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Part I :  What is Confinement?


These lectures are mainly a review of the center vortex theory of confinement:


a. Its motivation and formulation

b. What we can learn from lattice strong-coupling expansions

c. Evidence from lattice Monte-Carlo simulations

d. Relations to other ideas (involving monopoles, or the Gribov Horizon)


The numerical work is mostly for pure SU(2) Yang-Mills.  Towards the end,

I’ll discuss what happens when matter fields are added to the system.

But to begin with: what are most people are trying to prove, when 
they talk about “proving” confinement? What are most of us are  
trying to explain, when we talk about “explaining” confinement?



A.   Historical: No free particles with ± 1/3, ± 2/3 electric charge. 
(Confinement?)

From a modern point of view, this is kind of accidental.  Suppose Nature has 
supplied us with a scalar field in the 3 representation of color SU(3), having 
otherwise vacuum quantum numbers.   There would be free, fractionally charged 
particle states in the theory, although, if the scalars were very massive, the 
dynamics and spectrum of the theory wouldn’t otherwise be much different.  

B.  Color Singlets:  There exist no isolated, non-color-singlet particles in 
Nature. (Confinement?)

While true, this definition is also a little problematic, because it also holds for 
gauge-Higgs theories in which the gauge group is completely broken 
spontaneously -- it can be interpreted as a color screening criterion.



Again consider adding a scalar field in the fundamental 3 
representation of color SU(3)

Two cases to consider:


▪  µ2 > 0: unbroken SU(3).  Color singlet spectrum, some 
additional quark-scalar bound states.  External source shielded 
by bound state formation.


▪   µ2 ¿ 0:  spontaneous symmetry breaking.  Still color singlet 
spectrum.  External source shielded by condensate.



Non-abelian Gauss Law:

rhs is the 0-component of a conserved current.  Absence of a color E-field 
outside volume V means the non-abelian charge inside is zero.  In the 
Higgs phase, the screening charge is supplied by the condensate.


We get the same screening effect in the abelian Higgs model (an 
relativistic generalization of the Landau-Ginzburg superconductor), and 
even in an electrically charged plasma.



Inserting a charge +Q into an electrically charged plasma


Charge is screened; but this is not what we mean by 
“confinement”.



The similarity - screening of heavy sources in both “broken” and “unbroken” 
gauge theories, is not a coincidence.


Consider a gauge-Higgs lattice action

 Fradkin-Shenker Theorem

There is no thermodynamic phase boundary in the βG - βH phase 
diagram, isolating the Higgs phase from a separate, confining 
phase.

Consequence - Analytic free energy, no sudden qualitative change in the 
spectrum, e.g. from color singlets to non-singlets.



But : dynamics at βH À 1 looks a lot like, e.g., Weinberg-Salam (without the 
photon), and much different from the dynamics of QCD.

So lets focus on dynamics, rather than color singlets.  What is special about 
the dynamics of QCD, as opposed to a Higgs theory?


C.   Regge Trajectories:  In QCD, in a J vs. m2 plot, mesons (and 
baryons) fall on linear, nearly parallel Regge trajectories.

Why??



The “spinning stick” model:  View a meson as a 
spinning line of length L=2R, with mass/length σ, 
and ends moving at the speed of light.

Then, for the energy                                        and the angular momentum 

Comparing the two expressions

“Regge Slope”



From the data, α’ = 1/(2πσ) = 0.9 Gev-2, which gives a  string tension 

The model isn’t perfect (data has non-zero intercept, slightly different 
slopes).  Allow for quantum fluctuations of the stick           String Theory.

How does a string-like picture come out of QCD?  Flux tube formation!



So this is the interesting dynamics:

 


                   Energy = σ L 


a linearly-rising potential between static sources (the “static quark 
potential”), and an infinite energy for infinite source separation. 


But is this what happens in real QCD?




String-Breaking and the Center of the Gauge Group


In real QCD, with light fermions, as in the Fradkin-Shenker model, the linear  
potential does not extend indefinitely.  For                     it is energetically 
favorable to pair-produce quarks, and break the flux tube (or QCD “string”). 



Then the static quark potential looks something like this

At large distances, the color field of the static quarks are 
screened by the dynamical matter fields.  Not so different from 
the Higgs physics.



If we want to explain the linear part of the potential, it is useful to work in a 
limit where the flux tube never breaks (“permanent confinement”), 
screening is suppressed, and the potential rises linearly without leveling 
out.   In this limit, for any finite gauge group and set of matter fields, we 
now take note of an important fact:      

Permanent confinement exists only if:


1. the unbroken gauge group has a non-
trivial center subgroup, and 


2. all matter fields transform as singlets 
wrt that center subgroup.

There are no known exceptions (G(2) is an example, not an exception).    
This fact provides us with an important clue about the nature of confinement.



A little group theory:

     The center of a Lie Group consists of those group elements 
which commute with all elements of the group.


      For an SU(N) gauge theory, this is the set of all group elements 
proportional to the identity:

which form the discrete abelian subgroup  ZN of SU(N).   


There are an infinite no. of representations of SU(N), but only a finite 
number of representations of  ZN .  Every representation of SU(N) falls into 
one of N subsets (known as “class” or “N-ality”), depending on the 
representation of the ZN subgroup.  



!    N-ality is given by the number of boxes in the Young tableau, mod 
N.  Multiplication by a center element zn , in a representation of N-ality k, 
corresponds to multiplication by a factor of


!     N-ality = 0 representations (e.g. the adjoint representation) are 
special, in that all center elements map onto the identity.


!    Particles of N-ality = 0 cannot bind to a particle of N-ality     0 to form 
a singlet.


!    Consequence:  Particles in N-ality =  0  representations can never 
break the string connecting two N-ality     0  sources.



So the limit in which the linear potential (if it exists) rises indefinitely, is 
the limit in which


!    for QCD (or any SU(N) theory):  take the masses of the quarks 
to infinity.


!    for G(2), introduce a Higgs and break the gauge group to SU(3), 
taking the mass of the massive gluons to infinity.

Our goal (and the strategy of most efforts in this field) is to try to 
understand the linear potential in limit that it goes on forever.  Once we 
understand confinement in this limit, we can take the masses of quarks 
(or broken generator gluons) to be finite, and see how the picture 
changes.



Part II :  Signals of Confinement


A. The Wilson Loop

The Wilson loop has a dual role:  


!   rectangular timelike loops are related to the interaction potential of 
static, external sources,


!   spacelike loops are probes of gauge-field fluctuations in the vacuum 
state, independent of external sources 

Of course, spacelike and timelike loops are not intrinsically different, but related 
to one another by Lorentz (or, Euclidean rotation) invariance.  It means that the 
interaction energy between static sources is related to vacuum fluctuations in 
the absence of external sources.


Lets start with the relation of timelike loops to the static quark potential.



Start with an SU(N) lattice gauge field, and a single quark field in color group 
representation r.  The quark field is so  massive that all quarks are static, and 
string-breaking effects can be ignored.  

Let Q be an operator which creates a color-singlet quark-antiquark state, with 
separation R



By the usual rules

For mq very large, this is evaluated by bringing terms                                   
down from the action, and we find 



Where χr(g) is the group character (trace) of group element g in representation 
r, U(R,T) is the holonomy - ordered product of link variables around the loop - 
and Wr(R,T) is the VEV  

“Holonomy” is just  a Wilson loop, before taking the trace.  In the continuum, the 
holonomy U(C) is



Digression on Character Expansions


A class function F[g] is a function defined on the group manifold, with the 
property that for any two group elements g and h

A class function can always be expanded in terms of group characters,

where the sum is over representations r, and the group character is the 
trace of group element g in representation r.


A Fourier series expansion is an example of a character expansion; in this 
case the group is U(1), the sum runs over positive and negative integers, 
and 

               χn[eiθ] = einθ



So now we have

The minimal energy is singled out in the T ! 1 limit.  The R-dependent 
part of the potential is obtained from

and this is what we refer to as the static quark potential in group 
representation r. The confinement problem is to show that 

at large R, for N-ality       0 representations, or more generally



an asymptotic, area-law falloff

B. The Polyakov Line

In an SU(N) gauge theory with only N-ality=0 matter fields there is, beyond the 
SU(N) gauge symmetry, an additional global Zn symmetry on a finite periodic 
lattice:



This transformation does not change plaquettes or Wilson loops.  But 
there are certain gauge-invariant observables which are affected.



Consider a Wilson line which winds once around the lattice in the periodic 
time direction

This is known as a Polyakov Loop.


