 3L+2

1 )|0 > (2.232)

It does not belong therefore to the physical spectrum.
In conclusion if D = 26 we find at the level N = 2 the same number of physical

states as in the light-cone gauge. If instead D < 26 the transverse oscillators are not
sufficient to reproduce the full degeneracy; we need to add the so-called Brower’s
states [24, 25].

We conclude this section saying that also the closed string can be quantized in
the conformal gauge following a procedure, that is completely analogous to the one
used for the open string. We get in this case two sets of harmonic oscillators and of
conformal generators. The Virasoro generators are defined by (2.135) and (2.136)
with normal ordered expressions.

The on shell physical states are characterized by the following conditions:

Ln|Phys >= L̃n|Phys >= 0

(L0 + L̃0 − 2)|Phys >= (L0 − L̃0)|Phys >= 0 (2.233)
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and for D = 26 one gets the same number of physical states as in the light-cone
gauge keeping Lorentz invariance. On the other hand the covariant procedure devel-
oped in this section seems to work also forD < 26 and one needs also non-transverse
oscillators (Brower’s states) in order to describe the full spectrum. This apparent
disagreement between the covariant and light-cone quantization is due to the fact
that the procedure following in this section is not quite correct, because, fixing the
conformal gauge, we have neglected the contribution of the ghost, that is an impor-
tant ingredient anytime we quantize a gauge theory covariantly. In Chapter 4 we
will show that the inclusion of the ghost will eliminate the contradictions between
covariant and light-cone quantization.

3 Interacting bosonic string: tree diagrams

3.1 Vertex operators for open string

The simplest way to introduce the interaction in the string model is by adding to the
free action, that has been discussed in the previous chapter, a term that describes
the interaction of a string with an external field [26]:

SINT =
∫
dDyΦL(y)JL(y) (3.234)

where ΦL(y) is the external field and JL is the current generated by the string. The
index L stands for possible Lorentz indices that are saturated in order to have a
Lorentz invariant action.

In the case of a point particle such an interaction term will not give in general
any information on the self-interaction of a particle.

In the case of a string instead SINT will describe the interaction among strings
because the only external fields that can consistently interact with a string are
exactly those that correspond to the various states of the string, as it will become
clear later.

This is a consequence of the fact that, for the sake of consistency, we must
require the following restriction on SINT :

i It must be a well defined operator in the space spanned by the string oscillators.

ii It must preserve the invariances of the free string theory. In particular in the
”conformal gauge” it must be conformal invariant. In general reparametriza-
tion invariant actions are written by using covariant derivatives, that also
in the conformal gauge, defined by (2.107), contain the extra degree of free-
dom ρ(ζ) as it will be shown in the next chapter. For the sake of simplicity
we consider only the case of critical dimension D = 26, where ρ(ζ) can be
consistently set equal to 1. For a general treatment see for instance Ref. [27].
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iii In the case of an open string the interaction occurs at the end point of a string
(say at σ = 0). This follows from the fact that two open strings interact
attaching to each other at the end points.

Let us concentrate on the open string and start with some examples.
The simplest scalar current generated by the motion of a string can be written

as follows

J(y) =
∫
dτ
∫
dσδ(σ)δ(D)[yµ − xµ(τ, σ)] (3.235)

where δ(σ) has been introduced because the interaction occurs at the end of the
string. For the sake of simplicity we omit to write a coupling constant g in (3.235)
and in the following.

Inserting (3.235) in (3.234) and using for Φ(y) = eik·y a plane wave we get the
following interaction:

SINT =
∫
dτ : eik·x(τ,0) : (3.236)

where the normal ordering has been introduced in order to have a well defined
operator according to i).

The invariance of (3.236) under a conformal transformation τ → w(τ) requires
the following identity:

SINT =
∫
dτ : eik·x(τ,0) : =

∫
dw : eik·x(w,0) : (3.237)

or in other words that

: eik·x(τ,0) :−→ w′(τ) : eik·x(w,0) : (3.238)

Since in general a conformal or primary field Φ(τ) transforms as follows under a
conformal transformation:

Φ(τ) → [w′(τ)]∆Φ(w) (3.239)

as it has been explained in Section(2.5), the requirement in eq. (3.238) implies that
the vertex operator : eik·x(τ,0) : must transform as a conformal field with ∆ = 1.

It is convenient to consider the vertex operator as a function of z = eiτ instead of
τ . In the following we will omit to write explicitly the dependence on σ: xµ(τ, 0) ≡
xµ(τ).

