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Abstract

These are informal lecture notes on lattice gauge theonyapeel for thex|V
Seminario Nazionale di Fisca TeoricBarma 29/8 - 10/9 2005.

1 QCD

There is little doubt that the physics of strong interacigsmaccurately described by
Quantum Chromodynamics or QCD, a gauge theory where theealany matter fields
are the quarks, which fill the color triplet, i.e. the fundanta representation of the
gauge or color group SU(3), while their interaction is méelilaby the gluons, the
gauge particles filling the color octet, i.e. the adjointresgentation of SU(3).

The pure gauge part of the dynamics is described by the Yaillg-d&dtion

a=8
1
S:_Z/d4xtr(FNVF“V) L Fuy =Y Y, (1.1)
a=1

where the\,’s are the infinitesimal generators of the Lie algebra of Sla(&l
Fu, =04, —0,A,+ig[A,, A, 1.2)

whereA,, is the gauge potential andthe adimensional coupling constant.
By far the most important properties of QCD are

O the asymptotic freedomvhich tells us, roughly, that the forces between quarks
become weak for small quark separations. This is a propeaty@CD shares
with the four-dimensional YM theories with non-abelian lgeups. It implies
that the theory becomes a free field theory in the ultravibeit, hence its



perturbative expansion can be put in a rigorous, sound .b&dsause of this
asymptotic freedom it is possible to carry out quantitatiakeulations of strong
interaction observables which are sensitive to the shetadce structure of the
theory. The discovery of the asymptotic freedom led vergkjyito the realiza-
tion that QCD was the right theory of the strong interactj@ml this was what
really completed the Standard Model. It is one of the mosbirtgnt discoveries
of 20th century physics.

O the quark confinemenwhich tells us that the physical states of QCD are singlets
of SU(3). This implies that the quarks are permanently cexwfim a hadron.
More specifically, one says the a gauge theory is in a confihedeif the po-
tential between point-like static sources increases tlypegith the intersource
distance:

V(r)=or+c+0(1/r) (1.3)

where the physical constamtis known as the string tension. Contrarily to what
happens for the asymptotic freedom, this is an infraredgntgpvhich is, strictly
speaking, still at the conjectural stage. The debate ondh#ring mechanisms,
started at the mid-1970’s, is still open. The second weekhef“SGeminario
nazionale di fisica teorica” 2005 is entirely dedicated s fubject. My lecture
notes constitute a preamble to introduce the main concepts.

2 Need of non-perturbative methods

One consequence of asymptotic freedom is that there mustysécal quantities which
cannot be expanded in a perturbative series in the couptingtanty.

In a nutshell, the argument goes as follows . Quantising thetieory requires
regularising it by the introduction of a cut-off in order tordrol the UV divergences
coming when two fields are evaluated at the same point. Ftarins, we can introduce
a spatial cut-off: representing the minimal distance between two local ffeldst m
be a physical observable with the dimension of a mass ( féarmee it could be the
mass of the lowest physical state). Its functional form isassarily

m=m(a,g) = f(g)/a, (2.1)

wheref is, for the moment, an unknown function @f Since the classical action (1.1)
does no contain any dimensional parameter, the scalingdiimeis necessarily due to

1The calculation of the Yang-Mills beta function was cometktn 1973 about the same time by David
Politzer (a student of Sidney Coleman’s at Harvard) and ®@@&vbss working with his student Frank Wilczek
at Princeton. Gross was actually trying to complete a proaf &ll Quantum Field Theories had bad ultra-
violet behaviour; he still was suffering from the pre-QC2jpdice common to almost all physicists of that
time, that the strong interactions could never be undedst@QFT, that one needed instead to do S-matrix
theory or string theory or something other than QFT. Geraltboft had done the beta function calculation
one year earlier, but he didn’t work out the experimental licaions for deep inelastic scattering, which
was what Gross, Politzer and Wilczek did. They were awarded\ibbel prize for Physics in 2004.