Under a center transformation U0(x,t0)      z U0(x,t0), we find 

This global symmetry can be realized on the lattice in one of two ways:

This has a lot to do with confinement, because…



a Polyakov line can be thought of as the world-line of a massive static quark 
at fixed spatial position  x , propagating through the periodic time direction. 
Then

where Fq is the quark free energy.  In the confinement phase, the free 
energy is infinite, but finite in a non-confined phase.  So


unbroken ZN symmetry = confinement phase

Actually the transformation U0(x,t0)       z U0(x,t0) can be generalized; it is a 
special example of a singular gauge transformation.   Consider

Periodic only up to a center transformation



This again transforms Polyakov lines  P(x)      z P(x),  but plaquettes and 
ordinary Wilson loops are not affected.  


In the continuum, it amounts to transforming the gauge field by the usual formula

Except, at t=Lt , we drop the second term (which would be a delta-function).   
Because of that, a “singular gauge transformation” is not a true gauge 
transformation.



C.  The ‘t Hooft Loop

Instead of gauge transformations which are discontinuous on loops which 
wind around the periodic lattice, which could also consider transformations 
which are discontinuous on other sets of loops.


In fact there is a familiar example in classical electrodynamics:  the exterior 
field of a solenoid is the result of a singular gauge transformation applied to 
A=0 !


So lets start with electrodynamics.  The Wilson loop holonomy      U(1)  is

C is spacelike, ΦB is the magnetic flux through the loop.



We can have ΦB non-zero, yet B=0 along C.  E.g., the vector potential exterior 
to a solenoid of radius R, oriented along the z-axis

which is obtained from a singular gauge transformation of A=0, with

Note the discontinuity

We drop the delta-function that would arise in Aθ if this were a true gauge 
transformation.



It’s the exp[iΦB] discontinuity at θ=0,2π which is essential.  Consider a loop 
winding n times around the z-axis:  linking number = n.  Any singular 
gauge transformation, with the same discontinuity, applied to any vector 
potential A, would give

The concept of linking:

loop C   (B=0)

Solenoid  (B     0)

line of discontinuity in g(θ)



Loops link to points (D=2), other loops (D=3), surfaces (D=4).

In our example, the solenoid is a surface in the z-t plane in D=4 dimensions, 
and the gauge discontinuity lies on a 3-volume at y=0, x>0.



Summarize: the singular gauge transformation creates a surface of magnetic 
flux in the z-t plane, and any Wilson loop holonomy which is topologically 
linked to this surface gets multiplied by a factor of exp[iΦB]     U(1).


Generalize to SU(N)


We consider:

!    g(x) discontinuous on a Dirac 3-volume  V3


!       g(x) creates magnetic flux only on the boundary S of the 3-volume

Let C be a loop which is topologically linked to S, parametrized by

with



What kind of discontinuity can g(x) have?  Suppose  g(x(1)) = h g(x(0)) where 
h is any SU(N) group element.  In general this introduces a field strength 
throughout V3 .  But, as with center transformations in a periodic volume, we 
are looking for a discontinuity which changes the loop holonomy U[C], 
without changing the action in the neighborhood of C.  This is accomplished 
by

so that

If this is true for any loop linked to S, no matter how small, then it means 
that the singular transformation has created a surface of infinite field 
strength just on S.  Its called a thin center  vortex.  


As in QED, the singular region can be smeared out in a region of finite 
thickness, a kind of solenoid sweeping out S.  This is a thick center 
vortex.



Creating a thin vortex on the lattice:


On every x-y plane of the lattice, set

The thin vortex is a stack of plaquettes at x0,y0 at all z,t.  This is a surface.  


 Note that if the discontinuity were not a center element, then the action would 
be affected at all plaquettes in the Dirac volume.



Go to the Hamiltonian formulation, and let B[C] be an operator which 
creates a thin center vortex at fixed time t along curve C.


This means that B[C] performs a singular gauge transformation on gauge 
fields at time t.


It follow that along any loop C’ linked to C in D=3 dimensions,

Using only this relation, ‘t Hooft argued that


!   only area-law or perimeter-law falloff for <U[C]>, <B[C]> is 
possible,


!   in the absence of massless excitations, it is impossible to have

So, perimeter law for B[C] implies area-law falloff for U[C] (i.e. confinement) .



C.  The Vortex Free Energy

(Introduced by ‘t Hooft, first simulations by Kovacs and Tomboulis, much further work 
by de Forcrand and von Smekal)

 Consider a finite 2D lattice.  Usually we impose periodic boundary conditions

Lets modify this by the following condition:

This boundary condition can be absorbed into a change in the coupling 
β ! z β at the single plaquette P’ that contains Uy(L,y0) , i.e



This is an example of twisted boundary conditions.  It is impossible, with 
this choice, to pick the link variables such that the action vanishes.


         The twisted b.c. introduces a Dirac string, starting at (L,y0).  But it has to 
end somewhere; at the end is a center vortex.


This is the rough argument; see ‘t Hooft for more rigor in showing that t.b.c. 
introduce a unit of center flux.




Generalization to higher dimensions is straighforward:  A single link in D=2 
becomes a line of links in D=3, and surface of links in D=4

For simplicity, consider SU(2), and z = -1 for twisted boundary conditions.  
We define  Z+ as the lattice partition function with ordinary boundary 
conditions, and Z- as the partition function with twisted boundary conditions.  
The magnetic free energy of a Z2 vortex is then given by

The “electric” free energy is defined by a Z2 Fourier transform



Then let C be a rectangular loop of area A[C].  The following inequality was

proved by Tomboulis and Yaffe

So, if the vortex free energy falls off wrt cross-sectional area LxLy like

then this is a sufficient condition for confinement, because it implies an 
area law bound for Wilson loops.


Numerical investigations of these quantities were begun by Kovacs and 
Tomboulis, and carried on in much more detail by de Forcrand and von 
Smekal.



This is the first numerical computation of Z-/Z+

Consistent with vortex free energy going rapidly to zero at large lattice

volume.

Kovacs and Tomboulis.



To Repeat 

 

The existence of a non-zero asymptotic string tension requires that


1. The gauge group has a non-trivial center


2. All matter fields transform in N-ality=0 representations

In that case, the action is invariant under global center transformations.  All 
of the signals we’ve seen for non-vanishing asymptotic string tension:


a) area law for Wilson loops

b) vanishing Polyakov lines

c) perimeter-law ‘t Hooft loops

d) area-law falloff for the vortex free energy

can only be satisfied if global center symmetry exists.  


    This motivates the idea that vacuum fluctuations responsible for the 
asymptotic string tension must be, in some way, connected with center 
symmetry. 



Part III :  Properties of the Confining Force


!   Asymptotic Linearity of the Static Potential


!   Casimir Scaling


!   N-ality dependence


!   String Behavior:  Roughening and the Luscher term

Asymptotic Linearity


Theorem:  the force between a  static quark and antiquark is everywhere 
attractive but cannot increase with distance; i.e. 

The potential is convex, and can rise no faster than linear.

(Bachas)



Since

We can compute the static potential from

There are techniques for greatly increasing convergence to the large-T 
limit by “smearing” the spacelike links.



Here is a typical numerical result for the static potential

Necco and Sommer



Casimir Scaling

This is the idea that there is some intermediate range of distances where 
the string tension between a quark in group representation r, and its 
antiquark, is approx. proportional to the quadratic Casimir Cr of the 
representation.

Why? - Two arguments:  large-N limit, and dimensional reduction.


Large-N:

Group character χr(g) = trace of g in representation r has the property

n+m ¿ N is the smallest integer such that the irreducible representation

r is obtained from the reduction of a product of n defining (``quark'')

representations, and m conjugate (``antiquark'') representations.

Ambjorn & Olesen, Faber et al.



Large-N also has the property of factorization:  if A and B are two gauge-

Invariant operators, then

Put these facts together:

It follows that

which is precisely Casimir scaling in this large-N limit.



Its interesting to see how this goes in lattice strong-coupling expansions.  The 
adjoint representation is n=m=1, and we find, for a square LxL loop in SU(N)

where the second term comes from a “double layer” of plaquettes in the 
minimal area, and the second comes from the “tube” diagram



At large-N the first term / N2 dominates initially, but eventually, for

The perimeter term takes over, and the adjoint string tension drops to zero 
(n-ality dependence).


The second argument for Casimir scaling was: 


Dimensional Reduction     (J.G., Olesen)

At strong-coupling, confinement in D=4 looks the same as D=2.  But in

D=2, its easy to show that the confining potential at weak coupling 
comes from one-gluon exchange, and this leads to Casimir scaling.


So is confinement at weak-coupling in D=4 something like confinement 
at weak-coupling in D=2?



Argument:  consider a spacelike Wilson loop

In temporal gauge, R[A] is gauge-invariant, so we consider an expansion

For small amplitude, long-wavelength configurations, perhaps only the first

term dominates, in which case



Dimensional reduce one more time, to get 

Since we have Casimir scaling in D=2, we should then get Casimir scaling

in D=4.