The transformation properties of eik·x(z) under as conformal transformation can
be determined by computing its OPE with the energy-momentum tensor, that in
our case is given in eq. (2.216). Using the contraction in eq. (2.217) it is easy to
obtain:

T (z) : eik·x(ζ) :=
∂/∂ζ : eik·x(ζ) :

z − ζ
+ α′k2 : eik·x(ζ) :

(z − ζ)2
+ · · · (3.240)

that implies that the vertex operator is a conformal field with ∆ = α′k2. In con-
clusion SINT in (3.236) is conformal invariant only if the external field is on shell
with α′k2 = 1, corresponding to the tachyonic lowest state of the bosonic string.
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The tachyonic state can be obtained from the vertex operator

lim
z→0

: eik·x(z,0) : |0 >= |0, k >≡ eik·q|0, p = 0 > (3.241)

by using the following explicit formula in terms of the harmonic oscillators:

: eik·x(z,0) := e
k·
∑∞

n=1
zn
√

n
a+

n eik·qek·p log ze
−k·
∑∞

n=1
z−n
√

n
an (3.242)

where |0 > is the vacuum of the oscillators and of the zero mode p. Notice that the
normal ordering means that the creation operators are put on the left with respect
to the annihilation ones and also that the operator p is put before q. It is easy
to check that the vertex operator in eq. (3.242) satisfies the following hermiticity
property:

[: e−ik·x(1/z) :]† = z2 : eik·x(z) : (3.243)

that allows to obtain the tachyonic state as a bra in the limit of z → ∞. In fact
one gets:

lim
z→0

< 0| :
(
eik·x(z)

)†
:= lim

z→∞
< 0|z2 : e−ik·x( 1

z
) :=< 0|e−ik·xq (3.244)

Another simple current generated by the string is given by:

Jµ(y) =
∫
dτ
∫
dσδ(σ)ẋµ(τ, σ)δ(D)(y − x(τ, σ)) (3.245)

Inserting (3.245) in (3.234) we get

SINT =
∫
dτẋµ(τ, 0)εµeik·x(τ,0) (3.246)

if we use a plane wave for Φµ(y) = εµe
ik·y. Proceeding as in the case of the tachyon

vertex operator in order to check the conformal invariance of (3.246) we must com-
pute the following OPE:

T (z)V (ζ; k) =
∂/∂ζV (ζ; k)

z − ζ
+(1+α′k2)

V (ζ; k)

(z − ζ)2
+
√

2α′
(ε · k) : eik·x(ζ)

(z − ζ)3
+· · · (3.247)

where
V (ζ; k) = εµx′µ(ζ)eik·x(ζ) (3.248)

and

x′µ(z) =
dxµ

dz
= − i

z

√
2α′

[√
2α′pµ +

∞∑
n=1

√
n(anz

−n + a+
n z

n)

]
(3.249)

According to the OPE in eq.(3.247) the vertex operator in eq. (3.246) is conformal
invariant only if

k2 = ε · k = 0 (3.250)
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and therefore the external vector must be the massless photon state of the string.
As in the case of the tachyon such a photon state can be obtained from the

vertex operator in the following way:

lim
z→0

dxµ

dz
εµe

ik·x(z)|0 >= −i(ε · a+
1 )|0 > (3.251)

The photon vertex operator in eq. (3.248) satisfies in addition the following her-
miticity property:

[V (
1

z
;−k)]+ = −z2V (z; k) (3.252)

In conclusion in two particular examples we have seen that an open string can
interact with an external field in a consistent way only if it corresponds to an on
shell state of the string.

We are now going to show that the previous result is actually valid for an
arbitrary external field. The most general vertex operator will be a combination of
terms of the type:

:

∂xµ
(1)
1

∂z
. . .

∂x
µ

(1)
n1

∂z

∂2x
µ

(2)
1

∂z2
. . .

∂2x
µ

(2)
n2

∂z2

 . . . eik·x : (3.253)

with the same amount of Lorentz indices and with the restriction
∑
ini = N in order

to describe states at the same level. The additional terms in eq. (3.253) involve
terms with higher z derivatives. Finally the normal ordering has been inserted in
order to have a well defined operator.

Since the various terms of the combination must have the same amount of
Lorentz indices, in general the generic term will have some indices saturated within
themselves and others with the invariant tensors gµν and εµνρσ and with the mo-
mentum kµ.