2In the subsequent sections the role of such a spatial cutitbtie played by the lattice spacing; for the
moment this further assumption is not necessary



the cut-offa. On the other end ifip is a physical quantity, it should not depend on the
cut-off, which has to be regarded as a computational artifigget finite results. Thus

d

—m=0 . 2.2

o™ (2.2)
As a consequence, if is varied, alsog must change in order to keep constant.

Thereforey = g(a). Buta is a dimensionful quantity, whilg is adimensional, hence

g=g(ad), (2.3)

whereA has the dimension of a mass and is independent of the cutaite it is a
physical quantity. As we shall see, it sets the scale of tfumgtinteractions, because
it turns out that any physical mass can be expressed as aicahtemstant times.

Eq. (2.2) yields

d
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Flg)az—g=flg) - (2.4)
Introducing the beta function of Callan-Symanzik, defined a
ot = p(g) (2.5)
dag_ g ) .

we can write the differential equation

af _ dg
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In SU(N) YM theories3(g) can be evaluated perturbatively and gives
1IN ¢3 34N? ¢b
Blg) = g J 2.8)
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where the positive sign of the first term encodes the definioggrty of the asymptotic
freedom. Taking into account, for sake of simplicity, ortig ffirst perturbative term of
Eq.(2.8) we get

flg)=Ce TiNg (2.9)

which shows that any physical mass has the same functiopahdence on the cou-
pling constant, therefore the ratios of different masses isimerical constant. The
other important property is that the above function canmamently be expanded per-
turbatively around; = 0, because of the essential singularity of Eq.(2.9).

In conclusion, the perturbative methods cannot give anyrimétion about the di-
mensional physical quantities of the theory, thus some penturbative approach is
needed.



3 Acrucial step: Statistical Field Theory

The Statistical Field Theory (SFT) is a formulation of QFTiathuses the methods and
the language of Classical Statistical Mechanics (CSM).eMmecisely, it is a theory
which develops tools useful both for CSM and QFT. One discoteat QFT’s and
CSM of critical systems are exactly the same theory: it issjiids to translate a QF
model into a critical system of the statistical mechaniasane-versa. For instance it
can be shown that the Ising model at criticality in any dini@emss, when translated in
the language of QFT, the! theory with realy.

The starting point is the resemblance of the generatingtimal of the Feynman
diagrams in the functional approach of QFT

Z = /D(p e (3.1)

with the canonical partition functio@ which encodes all the statistical properties of
a classical system described by an Hamiltontamnd in thermal equilibrium with a
thermostat at a temperature

Z(T,V)y= > e HnT, (3.2)

configurations

Clearly

/ Dy S (3:3)

configurations

but at this level there are still many differences betweertilo approaches: the former
has only a formal meaning away from the gaussian (or pertive)dimit and it is
mainly used to get the right multiplicity of the Feynman digs. The latter is a
finite, well-defined, quantity and there are analytic or ntioa methods which allow
to extract at least some estimate of many physical quasititlated taz.

It is then natural to try to modify the functional approachoirder to apply these
powerful methods. First one performs a Wick rotation> i~ which implies—iS —
—Sg, whereSg is the Euclidean action. In this way any field configuration haeal
Boltzmann weight.

The other useful transformation is to put the theory on ackttfor instance an
hypercubic one, that we denote with In four space-time dimensions each nade
of the lattice is selected by four integer numbéts= (nga,nya,n.a,na) (n €
7), wherea is the lattice spacing. Putting the QFT on the lattice meamgply the
following:

O Associate to each node an arbitrary value of the field

P — o(P) (3.4)

3For the sake of simplicity we temporarily assume that thentura system is described by an action
S[¢] which depends only on a scalar figtd



O EvaluateZ by summing over all these possible values according to

II /dgo(P)e_SEM . (3.5)

PeA

[Exercise: verify that the SU(N) invariant field model defiri®y the action

sz/d%[%amfa“ _V(ete')], (i=1,...,N)

becomes on the hypercubic lattice a statistical systenritbestby the Hamiltonian

H=a'y" [; S IVl (P)V,' (P + V(' (P)gi(P)) 3.6)

