Lectures on Supersymmetric Gauge Theories

K. Konishi

- I. Dynamics of Susy Gauge Theories
- **II.** Nonabelian Superconductors and Confinement
- III. Recent developments

Lectures on Supersymmetric Gauge Theories I: Introduction: a Review

- Symmetries and anomalies
- Nonrenormalization theorem
- NSVZ β functions
- Instantons and anomalies
- Seiberg's duality
- Gluini condensate
- Phases of SQCD

Why Supersymmetry?

- $H = Q^{\dagger}Q,$ $Q: |Boson\rangle \leftrightarrow |Fermion\rangle$ $\langle H \rangle \ge 0, \rightarrow \Lambda_{Cosm} \ll \Lambda_{QCD}$
- Hierarchy (naturalness) problem in the standard model

$$M_{Higgs}, M_W \ll M_{Planck} \sim 10^{19} \text{GeV}$$

- Susy GUTs: coupling constant unification at $\mu \sim 10^{16}$ GeV? MSSM \rightarrow LHC (\geq 2007)
- Deep results on details of nonperturbative dynamics
- Haag-Lopuszhanski-Sohnius: Susy algebra is the only possible nontrivial generalization involving Poincaré and internal symmetry algebra. (*cfr.* Coleman-Mandula)
- "A truely beautiful idea never really dies..." (Y. Nambu)

Susy gauge theories

• Susy algebra

$$\{Q_{\alpha}, \bar{Q}_{\dot{\alpha}}\} = 2\sigma^{\mu}_{\alpha, \dot{\alpha}}P_{\mu},$$

• Superfields

$$F(x,\theta,\bar{\theta}) = f(x) + \theta\psi(x) + \dots$$
$$Q_{\alpha} = \frac{\partial}{\partial\theta^{\alpha}} - i\sigma^{\mu}_{\alpha,\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\partial_{\mu}, \qquad \bar{Q}_{\dot{\alpha}} = \frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} - i\theta^{\alpha}\sigma^{\mu}_{\alpha,\dot{\alpha}}\partial_{\mu},$$

• Chiral superfields: $\bar{D}\Phi = 0$ ($D\Phi^{\dagger} = 0$)

$$\begin{split} \Phi(x,\theta,\bar{\theta}) &= \phi(y) + \sqrt{2}\theta\,\psi(y) + \theta\theta\,F(y), \quad y = x + i\theta\sigma\bar{\theta} \\ D_{\alpha} &= \frac{\partial}{\partial\theta^{\alpha}} + i\sigma^{\mu}_{\alpha,\dot{\alpha}}\bar{\theta}^{\dot{\alpha}}\partial_{\mu}, \qquad \bar{D}_{\dot{\alpha}} = -\frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} - i\theta^{\alpha}\sigma^{\mu}_{\alpha,\dot{\alpha}}\partial_{\mu}, \end{split}$$

• Verctor superfields $V^{\dagger} = V$,

$$W_{\alpha} = -\frac{1}{4}\bar{D}^2 e^{-V} D_{\alpha} e^V = -i\lambda + \frac{i}{2} \left(\sigma^{\mu} \bar{\sigma}^{\nu}\right)^{\beta}_{\alpha} F_{\mu\nu} \theta_{\beta} + \dots$$

• Supersymmetry transformation of fields:

Chiral superfields

$$[Q_{\alpha}, \phi] = \sqrt{2}\psi_{\alpha}; \quad \{Q_{\alpha}, \psi_{\beta}\} = \sqrt{2}F; \quad [Q_{\alpha}, F] = 0,$$

$$[\bar{Q}_{\dot{\alpha}}, \phi] = 0; \quad \{\bar{Q}_{\dot{\alpha}}, \psi_{\beta}\} = i\sqrt{2}\sigma^{\mu}_{\beta\dot{\alpha}}\mathcal{D}_{\mu}A; \quad [\bar{Q}^{\dot{\alpha}}, F] = i\sqrt{2}(\bar{\sigma}^{\mu})^{\dot{\alpha}\beta}\mathcal{D}_{\mu}\psi_{\beta},$$

In particular, $\bar{D}\Phi = 0 \Rightarrow [\bar{Q}_{\dot{\alpha}}, \phi] = 0: \phi$ is a "chiral field";

Vector superfields

$$\begin{split} [Q^{\alpha}, A^{a}_{\mu}] &= -i\sqrt{2}\,\bar{\lambda}^{a}\,\bar{\sigma}; \qquad \{Q^{\alpha}, \lambda^{a}\} = \sigma^{\mu\nu}F^{a}_{\mu\nu} + iD^{a}; \qquad [Q^{\alpha}, D^{a}] = -\sigma^{\mu}\mathcal{D}_{\mu}\bar{\lambda}^{a}; \\ [\bar{Q}_{\dot{\alpha}}, A^{a}_{\mu}] &= -i\sqrt{2}\,\bar{\sigma}\lambda^{a}\,; \qquad \{\bar{Q}_{\dot{\alpha}}, \lambda^{a}\} = 0; \qquad [Q^{\alpha}, D^{a}] = -\mathcal{D}_{\mu}\lambda^{a}\sigma^{\mu}; \end{split}$$