The requirement of conformal invariance implies the following OPE for the com-
bination of terms that we call Vα(z; k):

T (z)Vα(z; k) =
∂/∂zVα(z; k)

z − ζ
+
Vα(z; k)

(z − ζ)2
+ · · · (3.254)

without higher singularities.
In general for a term as in eq.(3.253) higher singularities will be present, but

they will be cancelled by taking suitable combinations of terms of the type (3.253).
The coefficient of the term (z − ζ)−1 will be always correct, while that of the term
(z − ζ)−2 will be the same for each term and given by

α′k2 +
∞∑
i=1

ini = α′k2 +N (3.255)

Conformal invariance then implies that

α′k2 +N = 1 (3.256)
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that is the mass shell condition for an arbitrary state of the string.
Eq. (3.254) implies that the vertex operator satisfies the following commutation

relations with the Virasoro generators as follows from eq.s (2.199) and (2.200):

[Ln, Vα(z; k)] =
d

dz
[zn+1Vα(z; k)] (3.257)

and therefore the state:
|α >= lim

z→0
Vα(z; k)|0 > (3.258)

satisfies the conditions (2.220) for an on shell physical state of the string.
Finally it is easy to check that the generic term (3.253) and therefore also a

combination of terms with
∑
ini = N satisfies the following hermiticity property:

Vα(1/z;−k)+ = (−1)Nz2Vα(z; k) (3.259)

In conclusion we have shown that the requirement i), ii) and iii) imply that the
external field must correspond to one of the on shell physical states of the string,
the interaction of which with the string is described by a vertex Vα(z; k) satisfying
the following conditions:

|α >= lim
z→0

Vα(z; k)|0 >

Vα(1/z;−k)+ = (−1)Nz2Vα(z; k)

[Ln, Vα(z; k)] =
d

dz
[zn+1Vα(z; k)] (3.260)

that were derived in Ref. [28] and that characterize the on shell physical states.
At the end of this section let us consider some explicit examples that will clarify

the previous general considerations.
The states on the leading trajectory are described by the following vertex oper-

ator:
VN(z; k) = εµ1···µN : x′µ1(z) · · ·x′µN

(z)eik·x(z) (3.261)

that satisfies the OPE (3.254) if the polarization tensor satisfies the conditions:

εµ1···µi···µj ···µNgµiµj
= kµi

εµ1···µi···µN = 0 (3.262)

for any choice of the indices µi and µj. In addition the mass shell condition α′k2 +
N = 1 must be also satisfied.

At the level N = 2 the most general vertex operator is given by the following
combination:

: [αµνx′µ(z)x′ν(z) + βµx′′µ(z)]eik·x(z) (3.263)

It is easy to check that the coefficients of the terms (z − ζ)−1 and (z − ζ)−2 are
as in (3.254) if α′k2 = −1 . In general however the OPE of T (z) with the vertex
operator in eq. (3.263) will contain also higher singularities, that are eliminated if
we impose the following conditions:

βµ = ikνα
µν (gµν − 2kµkν)αµν = 0 (3.264)
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In the center of mass frame where kµ ≡ (M,~0) with α′M2 = 1 we get the following
primary fields:

: [x′ix
′
j −

1

D − 1
δij

D−1∑
k=1

x′kx
′
k]e

ik·x : (3.265)

: [x′ix
′
D + i

√
α′x′i

′
]eikẋ : (3.266)

and

: [− 1

D − 1

D−1∑
k=1

x′
2
i +

1

5

(
x′Dx

′
D + 2i

√
α′x′′D

)
]eik·x : (3.267)

It is easy to prove that they correspond to the states already found at the level
N = 2 in eq. (2.230) and that are obtained from eq.s (3.265), (3.266) and (3.267)
as in eq. (3.258).

3.2 Scattering amplitude for open strings

In this section we want to compute the probability amplitude for the emission of
(N − 2) external fields from a string.

Starting from the total action S = S0 + SINT the S-matrix for the emission of
the external field from the string is given in perturbation theory by:

S = lim
τi→−∞;τf→∞

T [eiSINT ] = lim
τi→−∞;τf→∞

T [e
i
∫ τf

τi
dτ
∫ π

0
dσLINT ] (3.268)

where ∫ τf

τi

dτ
∫ π

0
dσLINT =

∫ τf

τi

dτVα(eiτ ; k) (3.269)

Vα is the vertex operator corresponding to a certain external field.
The amplitude for the emission of (N − 2) external fields is given by a sum of

(N − 2)! terms that correspond to the different terms of the T-ordered product in
(3.268). A single term is given by:

A(α1, k1; · · ·αN , kN) =
∫ ∞

0

N−1∏
i=3

dτiθ(τi+1 − τi) < α1, k1|
N−1∏
i=2

Vαi
(eiτi ; ki)|αN , kN >

(3.270)
From (3.268) and (3.269) we would actually obtain the same vertex operator in the
product in (3.270). We have extended the result to include different external fields
at different ”times” τi.