Numerically, this works 
pretty well.  Here is some 
data for SU(3):

(Bali)

Solid lines are a fit to the fundamental

data, Multiplied by the Casimir ratio 

Cr/CF



N-ality Dependence


Consider a quark-antiquark pair in representation r, with N-ality kr.  Gluons 
can bind to the quark and antiquark, and reduce the color charge to the 
lowest-dimensional representation with the same N-ality kr .  It follows that 
the after screening by gluons - i.e. asymptotically, string tension depends 
only on N-ality, 

String tensions of the lowest-dimensional representation of N-ality k are 
often called “k-string tensions”.


Two proposals for SU(N) gauge theories:

“Casimir scaling”            
(a slight misnomer!)


Sine-law scaling

Either way, σ(k) / k for k ¿ N.



For our purposes, the crucial point is not Casimir vs Sine Law, but rather the

simple fact that asymptotic string tension depends only on the N-ality of the

representation.


An important example:  the adjoint representation, which has k=0.  We get

string-breaking, and a flat static (adjoint) quark potential, when

where mGL is the mass of the adjoint quark-gluon bound state.

de Forcrand &

Kratochvila 



String Behavior        (Luscher)


If the QCD flux tube resembles a Nambu string, then transverse fluctuations of 
the string induce a universal (coupling, scale) independent 1/R modificiation to 
the linear potential

According to the string calculation, the cross-sectional area of the flux tube

should also grow logarithmically with R.


Both of these effects have been observed in numerical simulations.

(Luscher & Weisz, Kuti et al.)

the “Luscher term”



Part IV:  Confinement from Center Vortices


The motivations we’ve already seen:


!   Confinement - non-vanishing asymptotic string tension - is associated 
with the unbroken realization of a global center symmetry. 


!    The asymptotic string tension depends only on N-ality.  In particular, 
whatever vacuum fluctuations cause σF    0 should not also force             
σA     0.


!   Two of the order parameters for confinement - the ‘t Hooft loop B[C] 
and the vortex free energy, are explicitly associated with the center vortex 
creation, while the non-zero value of the Polyakov line is a signal of 
spontaneous center symmetry breaking.

What can we learn from strong-coupling expansions, where confinement can be

derived analytically?



Lets consider SU(2) lattice gauge theory at strong couplings, and U[C] is an 
SU(2) holonomy around loop C.  Suppose C is very large, and we subdivide 
the minimal area into a set of sub-areas bounded by {U(Ci)} as shown  

Do the individual holonomies Ci fluctuate independently, if all loops are

very large, or are they correlated somehow?



In general - observables a,b,c… are uncorrelated iff


                <abc…>   =  <a><b><c>….


So lets find out if

where F[g] is any class (gauge inv) function with s dg F[g] =0.  Such functions

can be expanded in group characters 

If we evaluate the VEVs in D=2 dimensions, the equality is satisfied (and 

dominated by the lowest dimensional group representation)

This works because                                     . 



But for D>2, the N-ality=0 group characters have an asymptotic perimeter 
law falloff, and the lowest dimensional of these (j=1) dominates the VEVs.  At 
strong coupling, we find

Because 

CONCLUSION:  At D>2 the U(Ci) do not fluctuate independently.  But 
how does the area law arise, for j=half-integer Wilson loops?  


Extract a center element from the holonomies

And ask if these fluctuate independently.



i.e., does

It does!   

Confining disorder (for D>2) is center disorder, at least at strong couplings.

It is natural to suspect that the source of this disorder is the center vortices,

which affect loop holonomies only by a factor of a center element.

Its therefore interesting that thin center vortices are saddlepoints of the

strong-coupling effective action.



Start with the strong-coupling Wilson action on a “fine” lattice of lattice 
spacing a and do a “blocking” transformation to arrive at an effective 
action on a lattice with spacing a’=La

U’-link



The blocking transformation

can be carried out analytically, and the result is   (Faber et al.)

For simplicity, truncate to the leading one-plaquette terms…



with

Question:  Does this action have a local minimum, other than vacuum 
(U=I)?


Answer:  Yes, for c1 À c0 any center configuration, gauge-equivalent to 

is a saddlepoint (local minimum) of the effective action, where

is a center element.



Proof:   Consider small fluctuations of link variables around center elements

And denote the product of V links around a plaquette as VP

Then the effective action, to O(FP
2) is

We see by inspection that for c1 À c0, the action has a local minimum at 
FP=0.  QED.



Now we move away from strong coupling, and suppose that vacuum 
configurations in SU(N) gauge theory can be decomposed into a relatively 
smooth confining background, and high-frequency fluctuations around that 
background 

An important hint about                          is N-ality dependence.         An 
N-ality = 0  Wilson loop should have no area law falloff; i.e. should be 
not depend much on                 .   Suppose its not affected at all.  
Then, writing holonomies

Confining 
background

fluctuations



it means that for N-ality=0

But this can only be true if (up to a gauge transformation)

Link variables which give center element holonomies are gauge-equivalent

To the link variables of a ZN lattice gauge theory 

whose excitations consist only of center vortices.



The Center Vortex Confinement Mechanism   (finally!)


We assume that variables can be expressed

such that 


1. large holonomies u[C] and Z[C] are only weakly correlated

 2.   for any two large non-overlapping loops

          as we found to be true in strong-coupling lattice gauge theory.


This is enough to give us confinement!



Here’s how:  Consider for simplicity a large rectangular Wilson loop C 
of area A, in group representation r of N-ality k.  We have, by 
assumption 

Now subdivide the area A into square LxL subareas bounded by loops {Ci}.

where
An area law 
which depends 
only on N-ality



How big should we make these LxL subareas?  


(It doesn’t matter, as long as the Z(Ck) are uncorrelated.)


Very simplest case:  LxL is 1x1.   


This means that the probability f for a given plaquette p to have 

z(p) = -1  is uncorrelated with the values of z(p’) on other 
plaquettes p’ in the same plane.



Lets run through the argument again.  The decomposition

Dirac line 

gives us a confining background of thin center vortices (the zµ(x)),

With non-confining fluctuations gug-1 around that background.



Wilson loop W[C] is multiplied by a factor of z for each vortex piercing the 
minimal area.



Then

and

  and assume that

1. Piercings are uncorrelated;

2. Fluctuations u[C] are uncorrelated with Z[C] for large loops

Again define


        f   =   prob. that a vortex pierces any given plaquette

            = prob. that z(p) = -1 

Denote 



Then

String tensions are

and depend only on N-ality.



Part V:  Numerical Evidence

  

  

     The vortex mechanism is probably the simplest route to confinement, and 
well motivated by local gauge-invariant order parameters for confinement (‘t 
Hooft loop, Polyakov loop, vortex free energy), and by the known facts about 
N-ality dependence.


      But is it right?


      To find out, we turn to lattice Monte Carlo simulations.  The first problem 
is to figure out how to spot thick center vortices in a list of what looks like 
random numbers - i.e. the lattice link variables.   



Finding Center Vortices in Thermalized Lattices 

    An “adjoint gauge” is a gauge which completely fixes link variables UA 
in the adjoint representation, leaving a residual ZN gauge symmetry.  An 
example is the adjoint Landau gauge, which maximizes 

This gauge is also known as direct maximal center gauge.   


In an adjoint gauge, we factor each link variable into a center and coset part

where Zµ(x) is the center element closest to Uµ(x) on the Lie group manifold.  
E.g., for SU(2):

                                              Zµ(x) = signTr[Uµ(x)]  .



Center Projection is the replacement of link variables Uµ in an adjoint 
gauge by their closest center elements, i.e. 

which maps the SU(N) configuration into a ZN configuration. Plaquettes

Z(p)  1 on the projected lattice are known as P-plaquettes,  and together 
they form thin center vortices known as P-vortices.  


The claim is that this procedure locates center vortices on the 
unprojected lattice.


The idea is that P-vortices lie somewhere in the middle of the “thick” 
center vortices on the uprojected lattice.



Motivation


      Suppose we have some lattice configuration U, and insert “by hand” a 
thin center vortex, via a singular gauge transformation, somewhere on the 
lattice.  Will this center vortex be among the set of vortices identified by the 
center projection procedure?


       The answer is yes.  Let U’ be the lattice with the inserted vortex.  In the 
adjoint representation, the corresponding UA and U’A are gauge-equivalent.   
Then in adjoint center gauge, UA and U’A transform into the same 
configuration, call it Uag

A . 


       It follows that in the fundamental representaion, U and U’ can only 
differ by center elements, i.e.



Inserting a thin vortex, into either an SU(N) or ZN lattice configuration, is 
gauge equivalent to multiplication by a set of center elements Z’µ(x).  It 
follows that the inserted vortex is among the vortices identified by center 
projection

So in principle, center projection in any adjoint gauge has the “vortex-
finding property” for thin vortices.


Weaknesses

!    Vortices in SU(N) are not thin.  They have finite thickness.


!    Gribov copies.

For these reasons, while all adjoint gauges are in principle equal, “some are 
more equal than others”.    The only real justifications are empirical.