PeA p=1

With V,,p(P) = £ai—e())

In this way there is a finite number of degrees of freedom pérnafume, there-
fore the functional integratioti Dy has now a precise meaning and the lattice spacing
a acts as a spatial cut-off, eliminating all the UV divergesick this way the corre-
spondenc& F 1T — CSM becomes exact, and we can build up a dictionary which
translates typical terms of one formulation in the other:

QFT CSM

functional integration sum over configurations

d spatial dimensions D = d + 1 spatial dimensions

Euclidean actiorb g HamiltonianH

h kT
Transition Amplitude Partition Function
Vacuum expectation value of thiéproduct Correlation function

Energy of the ground state Free energy
Mass of the lightest particle Inverse of the correlation length

3.1 Theprice of lattice regularisation

The price of transforming a QFT in an Euclidean lattice fidlddry is rather high:
the Lorentz invariance is completely lost and replaced leysymmetry of the lattice,
which has nothing to do with the physical properties of thginal model. Moreover
the transformed model, although calculable, depends irueiarway on the lattice
spacinga, while the true physical properties of the model should regehd oru, of
course. One cannot put simply— 0 in Sg*, because on one hand, as showian
also the coupling constants dependaand , on the other hand, the multiple integral
(3.5) loses any meaning in this limit.

The way-out is to resort to Renormalization Grodupa Wilson, which provides
us with the rules to extract from the lattice regularisebtigethe physical, cut-off
independent, properties. It turns out that a true continlionib of the Euclidean QFT

4This is called theaaive limit since it does not take into account the other places whkees an important
role in the functional integration.



exists near a continuous transition, where the correldéingth¢ goes to infinity, so
that the lattice details are negligible and the rotatione&riance is restored. In other
terms QFT’s correspond to the universality classes of plrasesitions of classical
statistical systems [1].

4 Gaugeinvariance

Lat us start by considering the model defined in Eq.(3.6} itvariant (i.,e. 0 H = 0)
under rigid SU(N) transformations

ASTRS)

¢(P) = Vo(P), ¢' = ¢'VI, VeSUN), ¢=| . (4.1)
@N
If the transformatiorl” becomes docal transformationi.e. depends on the nodés
in an arbitrary way)” — V(P) €SU(N), the Hamiltonian (3.6) is no longer invariant,
because of the contributions of the mixed terms in the kireit:

o'(P)p(Q) — ¢"(P)VI(P)V(Q)$(Q), Q=P +af, (4.2)

henced H # 0.

In the continuum it is well known since the time of the YangHMivork (1952) a
recipe to get a locally invariant theory: one has to intragthe gauge fieldd,, asso-
ciated to the infinitesimal generators of SU(N). In particuto transformp! (P)¢(Q)
into a locally invariant quantity one introduces an arbitrpath~ connectingP to @
and build up the SU(N) path ordered product

U, (P,Q) = Pe'd JF Aulw)da” (4.3)
which under a local transformation becomes
Uy(P,Q) = V(P)Uy(P,Q)V(Q) , (4.4)

thus it is evident that now' (P)U., (P, Q)¢(Q) is invariant. It is also evident how to
extend this construction to the lattice: we associate th esiented linR (P, i) an
arbitrary element of SU(N):

(P,i) = Uu(P), (Q=P+aji,—f) = U_,(Q) = UL(P). (4.5)

The ordered product of these link variables allows to cac$iattice path operatorsin
analogy with Eq.(4.3).

To modify the model under study in such a way to have a localmiiant Hamil-
tonianX it suffices replacing the mixed terms with

¢'(P)6(Q) — ¢'(P)UL(P)H(Q) (4.6)

5An oriented link is the segment connecting two neighbourindesP and@ = P + aji. It is uniquely
selected by the paitP, 1)




thus the model is invariant under the joined local transfitrams

#(P) — V(P)$(P), VP € A (4.7)
U.(P) = V(P)UL(P)V(Q), (4.8)

which constitute dattice gauge transformatioof SU(N).