The variable τ2 has been chosen to be equal to 0 because of the translational
invariance of the matrix element in (3.270). The integral over τi is performed along
the positive real axis. But since the vertex operator depends on eiτi , the integral in
(3.270) is not well defined. It can be made convergent by means of a Wick rotation
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τ → iτ . After the introduction of the Koba-Nielsen variables zi = e−τi we can
rewrite (3.270) as follows

A(α1, k1; · · ·αN , kN) =
∫ 1

0

N−2∏
i=3

[dziθ(zi − zi+1) < α1, k1|
N−1∏
i=2

Vαi
(zi; ki)|αN ; kN >

(3.271)
where

izVα(z; k) = Vα(eiτ ; k) (3.272)

After the Wick rotation the integral in (3.271) is perfectly well defined.
Finally an internal symmetry can be introduced by multiplying the amplitude

(3.271) with a Chan-Paton factor:

Tr(λ1λ2 · · ·λN) (3.273)

where the λ’s are the generators of some internal symmetry group.
The scattering amplitude can be written in a more symmetric way by introducing

also the Koba-Nielsen variable z1, z2 and zN . Then (3.271) becomes:

A(α1, k1; · · ·αN , kN) =
∫ ∞

−∞

∏N
i=1[dziθ(zi − zi+1)]

dVabc

< 0|
N∏

i=1

Vαi
(zi; ki)|0 > (3.274)

where

dVabc =
dzadzbdzc

(za − zb)(za − zc)(zb − zc)
(3.275)

The three variables za, zb, zc can be fixed arbitrarily because the expression under
the integral in (3.274) is invariant under the projective transformations:

zi → z′i =
Azi +B

Czi +D
; AD −BC = 1 (3.276)

This follows from the fact that dVabc is left invariant under the projective trans-
formations (3.276) and that the vertex operator is a primary field with ∆ = 1 as
shown in section (3.1):

Vαi
(zi, ki) → (Czi +D)−2Vαi

(z′i; ki) (3.277)

In addition from eq. (3.276) we get also

dzi
′ =

dzi

(Czi +D)2
(3.278)

implying that Vα(z; k)dz is projective invariant. Fixing za = z1 = ∞, zb = z2 = 1
and zc = zN = 0 we get the starting expression (3.271).

Notice that Vα(z; k)dz is invariant under an arbitrary conformal transformation;
but the volume element dVabc is not.
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Notice that the integrand in eq.(3.274) is invariant under cyclic permutations of
the external legs. This can be shown by using the following reordering property of
the vertex operators :

V (z; k)V (ζ;h) = V (ζ;h)V (z; k)e2πiα′k·hε(z−ζ) (3.279)

If we commute the last operator VαN
in (3.274) with the other operators bringing it

in front of the other terms of the product, we will get, because of (3.279), a factor

e2iπα′kN ·
∑N−1

i=1
ki , that is equal to 1 as a consequence of the conservation of momentum

and of the mass shell condition α′k2
N = integer. This shows that (3.274) is invariant

under a cyclic permutation of the external legs: A(1, 2, · · · , N) = A(N, 1, · · · , N−1).
In conclusion the scattering amplitude in eq. (3.274) is invariant under cyclic

permutations. In order to get a crossing symmetric amplitude we need to sum only
over the (N − 1)! permutations that are not cyclic:

A =
∑

Tr(λ1λ2 . . . λN)A(αi1 , k1; · · · , αiN , kN) (3.280)

and not only over the (N −2)! terms of the T-ordered product in (3.268) that make
the scattering amplitude symmetric only under any exchanges of the N−2 particles
related to the external field. This asymmetry between the first and the last particle
and the other N−2 particles is due to the fact that we have treated them differently.
In fact the first and the last particles in (3.270) have been treated as states of the
string, while the others as external fields. In order to restaure the symmetry we
should sum over non cyclic permutations as in (3.280). We conclude this section by
computing the scattering amplitude involving N tachyons. It is given by:

A(k1, k2, · · · kN) =
∫ ∏N

i=1[dziθ(zi − zi+1)

dVabc

< 0|
N∏

i=1

: eiki·x(zi) : |0 > (3.281)

If we use the explicit expression (3.242) of : eik·x(z) : in terms of the harmonic
oscillators and the Baker-Hausdorf formula

eAeB = eBeAe[A,B] (3.282)

it is easy to get the following expression:

: eik·x(z) :: eih·x(ζ) :=: eik·x(z)eih·x(ζ) : (z − ζ)2α′k·h (3.283)

that allows to compute the vacuum expectation value in (3.281) obtaining:

A(k1, k2, · · · kN) = (2π)Dδ(D)(
N∑

i=1

pi)
∫ ∏N

i=1[dziθ(zi − zi+1)

dVabc

∏
i<j

(zi − zj)
2α′ki·kj

(3.284)
The factor (z−ζ)2α′k·h in (3.283) can also be directly obtained using the contraction
(2.217).
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After having fixed z1 = ∞, z2 = 1, z3 = z and z4 = 0 we get the following 4-point
tachyon amplitude:

A(k1, k2, k3, k4) =
∫ 1

0
dzz2α′k3·k4(1− z)2α′k2·k3 (3.285)

In terms of the Regge trajectories in the s and t-channel

αs = 1− α′(k3 + k4)
2 αt = 1− α′(k3 + k2)

2 (3.286)

we get for (3.285) the famous Veneziano formula:

A(k1, k2, k3, k4) =
Γ(−αs)Γ(−αt)

Γ(−αs − αt)
(3.287)

3.3 Vertex operators for closed strings

For a closed string we can proceed as in the case of an open string, but we shall
drop the property iii) of the beginning of this chapter. The simplest scalar current
generated by the string is given by:

J(y) =
∫
dτ
∫
dσδ(D)(yµ − xµ(τ, σ)) (3.288)

Inserting (3.288) in (3.234) and taking a plane wave for the external field we get
the following vertex operator:

SINT =
∫
dτ
∫
dσ : eik·x(τ,σ) : (3.289)

with the normal ordering prescription in order to have a well defined operator.
According to (2.114) we can write xµ(τ, σ) as follows:

xµ(τ, σ) = xµ(τ + σ) + x̄µ(τ − σ) (3.290)

where

xµ(ζ+) =
1

2

qµ + 2α′pµζ+ + i
√

2α′
∑
n6=0

αµ
n

n
e−2inζ+

 (3.291)

and

x̄µ(ζ−) =
1

2

qµ + 2α′pµζ− + i
√

2α′
∑
n6=0

ᾱµ
n

n
e−2inζ−

 (3.292)

with ζ± = τ ± σ.
They contain the same zero modes, but completely independent non zero modes.
Using the decomposition in eq.(3.290) we can rewrite eq. (3.289) as follows apart

from an overall factor:

SINT =
∫
dζ+ : eik·x(ζ+) :

∫
dζ− : eik·x̄(ζ−) : (3.293)
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where the normal ordering for the zero mode is as in eq.(3.1.12). Conformal invari-
ance requires that the vertex operator transforms as a primary field with both right
and left dimensions ∆ = ∆̄ = 1 . Both these conditions imply that

α′

2
k2 = 2 (3.294)

that implies

(α0)cl = (2α0)op α′c′ =
α′

2
(3.295)

In conclusion the external scalar field must have the same mass as the tachyonic
state of the closed string.

In terms of the variables z and z̄ defined in eq. (2.133) the tachyon of the closed
string is described by the following vertex operator:

: eik·x(z)eik·x̄(z̄) : (3.296)

where the normal ordering for the zero modes is defined with the qµ-operator on the
left of the pµ as in (3.242). Therefore the vertex of a tachyon of the closed string is
the product of two vertices of the tachyon of the open string that are functions of
the variables z and z̄ respectively.

The next possibility is to consider the following current generated by the string:

Jµν(y) =
∫
dσ
∫
dτ
∂xµ

∂ζ+

∂xν

∂ζ−
δ(yµ − xµ(τ, σ) (3.297)

the symmetric part of which is equal to the D-dimensional energy-momentum tensor
of the string.

From (3.297) using a plane wave Φµν = εµνe
ik·y for the external field we get the

following interaction

SINT =
∫
dζ+

∫
dζ−εµν ∂xµ

∂ζ+

∂xν

∂ζ−
eik·x(ζ+,ζ−) (3.298)

where ε is the polarization tensor of the external field.
Using the decomposition (3.290) we can rewrite (3.298) as follows:

SINT = εµν
∫
dζ+ ∂xµ

∂ζ+
eik·x(ζ+)

∫
dζ−

∂xν

∂ζ−
eik·x(ζ−) (3.299)

(3.299) is of course conformal invariant if k2 = 0 with the external field correspond-
ing to a state of the massless level of a closed string. In particular if we choose
εµν symmetric and traceless we get the interaction of a string with an external
gravitational field, while if we choose it antisymmetric we get the interaction with
an external antisymmetric tensor field. In both cases the conformal invariance of
(3.299) requires that kµεµν = kνεµν = 0.
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Finally if we take

εµν =
1

D − 2
[ηµν − kµ`ν − kν`µ] (3.300)

with `2 = 0 and ` · k = 1, we get the vertex operator corresponding to a dilaton.
In terms of the variables z and z̄ the vertex for a massless state for a closed

string can be written as follows:

: x′µ(z)ei(k/2)·x(z)x̄′ν(z̄)e
i(k/2)·x̄(z̄) : εµν (3.301)

where x′(z) means the derivative with respect to the argument.
It is easy to convince oneself that the most general vertex operator for a closed

string is in general a product of two vertex operators of an open string as follows:

Vαβ(z, z̄; k) =: Vα(z; k)Vβ(z̄; k) : (3.302)

where :: means that the q-operator appears always on the left of the p-operator.
Moreover, since we know that the states of a closed string must satisfy the

condition (2.182), the two open string states α and β must be chosen to belong to
the same level.