Useful Adjoint Gauges


1. Direct Maximal Center (DMC) gauge  (Faber et al)

     Again, this is the lattice Landau gauge in adjoint representation.  The 

prescription is to maximize

This is the most “intuitive” choice, because it is equivalent  to making the 
best fit of a given lattice configuration Uµ(x) by the thin vortex configuration  

Why? - Since the adjoint representation is blind to Zµ(x), start by making 
a best fit of UAµ(x) to a pure gauge, by minimizing



But this is completely equivalent to maximizing

which is the DMC gauge.  Next, choose Zµ(x) so as to minimize the 
distance function in the fundamental representation

which is achieved for SU(2) by

Or, in SU(N), setting Zµ(x) to be the closest center element to gUµ(x) . This is 
the center-projection prescription. 



2. Indirect Maximal Center (IMC) gauge    (Faber et al.)   

     This gauge is useful in exploring connections between abelian 

monopoles and vortices.

   

     First go to maximal abelian gauge, which minimizes the off-diagonal 

elements of the link variables, leaving a residual U(1)N-1 gauge 
invariance.  For SU(2), maximize 

The link variables are decomposed as

Where D is the diagonal part of the link variable, rescaled to restore

unitarity



2. (cont) Then we use the residual U(1) gauge symmetry to maximize

leaving a residual U(1) symmetry.

Both the DMC and IMC gauges have Gribov copies: for any U, there are 
a huge number of local maxima of R (much like spin glasses), and no 
known technique for finding the global maximum.



There are two strategies for dealing with the Gribov problem:

1. Make an effort to come as close as possible to a global (rather than 
local) maximum of R, using e.g. a simulated annealing algorithm.  
(Bornyakov et al.)


2. Give up on the global maximum, and average over all copies (MC 
simulations            pick a copy at random).  

Strategy 2 makes sense if most copies arrive at the same vortex content, 
with relatively small variations in vortex location.  This can (and has been) 
be checked for DMC gauge.  The vortices in randomly selected Gribov 
copies are closely correlated.


Another possibility is to use a Laplacian gauge, which avoids the Gribov 
copy problem…



3. Laplacian Center (LC) Gauge   de Forcrand and Pepe


     Consider Yang-Mills theory with two Higgs fields φ1
c, φ2

c in the 
adjoint representation.   The unitary gauge

then leaves only a residual Z2 symmetry.   In the LC gauge, the two 
“Higgs” fields are taken to be the two lowest eigenmodes

of the lattice Laplacian  operator in adjoint representation



4. Direct Laplacian Center (DLC) Gauge     (Faber et al)

 

     A hybrid.  Uses three lowest eigenmodes to select a particular Gribov 

copy of DMC gauge.

Most of the numerical results I’ll show were obtained from DLC gauge; but 
these are almost identical to what is obtained by simply picking DMC 
Gribov copies at random.



The numerical results I will now present fall into several categories:


I. Center Dominance - what string tension is obtained from P-vortices?


II. Vortex-Limited Wilson loops -  what is the correlation between 
center-projected loops and Wilson loops on the unprojected lattice?  
Do P-vortices locate thick vortices on the original lattice?


III. Vortex Removal -  what is the effect of removing vortices, identified 
by center projection, from the lattice configuration?


IV. Scaling - does the density of vortices scale according to the 
asymptotic freedom prediction? 


V. Finite Temperature


VI. Chiral Condensate/Topological Charge


VII. Casimir Scaling - and vortex thickness.


VIII. Vortices and Matter Fields -  what happens to the vortex picture if we 
break center symmetry by introducing matter fields, as in real QCD?



IX. Monopoles and vortices - monopole worldlines lie on vortex 
sheets.


X. Vortices and the Gribov Horizon - there are very close 
connections between the vortex mechanism, and a confinement 
mechanism suggested by Gribov and Zwanziger in Coulomb 
gauge.

Finally, I want to show the close connection of the vortex picture and two other 
proposed confinement mechanisms:



Center Dominance


The very first question is whether, under the factorization in maximal 
center gauge

The variables Zµ(x)   carry the confining disorder.  

Let Z(I,J) represent a Wilson loop in the projected lattice, on a rectangular 
IxJ contour.  The corresponding center-projected Creutz ratios are

At large I,J, does this quantity equal the asymptotic string tension?



A little digression on Creutz ratios


Rectangular Wilson loops W[R,T] typically fall off this way:

The term µ(R+T) is a self-energy term, and is divergent in the continuum 
limit.  Creutz noticed that one could form a ratio of rectangular loops 
such that the self-energy terms would cancel out

and one can check that in the limit of large loop area



Here is a first look at the 
data for χcp(R,R).  Note 
that:

a) At each β, the different 

      χcp(R,R) are almost 

identical, for R > 1.

a) There is excellent 
agreement with 
asymptotic freedom.


b) Even the R=1 data 
points seem to scale.



It is worth comparing the center-projected data with the original Creutz plot 
from 1980.

Creutz Center projection



Here is a closer look.  The solid line is the accepted asymptotic string 
tension at the given β value.



The fact that χcp(R,R) is nearly R-independent means that the center-projected 
potential is linear starting from R=2; there is no Coulomb piece.  This feature is 
known as Precocious Linearity.


   Why precocious linearity?


    Center vortices on the unprojected lattice are thick objects, and the full effect 
on a Wilson loop - multiplication by a center element - only occurs for large 
loops.  Center projection “shrinks” the thickness of the vortex to one lattice 
spacing; the full effect of linking to a vortex appears for even the smallest 
center-projected Wilson loops.


    Therefore, if P-vortex plaquettes are completely uncorrelated in a plane, then 
we must see a linear potential from the smallest distances.

If no precocious linearity, then either

a) the vortex surface is very rough, bending in and out of the plane, 
or


b) there are very small vortices.

In either case there are correlations between nearby P-plaquettes, and a delay

in the onset of the linear projected potential.



Vortex-Limited Wilson Loops


   Even if P-vortices get the asymptotic string tension roughly right, what 
tells us that they are really correlated with fat center vortices on the 
unprojected lattice?


   What we need to do is to test the correlation of P-vortices with gauge-
invariant observables, such as Wilson loops.


    A “vortex-limited Wilson loop” Wn[C] is the VEV of a Wilson loop on   
the unprojected lattice, evaluated in the subensemble of configurations in 
which the minimal area of the loop is pierced by precisely n P-vortices (i.e. 
there are n P-plaquettes in the minimal area).  


Here the center projection is used only to select the data set; the loop itself 
is evaluated using unprojected link variables.



If P-vortices on the projected lattice locate center vortices on the 
unprojected lattice, then for SU(2) we would expect, asymptotically, that

Reason

     

If we assume that Vµ(x) has only short range correlations, then on a 
large loop this variable is insensitive to the presence or absence of 
vortices deep in the interior of the loop, i.e.

for large 
loops

The ratio Wn/W0 ! (-1)n follows immediately.



Here are the numerical results, which are consistent with this 
reasoning.  



One can also looks at loops with, e.g. even or odd numbers of P-
vortices piercing the loop.  We find, for SU(2)

!                                                               


!                               


!     

From the fact that Wn/W0 ! (-1)n, we conclude that P-vortices are 
correlated with the sign of the Wilson loop, in just the way expected if 
these P-vortices are correlated with center vortices.


From center dominance, we conclude that it is the sign fluctuations in 
Z[C] , rather than in TrV[C] , that is responsible for the string tension.



Vortex Removal  (De Forcrand and D’Elia)


A powerful consistency test:   Suppose we “remove” center vortices from 
the unprojected configuration, by replacing 

This inserts a thin vortex in the middle of a thick vortex.  The 
asymptotic fields of the thin and thick vortex would cancel out, 
removing the vortex disordering effect on large loops.


Thus, if

a) P-vortices locate thick vortices (evidence is 
vortex-limited loops), and


b) Vortex disorder is confining disorder (evidence 
is center dominance), then

removing vortices in this way should also remove the asymptotic

string tension.





Scaling of the P-Vortex Density  (Tuebingen group)


If center vortices are physical objects, it makes sense that their density in the 
vacuum (vortex area/volume) is lattice-spacing independent in the continuum 
limit.  If P-vortices lie in the middle of center vortices, it would follow (there are 
some caveats) that P-vortex density is lattice-spacing independent.  Let 


          Nvor =  total no. of P-plaquettes = total P-vortex area (lattice units)

          NT    =   total no. of plaquettes    = total lattice volume X 6


Then the density of P-plaquettes p is related to the vortex density in physical 
units, ρ, via



If ρ is a physical quantity (i.e. β-independent), then we can substitute the 
asymptotic freedom expression for lattice spacing a(β,Λ) to get

The average value of p is obtained from center-projected plaquettes, 
because



The solid line is the 
asymptotic freedom 
prediction, with



Here are related results of Gubarev et al., in the IMC gauge



Finite Temperature   (Tuebingen group)


    At a temperature Tc=220 Mev, Yang-Mills theory goes through a 
“deconfinement” transition, where hadrons dissolve into their constitutents.