[Exercise: Show that in the naive continuum limit the kiog&rm of the gauge invariant
version of the model under study can be expressed in the usyaln terms of the covariant
derivatives.]

5 LGT

We have just seen that there is a simple recipe to transfouattied field theory in-
variant under global SU(N) transformations into a gaugaiiant theory: it suffices
replacing the mixed term coming from the kinetic part witkeent with a link variable
as shown in Eq.(4.6), which is equivalent, in the continuimit] to replace normal
derivatives with covariant derivatives. Like in the comtimm limit, the part of the ac-
tion describing the gauge degrees of freedom is an indepégdage invariant. In the
lattice models the role of the gauge fields is played by theVariables (4.5); how to
construct a lattice analog of Eq.(1.1)?
LetI" be any closed path on the lattice, made with the sequenceksf li

I = (P, fi1)(Py = Py + ayiv, fi2) - .. (Py = Py — afiar, fiar) (5.1)
an construct the corresponding ordered product of linkaideis
Ur = Uy (P1)Uu, (P2) .. Upyy (Prr) (5.2)
which transforms as
Ur — V(P)UrVi(P) . (5.3)

Hencetr Ur is gauge invariant. Such an observation might be used tdreana lattice
analog of the YM action in many different ways. The simpleasbice is theWilson
action, which is written as the sum of the trace in the fundamenfalasentation of all
the minimal loops one can draw in the lattice, i.e. the srstigquares made with four
contiguous links, calleglaquette$

B
Sw=- > ~ e (tr Upiag) (5.4)
plaquettes
with
Uptag = Up(P) U, (P + aft) UJ(P + a) U (P) (5.5)
[Exercise: Show that in the naive continuum lilit(tr Upiaq.) = N —g°a’tr (F7,)+0(a”) .

Hint: use the exponential ma, (P) = ¢'*9“»(*) and Taylor expand about the center of the
plaquette.]

6An oriented plaquette passing trough the pdiis uniquely selected by the trip(eP, jz, ) with i # .



Comparing the result of the above exercise with Eq.(1.1) averead off

p=2 (5.6)
g
which relates thed parameter of the lattice with the gauge coupling constarihef
continuum theory.
For the quantum YM theory we have to specify how to do funalamtegrals. The
sum over all the gauge configurations on the lattice amowontségrate over all link
variables. So, the SU(N) Yang-Mills theory on the latticeléscribed by the partition

function
Z:/H 11 dvup)e v (5.7)
4

PeA p=1,...

whered U is the invariant measure of the SU(N) group. Since SU(N),rgsadher
compact group, has a finite volume, we can always normalidete [ dU = 1,
thus Eq.(5.7), like its obvious generalisations to whateeenpact group, is a perfectly
well-defined expression which is finite and in principle cédble, at least approxi-
mately, thus there is no need to fix whatever gauge: this isesatgrdvantage with
respect to the continuum quantum formulations, where the m@des of the kinetic
part of Eq.(1.1) force the choice of gauge fixing terms andltleeintroduction of the
corresponding Fadeev-Popov ghosts.

In the present lattice regularised theory the vacuum eggpiectvalue of any ob-

servable® is defined as

(0) = % [ a0, (P)Oe5 . (5.8)

links

=

-

t
Of particular interest are the gauge invariant operdigrs= tr Ur, (Ur is defined
in (5.2)) calledwilson loops In particular a rectangular Wilson lodf’. ; (see Figure)
can be interpreted as the contribution to the action of agfgpint-like sources in the
representatiorf and f respectively, which are created at a time: 0 and placed at a
distancer and then annihilated at the tinte The vacuum expectation value of these
operators in thé — oo limit allows to define the static intersource potential:

1
V(r) =~ lim - log(Wps) . (5.9)



Comparing this expression with Eq.(1.3) we see that a gaugery is confining if
the vacuum expectation value of large Wilson loops drop gffomentially with the
minimal area encircled by.
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