3.4 Scattering amplitude for closed strings

The amplitudes for the emission of N external fields from a closed string can be
again easily computed by using the general formula (3.2.1). We get:

A(α1, β1, k1;α2, β2, k2; . . . αN , βN , kN) =
∫ ∞

0

N−1∏
i=3

dτi

∫ π

0
dσi

< α1, β1, k1|T
(

N−1∏
i=2

Vαiβi
(e2iζ+

i , e2iζ−i ; ki)

)
|αN , βN , kN > (3.303)

where the variable τ2 and σ2 have been taken equal to zero because of the transla-
tional invariance of the matrix element.

By making a Wick rotation τ → iτ , as in the case of an open string, the two
variables z and z̄ become one the complex conjugate of the other

z = e−2τe2iσ z̄ = e−2τe−2iσ (3.304)

In terms of the variables z and z̄ (3.4.15) becomes

A(α1, β1, k1;α2, β2, k2; . . . αN , βN , kN) =

=
∫ ∞∏

i=3

d2zi < α1, β1, k1|R
(

N−1∏
i=2

Vαiβi
(zi, z̄i; ki)

)
|αN , βN , kN > (3.305)
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where the T -ordering becomes now an ordering on the modulus of zi and the inte-
grals are performed over the entire complex plane of the variables zi.

Notice that the jacobian for the change of variables σ, τ → z, z̄ cancels with
the factor coming out from a different definition in the normal ordering of the zero
mode of the vertex operator as a function of (τ, σ) as in (3.293) or as a function of
(z, z̄) as in (3.296).

If we restrict ourselves to the scattering of N tachyons we can use the vertex
in eq. (3.296) in eq. (3.305). The matrix element in eq. (3.305) will give the
same expression for each term of the R-ordered product, that can be immediately
obtained from the analogous calculation already performed in Sect. 3.2 for an open
string.

For an open string the matric element in (3.281) is given by
∏N−1

i<j;i=2(zi −
zj)

2α′ki·kj . In the case of a closed string, where the vertex is a product of two
vertices of an open string the matric element in (3.305) is given by

N−1∏
i<j;i=2

(zi − zj)
2α′ki·kj/4(z̄i − z̄j)

2α′ki·kj/4 (3.306)

The factor 4 in the denominator of the two exponents follows from the factor 1/2
appearing in front of the brackets in (3.291) and (3.292).

Since the various terms in (3.290) will all give the same result, the terms with
the product of θ-functions will sum up to 1.

In conclusion the scattering amplitude for N tachyons is given by

A(k1, k2, . . . , kN) =
∫ N−1∏

i=3

d2zi

N−2∏
i<j;i=2

|zi − zj|α
′ki·kj (3.307)

It can be rewritten in a more symmetric form as in the case of an open string, by
introducing also the variables z1 and zN . Then (3.5.5) becomes:

A(k1, k2, . . . , kN) =
∫ ∏N

i=1 d
2zi

dVabc

∏
i<j

|zi − zj|α
′ki·kj (3.308)

where

dVabc =
d2zad

2zbd
2zc

|za − zb|2|za − zc|2|zb − zc|2
(3.309)

In the case of the scattering of 4 tachyons the amplitude (3.307) becomes:

A(k1, k2, k3, k4) =
∫
d2z|z|α′k3·k4|1− z|α′k2·k3 (3.310)

Using the following equation:

∫
d2z|z|α|1− z|β = π

Γ(1 + α
2
)Γ(1 + β

2
)Γ(−1− α+β

2
)

Γ(−α
2
)Γ(−β

2
)Γ(2 + α+β

2
)

(3.311)

49



we get finally for eq. (3.310) the scattering amplitude proposed by Virasoro:

A = π
Γ(−α(u)

2
)− Γ(α(s)

2
)Γ(−α(t)

2
)

Γ(1 + α(u)
2

)Γ(1 + α(s)
2

)Γ(1 + α(t)
2

)
(3.312)

where

α(s) = 2− (k1 + k2)
2 α(t) = 2− (k3 + k2)

2 α(u) = 2− (k1 + k4)
2 (3.313)