On the lattice, finite temperature is represented by time-asymmetric lattices, 
with temperature proportional to 1/Lt..  


    One can show numerically that at T>T_c, the quark free energy 
measured by the Polyakov line becomes finite.


     Yet, the vacuum of the “deconfined” phase in not exactly non-confining.  
It has also been shown that spacelike Wilson loops (a measure of vacuum 
fluctuations) retain an area law and asymptotic string tension beyond the 
phase transition, even though the static quark potential measured by 
Polyakov line correlators goes flat.


      A theory of confinement must be consistent with both features at T>T_c

!   non-zero Polyakov lines


!   non-zero string tension for spacelike Wilson loops



How do center vortices fit in?   At zero temperature:


Vortex conf. mechanism                 uncorrelated piercings

                                                        of minimal surface area 


                                                        extension of vortex is order of lattice size

                                                        (else piercings of a large loop are paired) 


                                                         vortices percolate through the lattice 


Above Tc , the picture must be that vortices percolate in a time-slice (fixed t), 
so that spacelike Wilson loops have an area law, but cease to percolate in a 
space-slice (e.g. fixed z), so that Polyakov line correlators do not fall off 
exponentially with distance.



Schematically, here is what we expect on a space-slice (constant z).

Projection of a surface in 4D becomes closed lines in 3D.  

percolation no percolation


Note loops closed through 
periodicity in the (small) time 
direction.



So here is some actual data for a space-slice at finite temperature.  The x-
axis is in units of the maximal extension in the L2 Lt 3-volume.  The y-axis is 
the percentage of P-vortex plaquettes belonging to a loop of a given 
extension.

No percolation at high T, no confinement.

(Tuebingen)



Now for the same data on a time-slice, above and below Tc.

Percolation at all temperatures, spacelike string tension in both the confined

and “deconfined” phase!



Chiral Condensates


Chiral symmetry breaking is associated with a non-zero VEV (chiral condensate)                     

which, for unbroken chiral symmetry, would necessarily vanish.   According to 
the celebrated Banks-Casher formula, the finite value of the chiral condensate 
is directly related to a finite density of near-zero eigenvalues of the Dirac 
operator

What happens if vortices are removed?  It was found by de Forcrand and 
D’Elia that

a)  chiral symmetry goes away;


b) The total topological charge of the configuration is reset to 
zero.

ρ(λ) = density of eigenvalues
           of the Dirac operator



Here is the chiral condensate data:

“Modified” is the vortex-removed data.

(de Forcrand and D’Elia)



Banks-Casher formula:

where V is the lattice volume, and 
ρ(λ) is the density of eigenvalues of 
the Dirac operator.  Gattnar et al. 
have calculated the low-lying 
eigenvalues of a certain “chirally 
improved” Dirac operator, and what 
they find is that removing vortices 
send ρ(0) ! 0.



The fact that topological charge is generally non-zero for full configurations,

U=ZV, but vanishes when vortices are removed, U=V, suggests that the thin 
vortex degrees of freedom Z are crucial in some way.   Topological charge is 
defined in the continuum as

On a thin vortex surface, topological charge density can arise at sites on 
the surface where the tangent vectors to the surface are in all four space-
time directions.  These sites are of two sorts



One can also show that zero modes of the Dirac operator tend to peak at 
these intersection and writhing points.

This plot shows the modulus of Dirac zero modes in a background of 
intersecting vortex sheets.

(Teubingen)



Casimir Scaling and Vortex Thickness          (Faber et al)


   

   Although the asymptotic string tension only depends on N-ality, so 
that for SU(2)  

                            σj = σ1/2          j=half-integer

                            σj = 0          j=integer


there is still an intermediate range of distances where Casmir scaling 
applies (at least approximately), i.e. for SU(2)


                            σj / (1/2) j(j+1)


How do vortices fit in, since they are motivated by (and seem to only 
give rise to) N-ality dependence?



In fact, j=integer Wilson loops are only unaffected by thin center vortices, 
as already noted for Precocious Linearity.   


Thick center vortices can affect j=integer Wilson loops if the vortex “core” 
overlaps the loop.    


How thick are center vortices?  From three different arguments:

1.    Adjoint string-breaking at around 1.25 fm

2.    W1/W0           -1  for  LxL loops,  at L around 1 fm

3.    Vortex free energy      0 for lattices of extension beyond 1 fm

We can estimate the thickness of center vortices to be around one fm.


Not so small!  Does this make a difference, for Wilson loops of extension 
less than one fm? 



If the core doesn’t overlap the loop, the effect is multiplication by a 
center element.

What happens if the core does overlap the loop?



An (over)simple model:   

If the vortex core overlaps the loop 
perimeter, we represent its effect as 
multiplication by a group element G, as 
in an abelian theory, which smoothly 
interpolates from -I to I.

In our simple model, we assume S to be a random SU(2) group element.



If we then consider RxT Wilson loops, T À R, in group representation j, 
the model predicts

where f is the probability for the middle of a vortex to pierce any given 
plaquette, and xn=n+1/2 is the coordinate in the R-direction.  For large 
loops, where most piercings don’t overlap the loop, we get the prediction


                               σk = −ln(1-2f)     k=half-integer
                            σk = 0                k=integer




However, for R very small compared to vortex thickness, so that 

αR(x) ¿ 2π , we find instead

which is proportional to the quadratic Casimir.  Whether this potential

Is also linear depends on assumptions which are made about the precise 
x-dependence of αR(x).  Most simple choices give approximate linearity, 
and approximate Casimir scaling, over some intermediate range of 
distances. 



Numerical evidence:  Casimir scaling, no vortices removed



And with vortices removed…



Vortices and Matter Fields


   The principal motivation for the center vortex confinement mechanism is the 
fact that the existence of an asymptotic string tension is always associated 
with a global center symmetry.


    But in real QCD, the global center symmetry is broken by quark fields in the 
fundamental representation of the gauge group.  So what happens to center 
vortices?  


     Possibilities:

!    Vortices don’t exist, or are irrelevant to the static potential, for 
even the tiniest explicit breaking of center symmetry (e.g. very 
large but not infinite quark mass).


!     Vortices exist but cease to percolate.  They break into 
clusters of fixed average extension, independent of lattice size.


!     Vortices continue to percolate (perhaps as branched 
polymers on large scales), and are crucial to the linear potential up 
to the “string-breaking” scale.



Instead of quark fields, its easier  to introduce a Higgs field in the 
fundamental representation of SU(2)

where SW is the usual Wilson one-plaquette action.


This theory has a “confinement-like” region, where there is a linear 
potential up to some string-breaking distance, and a Higgs-like region, 
where there is no linear potential at all.


Fradkin-Shenker Theorem:  There is no thermodynamic phase 
separation between the confinement-like and Higgs-like regions.



Schematic Phase 
Diagrams at fixed λ

Zero temperature

Finite temperature



We have worked at β=2.2 in the λ=1 limit, where |φ|=1, and also at λ=0.5. 


At λ=1 , β=2.2 , the first order transition line is at κ=0.22 .  We will work in 
the “confinement-like” region, just before the transition, at κ=0.20 .  


Once again, fix to DMC gauge, center project, and make the usual tests.

We find the usual effects:

1. Center Dominance  σcp ¼ σ


2. W1/W0 ! -1


3. σ ! 0 for vortex-removed loops

In the Higgs region, above κ=0.22, we find that σcp ¼ σ ¼ 0.


But what about screening/string-breaking due to matter fields in the 
confinement-like region?  Do the vortices see that too?



It not easy to spot string-breaking with Wilson loops, even center-
projected Wilson loops.  Instead, we look at Polyakov lines in the finite T 
theory, below the high-temperature “deconfinement” transition.


This calculation was done at λ=0.5 .

For κ     0,

Polyakov       0   for 
projected and 
unprojected loops.


This means that the 
vortex ensemble “sees” 
string breaking by the 
matter field.



    Since vortices get so many features right for the gauge-matter system, we 
would like to know what happens to the vortex ensemble as we go from the 
confinement-like region to the Higgs-like region without crossing the

1st-order transition line.


     Let f[p] be the fraction of the total number of P-plaquettes, carried by the 
vortex containing P-plaquette p.  


     We define sw as f[p] averaged over all P-plaquettes.  This is the fraction 
of the total number of P-plaquettes contained in the “average” P-vortex.                                         


                    sw = 1   if there is only one percolating cluster                                 


                    sw = 0   if there is no percolation (infinite volume limit) 

     If sw is non-zero, it means that the size of the average vortex grows 
with lattice size, typical of percolation.



The calculation was carried out for a variable-modulus Higgs field with 
quartic self-coupling λ=1, and κ is the gauge-Higgs coupling.  The sudden 
drop in sw indicates the transition to the non-percolating phase.