3.5 Normalization of scattering amplitudes

In this section we give the rules for obtaining amplitudes for open and closed strings
with the correct normalization factors. We will have two kinds of factors. The first
one is a factor that correctly normalizes the vertex operator associated to each
string state, while the second one refers to the topology of the string diagram. Let
us start from the open string tree amplitudes where, for the sake of generality, we
consider open strings living on Dp-branes, i.e. strings having Neumann boundary
conditions on (p+1) directions and Dirichlet ones along the remaining (D− p− 1).
Let us start from the massless vector vertex operator in the bosonic string that we
write as follows:

Vε(z, k) = No λ
a (iε · ∂zx̂(z))e

i
√

2α′k·x̂ , k2 = ε · k = 0 (3.314)

where we have introduced the dimensionless coordinate:

x̂(z) =
x(z)√
2α′

= q̂ − ip̂ log z + i
∑
n6=0

αn

n
z−n (3.315)

with
q̂ =

q√
2α′

, p̂ =
√

2α′ p (3.316)

Since

∂zx̂(z) = (−i)

 p̂
z

+
∑
n6=0

αnz
−n−1

 = −i
∑
n

αnz
−n−1 (3.317)

we see that the factor i in eq.(3.314) is needed in order to cancel the factor (−i)
appearing in eq.(3.317). The normalization factor No is given by:

N (p)
o = (2r)1/2go(2α

′)(d−4)/4(2πα′)(p+1−d)/2 = gp+1(2α
′)1/2 (3.318)

where gp+1 is the gauge coupling constant given by

gp+1 = (2r)1/2go(2π
√
α′)(p−3)/2(2π2)(4−d)/4 (3.319)
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that appears in the Yang-Mills action:

LY M = −1

4
F a

αβF
αβ
a , F a

αβ = ∂αA
a
β − ∂βA

a
α + gp+1f

abcAb
αA

c
β (3.320)

Finally the Chan-Paton factors λa are normalized as:

Tr(λaλb) =
δab

r
(3.321)

The factor N (p)
o that correctly normalizes the vector vertex operator is actually the

same for all other vertex operators provided that one always uses the variable x̂. In
particular the tachyon vertex operator is given by:

V (z, k) = N (p)
o ei

√
2α′k·x̂ , α′k2 = 1 (3.322)

Having correctly normalized the vertex operators we must also add a normalization
factor that depends on the topology of the diagram. In the case of open string tree
diagrams corresponding to the topology of the disk we need to include the factor:

C
(p)
0 =

2r

g2
p+1(2α

′)2
(3.323)

satisfying the following relation:

C
(p)
0 (N (p)

o )2α′ = r (3.324)

It insures the correct factorization properties of the tree diagrams.
Let us use the previous normalization factors for computing the three-gluon am-

plitude. It is given by the sum of two planar diagrams. The first one corresponding
to the cyclic ordering 123 is equal to:

C0N
3
oTr(λ

a1λa2λa3) < 0|V1(z1)V2(z2)V3(z3)|0 > (z1 − z2)(z2 − z3)(z1 − z3) (3.325)

that, after some calculation, can be written as follows:

C0N
3
oTr(λ

a1λa2λa3)
√

2α′ [(ε1 · ε2)(k1 · ε3) + (ε1 · ε3)(k3 · ε2) + (ε2 · ε3)(k2 · ε1)]
(3.326)

while the second one corresponding to the ordering 132 can be obtained from the
previous one by the substitution

Tr(λa1λa2λa3) → −Tr(λa1λa3λa2) (3.327)

Notice that in order to obtain eq.(3.326) we have used the conservation of momen-
tum and the mass-shell conditions: k2

i = 0, i = 1, 2, 3 to cancel the dependence on
the Koba-Nielsen variables. Summing the two contributions one gets

C0N
3
oTr(λ

a1 [λa2 , λa3 ])
√

2α′ [(ε1 · ε2)(k1 · ε3) + (ε1 · ε3)(k3 · ε2) + (ε2 · ε3)(k2 · ε1)]
(3.328)
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By using the commutation relations:

[λa, λb] = ifabcλc (3.329)

the normalization given in eq.(3.321), the relation in eq.(3.324) and eq.(3.318) we
get for the three-gluon amplitude:

igp+1f
a1a2a3 [(ε1 · ε2)((k1 − k2) · ε3) + (ε1 · ε3)((k2 − k3) · ε2) + (ε2 · ε3)((k2 − k3) · ε1)]

(3.330)
that is equal to the 3-gluon vertex that one obtains from the Yang-Mills action in
eq.(3.320).

The factor given in eq.(3.323) generalizes to a surface with h boundaries as
follows

Ch = g2h−2
o Nh(2π)−(p+1)h(2α′)−(p+1)/2 (3.331)

It reduces of course to the one given in eq.(3.323) for h = 0.
Let us consider now the normalization factors in the case of a closed string. In

this case it is convenient to write the string coordinate as follows:

x(z, z̄) =
1

2
(x(z) + x̃(z̄)) ≡

√
2α′

2
x̂(z, z̄) (3.332)

where
x(z) = q − iα′p log z + i

√
2α′

∑
n6=0

αn

n
z−n (3.333)

and

x̃(z) = q − iα′p log z̄ + i
√

2α′
∑
n6=0

α̃n

n
z̄−n (3.334)

In eq.(3.332) we have again introduced the dimensionless quantity that we will use
in the vertex operator. We write the vertex for the massless states as follows:

(iε · ∂zx̂(z, z̄))(iε̃∂z̄x̂
ν(z, z̄))Nc eik·x(z,z̄) (3.335)

where the polarization tensor has been written as εµν = εµε̃ν . The normalization
factor for a closed string vertex is given by:

Nc = (4π)1/2gc(α
′)(d−2)/4 =

κd

π
(3.336)

and the d-dimensional Newton constant is given by:

κd = 2π3/2gc(α
′)(d−2)/4 (3.337)

If we compute tree diagrams for closed strings corresponding to the topology of a
sphere we must add the following factor:

Ĉ0 = g−2
c (α′)−d/2 (3.338)
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that satisfies the following relation:

Ĉ0N
2
c α

′ = 4π (3.339)

that insures the correct factorization properties of the tree diagrams.
From the previous normalizations we can compute the three-graviton amplitude

that is given by:

Ĉ0N
3
c < 0|V1(z1, z̄1)V2(z2, z̄2)V3(z3, z̄3)|0 > |z1 − z2|2|z2 − z3|2|z1 − z3|2 (3.340)

Using eqs.(3.339) and (3.336) one gets

2κD [(ε1 · ε3)(k3 · ε2) + (ε1 · ε3)(k1 · ε3) + (ε2 · ε3)(k2 · ε1)] ·

· [(ε̃1 · ε̃3)(k3 · ε̃2) + (ε̃1 · ε̃3)(k1 · ε̃3) + (ε̃2 · ε̃3)(k2 · ε̃1)] (3.341)

that agrees with the three-graviton amplitude that one gets from the Einstein’s
action.

The factor for the sphere given in eq.(3.338) generalizes in the case of a Riemann
surface with genus g to:

Ĉg = g2g−2
c (2π)−dg(α′)−d/2 (3.342)

We have introduced a string coupling constant for the open and a different one
for the closed string. It turns out that the open string one is related to the closed
string one by a numerical relation. It can be derived by observing that the Yang-
Mills coupling constant gp+1 can also be obtained by expanding the Born-Infeld
action:

SBI = − Tp

κD

∫
dp+1ξ

√
− det (Gαβ + 2πα′Fαβ) (3.343)

In this way one obtains the following expression for the Yang-Mills coupling con-
stant:

g2
p+1 =

rκd

Tp(2πα′)2
, Tp =

√
π

2(d−10)/4
(2π
√
α′)

d
2
−p−2 , τp ≡

Tp

κd

=
(2π)d/2−3

2(d−10)/4

(2π
√
α′)1−p

2πα′gc

(3.344)
where Tp can be computed from the boundary state. Finally comparing the first
equation in (3.344) with eqs. (3.319) and (3.337) we get the following relation
between the open and closed string coupling constants:

g2
o

gc

= 2πd/22(d−10)/4 (3.345)

The previous normalizations have been determined for the case of the bosonic
string where actually d = 26. It turns out, however, that they also provide the
correct normalization for the superstring amplitudes if we put d = 10. In the
case of superstring we have also the fermionic coordinate that we use in the vertex
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operators. Also in this case we have to use a dimensionless quantity corresponding
to the one given for the bosonic coordinate in eq.(3.315). It is given by:

ψ̂ = −i
∑

t

ψrz
−t−1/2 (3.346)

where the sum is over integers [half-integers] values of r for the Ramond [Neveu-
Schwarz] sector. The factor (−i) appearing in eq.(3.346) is a consequence of the
same factor appearing in eq.(3.317). We have the same normalization also in the
case of the closed string.

The closed string coupling constant gc is related to the most common used gs in
superstring theory through the relation:

gs =
gc

(2π)2
(3.347)

that implies
g2

o

gs

= 8π7 (3.348)

In terms of this new string coupling constant the duality relation between the
coupling constants of two dual theories is simply given by gs → 1/gs.
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