(Faber et al)
Look at this line  



Conclusion 


The confinement-Higgs transition for the SU(2) Higgs model can be 
understood as a vortex depercolation transition.  


The operator sw is highly non-local.  There is no contradiction to the 
Fradkin-Shenker theorem.


The depercolation transition line, which is not necessarily a line of 
thermodynamic transitions, is known in stat mech as a Kertesz line.



The Kertész line

   How can there be any change of phase, in the gauge-fundamental Higgs 
theory, in the absence of any non-analyticity in the free energy?


    This question has come up before, in the context of the Ising model.


     For external magnetic field H>0, the free energy is analytic.  But the Ising 
model can be reformulated in terms of clusters of connected sites which may or 
may not percolate.  There exists a sharp line of percolation transitions – known 
as the Kertész line – separating the high and low temperature phases.  

percolating

non-percolating

0

H

T

Kertész line

Tc



Weak Points


! Gribov copy problem (average over all copies?  Pick a “best”   
copy?)


! Origin of the Luscher term?


!   SU(3)


1.                                                           Good!      


2.   Vortex removal:   σ ! 0                 Good! 


3.    σcp ¼ (2/3) σ                                     Not so good….      



Part VI:  Connections to other ideas


!    Monopole confinement:

‘t Hooft’s abelian-projection scenario


!    the Gribov-Zwanziger scenario:

confinement by one-gluon exchange in Coulomb gauge 



Confinement in Compact QED3


Compact QED has monopole as well as photon excitations

θ(p) = 2π

Dirac line



Details:  monopole currents are identified by the DeGrand-Toussaint criterion:

where

Then one constructs “monopole dominance” link variables

Where D(x-y) is the lattice Coulomb propagator.

neglects the photon 

contributions



Polyakov was able to show that in D=3 dimensions, compact QED3 is 
equivalent to the partition function of a monopole plasma.  Its possible 
to change variables from links to  integer-valued monopole variables 
m[r], living at sites on the “dual” lattice

where G(r) » 1/r .  Then one adds a Wilson loop source exp[is drµ Aµ] to 
the partition function, where

where



Everything can be calculated explicitly in D=3 dimensions, and the result 
is that for a Wilson loop of charge n

Where σ is a function of coupling g and monopole mass (» 1/a).


A very rough image of whats going on:  monopoles and antimonopoles 
line up along the minimal area, and screen out the magnetic field that 
would be generated by the Wilson (current) loop source

Plane of the Wilson loop



The Abelian Projection


     Just as the center of a group is the set of which commutes with 
all group elements, one can also identify a Cartan subalgebra, 
formed by the maximum number of commuting group generators, 
and these generate the Cartan subgroup.   


      For example, the generators of SU(2) are the three Pauli 
matrices.  The U(1) subgroup generated by any one (or linear 
combination of) Pauli matrices can be taken as the Cartan 
subgroup.  For SU(3), one could choose, e.g., the third component 
of isospin I3, and hypercharge Y, forming the subgroup U(1)xU(1).  


     In general, for any SU(N) group, the Cartan subgroup is U(1)N-1.




‘t Hooft’s idea - choose a gauge which leaves the Cartan 
subalgebra unbroken.  For example, one could pick a gauge 
where F12 is a diagonal matrix.   Then in this gauge the theory 
can be thought of as an abelian U(1)N-1 theory (photons and

monopoles),  interacting with charged matter (the other gluons).

Then confinement is due to monopole plasma/condensation, just 
as in compact QED3.


How can we test if abelian monopoles, identified in an abelian 
projection gauge, carries the information about confinement?


Does any abelian projection gauge work?



Not every abelian projection gauge works.  One which works pretty well is 
the maximal abelian gauge, which requires that link variables are as 
diagonal as possible.  In SU(2), the condition is that

is a maximum

which allows the residual U(1) gauge symmetry

Let uµ(x) be the diagonal part of Uµ(x), rescaled to restore unitarity



Decompose

What is interesting is that under the remnant U(1) gauge symmetry, uµ 
transforms like a gauge field, and Cµ transforms like a matter field



Now the steps are as follows:


1. Identify monopole currents kµ(x) from the abelian links


2. Find the gauge fields (link variables denoted uµ
mon) due to those 

monopole current sources.


3. Compute Wilson loops from the abelian gauge fields uµ
mon) derived 

from the monopole currents alone.

This works out pretty well, in the sense of getting string tensions about right

for single charged (n=1) Wilson loops.


                


But there is a big problem for n>1.  It should be that, because of screening by 

the “charged” (off-diagonal) gluons

This has been checked for Polyakov loops.



Instead, the monopole-dominance approximation just gives the QED result

Even if the confining disorder is dominated (in some gauge) by 
abelian configurations, the distribution of abelian flux cannot be that 
of a monopole Coulomb gas.


Still, the monopole projection does get some things right.


To see whats going on, lets think about what vortices would look like 
in maximal abelian gauge, at some fixed time t.



In the absence of gauge-fixing, the vortex field strength Fµ ν
a


Points in random directions in the Lie algebra

Fixing to maximal abelian gauge, the field tends to line up in the

+/- σ3 direction.  But there will still be regions where the field 
strength rotates in group space, from +σ3 to -σ3



Now, if we keep only the abelian part of the link variables (“abelian 
projection”), we get a monopole-antimonopole chain, with π flux running

Between a monopole and neighboring antimonopole  (total monopole flux 
is +/- 2π, as it should be.

Then a typical vacuum 
configuration at a fixed 
time, after abelian 
projection, looks 
something like this:



These configurations will ensure that

as it should.


Numerical Tests


    We work in IMC gauge, which uses maximal abelian gauge as an 
intermediate step.  We identify the locations of both monopoles (by abelian 
projection) and vortices (by center projection).   We also measure

the excess action (above the average plaquette value S0), on plaquettes

Belonging to monopole “cubes”, and on plaquettes pierced by vortex lines.



Results:


!   Almost all monopoles and antimonopoles (97%) lie on vortex sheets.


!   At fixed time, the monopoles and antimonopoles alternate on the 
vortex lines, in a chain.


!   Excess (gauge-invariant) plaquetted action is highly directional, and 
lies mainly on plaquettes pierced by vortex lines.  The presence or 
absence of a monopole is not so important to excess action.

Very similar results are obtained for 2- and 3-cubes surrounding 
monopoles.



Vortices and the Gribov Horizon

The Gribov-Zwanziger idea – confinement in Coulomb gauge is due to one-
gluon exchange, with 0-0 propagator

This quantity is directly related to Coulomb potential  in Coulomb gauge.

where Dk[A] is a 
covariant 
derivative.



We recall the classical Coulomb-gauge Hamiltonian

where

Note that hKi is the instantaneous piece of the hA0A0i gluon propagator. 


   Gribov and Zwanziger argue that hKi is enhanced by configurations on 
the Gribov Horizon, where  r ¢ D(A)   has zero eigenvalues, such that

Confinement from one-gluon exchange



Let

 be a physical state with two static charges in Coulomb gauge.  Then

Questions


  Is  Vcoul(R) confining? 


  If confining, is it asymptotically linear? 


  If linear, does σcoul = σ?


  What about center vortices?  What happens to the                    
Coulomb potential if vortices are removed?

Non-Perturbative Coulomb Potential

where the Coulomb potential Vcoul comes from the non-local  ρmKρm  term 
in the Hamiltonian. 



  To compute the Coulomb potential numerically, define the correlator, in 
Coulomb gauge, of two timelike Wilson lines (not  Polyakov lines)

where

The existence of a transfer matrix implies

Denote 



Then its not hard to see that

   while

where                 is the minimum energy of the          system, and V(R) 
is the (confining)  static quark potential.


With lattice regularization,             and            are negligible at large R, 
compared to V(R).


Then, since                             it follows that

So Vcoul(R) confines if V(R) confines.          
If confinement exists, it exists already at the level of one-gluon exchange.

(Zwanziger)



Latticize

then

where

So now we can get an estimate (exact in the continuum) of Vcoul(R) 
from V(R,0), and compare to the static potential V(R).



A Check

Define σ(T) from a fit of V(R,T) to

and check to see if 


         σ(T) ! σ   as    T ! 1

This seems to work out pretty well.



Results at β=2.5     (Olejnik & JG, 2003)

Notice the difference in slopes    
σ(T) between V(R,0) (Coulomb) 
and V(R,4) (red data points).


In fact we find that 

When  vortices are 
removed (blue data points), 
both σcoul and σ vanish.



V(R,0) – essentially the 
Coulomb potential  –  is 
linear, in agreement with 
previous results of Zwanziger 
and Cucchieri.


However, σ(0) (! σcoul in the 
continuum) is substantially 
larger than the asymptotic 
string tension, at least in this 
coupling range.


The evidence is that the Coulomb potential overconfines.



According to asymptotic freedom, the quantity σcoul/F(β) should go to a 
constant at large β, where

σcoul scales better than σ itself, in this coupling range.



Coulomb Propagator & Coulomb Potential

    V(R,0) from one-gluon exchange:

Its natural to associate Vcoul(R) = - (3/4) D(R) .  This is wrong, however, 
because D(0) = 1 in an infinite volume.  (why? – because D(0) is 
proportional to the energy of an isolated, single quark state, which is 
infrared infinite if Q=0).  


  Then, since V(R,0) is finite, it follows that D(R) has an infrared infinity at 
any R.


   These infrared infinities cancel in color singlet states,  but lead to 
infinite energies in color non-singlet states, e.g. a quark-quark  state.       



If  Vcoul(R) is defined so as to be finite in both the infinite volume and 
continuum limits, we must introduce a subtraction at some R=R0, i.e.

In any case the total energy V(R,0) is finite at a>0 (for a color singlet), 
and unambiguous.



1.  Massless Phase  

      compact QED4

      SU(N) in D=5 

       


2. Confinement Phase 

    pure SU(N)

    SU(N) + adjoint matter 

                    


3. Screened Phases


    SU(N) + fund matter

    G2 gauge theory

            

    SU(N) + adj, higgs phase

    High T  deconfined


 Coulomb Energy in Other Phases

trivial center 
symmetry

Spontaneously broken 
center symmetry

(ZN center symmetric)



A New Order Parameter

  Coulomb gauge leaves a remnant  gauge symmetry

On any time slice, this is a global symmetry, which can be spontaneously 
broken.  If broken, then

in an infinite volume, and as a result

at fixed t

So Coulomb confinement or non-confinement can be understood as the 
symmetric or broken realizations of a remnant gauge symmetry. Not a new 
idea! ( e.g. Marinari et al, 1993)



Order Parameter


   Let  Q  be the modulus of the spatial average of timelike links

On general grounds

with                              in the symmetric phase


                                     in the broken  phase   

Q>0 implies Vcoul(R)  is non-confining, and since Vcoul(R) is an upper 
bound on V(R), this means that


Q=0  is a necessary condition for confinement



β = 0.7 is in the confining phase


β = 1.3 is in the massless phase


In  compact QED4, the symmetry-breaking order parameter Q 
seems to nicely distinguish between the two phases.

Its interesting to try this out in QED4, where we know there is a 
transition from confinement to a spin-wave phase at β=1.  In 
particular:



!"#$%&'()*+,-./0123&41**5&-63102

    We add a “radially frozen”  |φ|=1  scalar field, in the adjoint representation, to 
the SU(2) Wilson action

The phase structure in 
coupling space looks like this: 
(Brower et al., 1982) 


We find that the transition 
from  Q=0  to  Q>0  simply 
follows the transition from 
confinement to the Higgs                  
(non-confined) phase.





A Surprise (?) at High Temperature

   We have calculated Vcoul(R) in the high temperature deconfined phase, 
expecting to see σcoul=0.


   In fact,  the opposite result was obtained (Lt=2, β=2.3).



Are center vortices somehow important to this high-temperature result?

  We already knew that vortices explain the string tension of spatial  Wilson 
loops in the deconfined phase.   (Reinhardt et al)


   Is it a surprise that removing vortices also removes the Coulomb string 
tension in that phase?

Here is the Coulomb 
potential in the deconfined 
phase     (β=2.3, Lt=2)                      
in configurations with 
vortices removed…




Maybe we shouldn’t be too surprised.


Vcoul(R) depends only on the space components of the vector 
potential on a timeslice, recall


      But spacelike links still form a 3D confining ensemble, even past the 
deconfinement phase transition.


     


 Thin center vortices lie on the Gribov horizon, defined as the region 
of configuration space where   r ¢ D(A)    has a zero eigenvalue.  
Configurations on the Gribov horizon are essential to the Gribov-
Zwanziger conjecture about confining one-gluon exchange. 



!"#$%&'()*+,41**5&78+09:

    We add a “radially frozen” scalar field, in the fundamental representation, to 
the SU(2) Wilson action

where φ is SU(2) group-
valued; i.e. φ φy = I .  The 
phase structure in 
coupling space looks like 
this: (Lang et al, 1981) 

Note that the Higgs-like and confinement-like phases are connected 
(Fradkin & Shenker),  and no local order parameter can distinguish them. 
There is only one screened phase.



But as far as Q is concerned, it looks like there are two phases…

The remnant symmetry breaking transition does not correspond to any 
non-analyticity of the free energy.   It does, however, correspond to what 
we have seen before - the vortex depercolation transition across a 
Kertesz line!

Q is discontinuous 
along the solid line


Q increases from 0 at 
the dashed line



SU(2) Gauge-Higgs System  

Q at several γ’s at  β = 2.1 


Evidently a discontinuity in Q 
around γ = 0.9

Q vs γ at β = 0 


Transition from Q=0 to Q>0 
at γ ¼ 2.  

is analytic at γ=2.

Yet the g.inv free energy at β=0



Confinement-like region:  


β=2.1, γ=0.6

Higgs-like region:  


β=2.1, γ=1.2

Effect of Vortex Removal 
in the gauge-Higgs theory



 

   In what sense does real QCD, or any theory with matter in 
the fundamental representation,  “confine” color?  


There are no transitions in the free energy, or any local order 
parameter, which isolate the Higgs from the confinement-like 
regions of the phase diagram.   Fradkin and Shenker (1979) 


There are, nonetheless, two physically distinct phases, separated 
by a sharp percolation transition.  The “confinement-like” phase is 
distinguished from the Higgs phase by having


  a symmetric realization of the remnant symmetry


  a confining gluon propagator, and σcoul > 0


  percolating center vortices

Our findings are relevant to this question:



Conclusions
Coulomb energy rises linearly with quark separation.


Coulomb energy overconfines,  σcoul  ¼ 3 σ .  Overconfinement is 
essential to the gluon chain scenario.


Center symmetry breaking (σ = 0) does not necessarily imply remnant 
symmetry breaking (σcoul=0).  In particular


In every case, center vortex removal also removes the Coulomb string 
tension, which strongly suggests a connection between the  center 
vortex and Gribov horizon scenarios for confinement….

1.    σcoul > 0 in the high-T deconfined phase. 

2.    σcoul > 0 in the confinement-like phase of gauge-higgs 

theory. 


    

The transition to the higgs phase is a remnant-symmetry                    

breaking, vortex depercolation transition.



Center Vortices and the Gribov Horizon


In a confining theory, the energy of a color-nonsinglet state is infinite.  In 
Coulomb gauge, such a state is, e.g.

In an abelian theory, the same state in temporal gauge has the well-
known form 

This conversion of the charged Coulomb gauge state to temporal gauge can 
be extended to non-abelian theories.     Lavelle and McMullan 


Lets warm up by computing the energy of a charged state in an abelian theory, 
in Coulomb gauge,  in a way which will generalize to the non-abelian theory.



A familiar calculation:  the Coulomb self-energy  of a static charge, in a box 
of extension L, with an ultraviolet cutoff kmax=1/a .  Start with

where          is the self-energy of a static charge at point x.  Without a UV 
cutoff,   K(x,y) ~ 1/|x-y|  ,  so  K(x,x)=1 .  

where  M = -r2

Coulomb Self Energy - QED



 M = -r2  is the Faddeev-Popov operator for the abelian theory, obtained by 
variation of the gauge-fixing functional   r ¢ A   wrt an infinitesimal gauge 
transformation.                   

The eigenstates

are of course just the plane wave states, with λn = kn
2 .   On the lattice these 

states are discrete, and we can write the Green’s function



some simple manipulations...



Then 

where

Let  ρ(λ)  denote the density of eigenvalues, scaled so that s dλ ρ(λ) = 1 .   
Then at large volumes we can approximate the sum over eigenstates by 
an integral, and



In QED, its easy to show that 

and also  λmin ~ 1/L2 ,  λmax ~ 1/a2  ,  so that putting it all together

which is finite, at finite UV cutoff a, as L ! 1 .   But IR finiteness clearly 
depends on the small λ behavior of  ρ(λ) F(λ)  .  If instead

then the Coulomb energy would be IR infinite.



Yang-Mills:  The Gribov Horizon

Denote gauge transformed links

Coulomb gauge 
condition


Faddeev-Popov 
operator

Coulomb gauge-fixing on the lattice involves minimizing

then 



  In non-abelian theories, more than one point on the gauge orbit satisfies 
that Coulomb gauge condition.  These are known as Gribov copies.


   Gribov copies with only positive λn are said to lie inside the Gribov 
Region, where Gribov copies are local minima of R[U] .


   Global minima of R[U] lie inside the Fundamental Modular Region, 
which is a subspace of the Gribov Region.


   The Gribov Horizon is the boundary of the Gribov Region, where 
Mab(x,y) has a zero eigenvalue λmin=0. 




gauge orbit

Gribov copy

Full Configuration Space

Shaded region is the Coulomb-gauge 
configuration space



Gribov Region

λmin>0


Fundamental

Modular Region

Gribov Horizon  (λmin = 0)

Coulomb-Gauge Configuration Space

Outer Region 
λmin < 0

Outer Region:              ∑ Tr[U]  stationary (many gauge copies)


Gribov Region:             ∑ Tr[U] a  local     maximum  (many gauge copies)


Fund. Mod. Region:      ∑ Tr[U]   a  global  maximum  (unique)



Typical configurations in the Gribov region are expected to approach the 
Gribov horizon in the infinite-volume limit.  This is true even at the 
perturbative level, where  λmin » 1/L2 . 


But what counts for confinement is the density of eigenvalues ρ(λ) near 
λ=0, and the lack of “smoothness” of these near-zero eigenvalues, as 
measured by F(λ) .  This is what determines whether the Coulomb 
confinement criterion

is fulfilled in non-abelian gauge theories.



Coulomb Self Energy – Yang-Mills

In Yang-Mills theory the Faddeev-Popov operator depends on the gauge 
field  

The self-energy  of an isolated static charge in  color group rep.  r, 
Casimir Cr ,  is                             ,     where

We calculate ρ(λ), F(λ) numerically, on finite-size lattices, and extrapolate 
to infinite volume.



• gauge fields from lattice Monte Carlo, fix to Coulomb gauge 


• find the first 200 eigenstates of the lattice Faddeev-Popov operator 
on each time-slice of each lattice configuration (Arnoldi algorithm)


•  calculate hρ(λ)i, hF(λ) i.   Results, L=8 – 20:                                                                                                                                                   

From scaling of the distributions at small λ with L, we estimate at L! 1

which implies

 in the infrared


(i.e. confinement)

Procedure



Scaling of the Eigenvalue Distribution

   In certain N £ N matrix models, the density of near-zero eigenvalues in the  
N !          limit∞

can be deduced if the eigenvalues display a universal scaling behavior with 
N, where N=3V3 for the F-P operator.   “Universal” means that under the 
scaling

the density of eigenvalues, the average spacing between low-lying 
eigenvalues, and the probability distribution P(zn) for the value of the n-th 
low-lying eigenvalue, agree for every lattice 3-volume V3=L3.



The argument is simple.  The number of eigenvalues N[λ, Δ λ] in the range        


                                            is          

If we rescale eigenvalues by some power p of the lattice volume,                     ,  
then  

and this depends only on the rescaled quantities z and Δ z  if we choose 
p=1/(1+α) , so that

The strategy is to compute the frequency distribution  P(zmin)  of the 
lowest non-trivial eigenvalue zmin at various volumes, and see if there 
is some value of α  where the data sets fall on top of each other.  If so, 
this implies universality, and determines α  in  ρ(λ)=κ λα .



This is the frequency distribution 
P(zmin) for the values of the lowest 
eigenvalue zmin at various lattice 
sizes L=8-20, at three different 
values of α.


Notice that at α = 0.25, the curves 
more-or-less fall on top of each 
other.



Now for F(λ) .  We have fit our data for F(λmin)  to the form

and in particular, if α = 0.25

and find

From scaling Together, these facts 
suggest that at small λ



So this motivates a fit of 
F(λ) to

The best fit gives p=0.38, 
which is not far off our 
guess of p=0.42.  

which leads to an infrared-divergent Coulomb energy for color-
charged states.

This is how we have arrived at our estimates

(perturbative at high λ)



As before, we use eigenvalue-scaling to estimate

and again

(confinement)

Using standard methods, we can decompose any lattice configuration into 
vortex-only  (Zµ) and vortex-removed (U’µ = Zµ Uµ) configurations, which 
we transform to Coulomb gauge.


Here is the result for the vortex-only configurations



Here is the result for the no-vortex configurations

The number of eigenvalues in each “peak” of ρ(λ) , and each “band” of F(λ) , 
matches the degeneracy in the first few eigenvalues of  (-r2) , the zeroth-
order Faddeev-Popov operator.

                  “peaks”                                                 “bands”   

   ρ(λ) for the (-r2) operator is just a series of δ-function peaks.  In the 
vortex-only configurations, these peaks broaden to finite width, but the 
qualitative features of  ρ(λ) F(λ) at zeroth order - no confinement - remain.



Further evidence: the low-lying eigenvalues scale with L as

just like in the abelian theory, and looking at F(λ) at all lattice volumes

it seems that F(λ) » λ , again as in the abelian theory.



Next we add a fixed-modulus scalar field in the fundamental 
representation.  In SU(2) this can be expressed as

We have seen that, while there is no thermodynamic transition from the 
Higgs phase to a confinement phase  (Osterwalder & Seiler,  Fradkin & 
Shenker) there are, nonetheless two distinct phases in this theory, 
separated by a sharp transition.    

Gauge-Higgs Theory

Olejnik, Zwanziger & JG, 
Bertle, Faber, Olejnik & JG                      
Langfeld     



Here are our results in the confinement-like phase (β=2.1, γ=0.6) on a 124 
lattice

           for        ρ(λ)                                 and    F(λ)

It looks just like in the pure-gauge theory (γ = 0).    



But things change drastically in the 
Higgs phase      β=2.1, γ=1.2


These graphs are for the FULL 
UNMODIFIED configurations in the 
Higgs phase.


They look almost identical to results 
in the  VORTEX-REMOVED 
configurations of the pure (γ=0) 
gauge theory!



Thin Vortices and the Eigenvalue Density

Infrared divergent Coulomb energy is due to an enhancement of ρ(λ) near 
λ=0, which we have attributed to percolating center vortices.  


It is interesting to start with the trivial, zero-field configuration, add thin 
vortices by hand, and watch what happens to ρ(λ) .


A configuration containing a single thin vortex  (two planes in the 4D lattice), 
closed by lattice periodicity, is created by setting U2 = -1 at sites

with all other Uµ = +1 .   This creates two vortex sheets parallel to the  zt-plane.



We can similarly create any number of vortices parallel to any lattice plane.  
Let (N,P) denote N vortices created in each P orientations.


      P=1 means:  N vortices created parallel to the zt plane


      P=3 means:  N vortices created parallel to the xt, yt, zt planes (3N total)                                            


Then we just calculate the first 20 eigenvalues {λn} on a 124 lattice in these 
configurations, and here is the result:

Note the 


1. breaking of degeneracy 


2. the drastic drop in eigenvalue 
magnitude 


as vortex number increases.



Some Analytical Results

Facts about vortices and the Gribov horizon, stated  here without proof:


   Vortex-only configurations have non-trivial Faddeev-Popov zero modes, 
and therefore lie precisely on the Gribov horizon.


   The Gribov horizon is a convex manifold in the space of gauge fields, both 
in the continuum and on the lattice.   The Gribov region, bounded by that 
manifold, is compact.


   Vortex-only configurations are conical singularities on the Gribov horizon.


So thin vortices appear to have a special geometrical status in Coulomb 
gauge.  The physical implications of this fact are not yet understood.



Conclusions
The Coulomb self-energy of a color non-singlet state is infrared divergent, 
due to the enhanced density ρ(λ) of Faddeev-Popov eigenvalues near λ=0.


This supports the Gribov-Zwanziger picture of confinement.


The confining property of the F-P eigenvalue density can be entirely 
attributed to center vortices:

1. Enhancement of  ρ(λ)  is found in vortex-only configurations.


2. The confining properties of ρ(λ), F(λ)  disappear whenever 
vortices are either removed from lattice configurations, or 
cease to percolate.

These results establish a connection between the center vortex and Gribov 
horizon scenarios for confinement.



This is an important point, and worth restating:  


      The excitations of ZN lattice gauge theory are equivalent to a set of 
thin center vortices, and vice versa.

Exercise


a) Convince yourself of this fact for Z2 lattice gauge theory in D=2 
dimensions.


b) What is the analog, in Z2 lattice gauge theory, of the Bianchi identity in 
electrodynamics



Figure from a paper by Phillipe de Forcrand, who uses the z-t plane 
instead of the x-y plane for the negative plaquettes. 



Exercise


a) Quickly verify (from the previous equation) that, even without the adjoint 
plaquette term, there exist center vortex saddlepoints of the ordinary 
SU(N) Wilson action, providing N>5.    


b) Consider adding a “rectangle” 2-plaquette term to the SU(N) Wilson 
action, i.e.

Find the inequality that c0 , c1 must satisfy, such that zero field strength

configurations are global minima of this action.  Then prove that if this 
condition is satisfied, and if N>5, center vortex saddlepoints of the 
Wilson action are also local mimima of this extended action.  


(This action, with various choices of c0, c1, appears in the Iwaskai, 
tadpole-improved, Symanzik, and DBW2 extensions of the Wilson 
action.)