• Lagrangian $(\int d\theta_1 \, \theta_1 = 1, \, \text{etc})$

$$\mathcal{L} = \frac{1}{8\pi} \operatorname{Im} \tau_{cl} \left[\int d^4\theta \, \Phi^{\dagger} e^V \Phi + \int d^2\theta \, \frac{1}{2} W W \right] + \int d^2\theta \, \mathcal{W}(\Phi) \tag{1}$$

• $\mathcal{W}(\Phi) =$ **superpotential**;

$$\tau_{cl} = \frac{\theta}{2\pi} + \frac{4\pi i}{g^2}$$

• Scalar potential

$$V_{sc} = \sum_{mat} \left| \frac{\partial \mathcal{W}}{\partial \phi} \right|^2 + \frac{1}{2} \sum_{a} \left| \sum_{mat} \phi^* t^a \phi \right|^2$$

• For SQCD, $\{\Phi\} \to Q \sim \underline{N}, \ \tilde{Q} \sim \underline{N}^* \text{ of } SU(N)$

 $G_F = SU(n_f) \times SU(n_f) \times U_V(1) \times U_A(1) \times U_\lambda(1)$

• Flat directions (CMS)

e.g., for $n_f < n_c$,

$$Q = \tilde{Q}^{\dagger} = \begin{pmatrix} a_1 & 0 & \dots & 0 \\ 0 & \ddots & & \\ 0 & \dots & & a_{n_f} \\ 0 & 0 & \dots & 0 \\ \dots & & & \dots \end{pmatrix}$$

Q: Superpotential generated? CMS modified? Symmetry breaking?

Nonrenormalization theorem

$$\mathcal{L} = \int d^2\theta d^2\bar{\theta} \left(\bar{\Phi}\Phi + \frac{1}{2}\Phi^2\delta^2(\bar{\theta}) + h.c.\right)$$

• Perturbative N.R. theorem

$$\langle T\Phi(x,\theta,\bar{\theta})\Phi(x',\theta',\bar{\theta}')\rangle$$

= $-m\,\delta^2(\theta-\theta')\,e^{-i(\theta\sigma^{\mu}\bar{\theta}-\theta'\sigma^{\mu}\bar{\theta}')\partial_{\mu}}\Delta_c(x-x')$

Only D terms $\propto \int d^2\theta\, d^2\bar{\theta}\, (\ldots)$ generated. No F terms

• If \exists exact **non-anomalous symmetry** $G \rightarrow$ No terms violating G generated;

• Perturbative anomaly (West, Grisaru, et. al., SVZ)

$$\Delta L = \int d^2\theta \, d^2\bar{\theta} \, \Phi^2 \frac{D^2}{\Box} \Phi \sim \int d^2\theta \, \Phi^3$$

However, no such nonlocal term simulating F-term, in S_W

- Terms protected only by anomalous (e.g. U_A(1)) symmetries can be generated by instantons
- Generalized non-renormalization theorem (SVZ):

The gauge kinetic term

$$\int d^2\theta \, W_{\alpha} W^{\alpha} = \int d^2\theta \, d^2\bar{\theta} \, \left[\, (e^{-V} D_{\alpha} e^V) W^{\alpha} \, \right]$$

can be generated by 1 loop corrections - **only**.

 \rightarrow NSVZ exact β functions:

• E.g. SU(N) SQCD:

•

$$L = \frac{1}{4} \int d^2\theta \left(\frac{1}{g^2(M)} + \frac{b_0}{8\pi^2} \log \frac{M}{\mu} \right) W^a W^a + h.c. + \int d^4\theta \sum_i Z_i(\mu, M) \Phi_i^{\dagger} e^{2V_i} \Phi_i ,$$

$$b_0 = -3N_c + \sum_i T_{Fi}; \qquad T_{Fi} = \frac{1}{2} \qquad (\text{quarks}) .$$

• Renormalize the fields $\Phi_i \to Z_i^{-1/2} \Phi_i = e^{-\frac{1}{2} \log Z_i} \Phi_i$ $(\bar{D}(-\frac{1}{2} \log Z_i) = 0) \Rightarrow$ Anomaly $\propto \frac{1}{16\pi^2} (-\frac{1}{2} \log Z_i(\mu, M)) WW$

$$\frac{1}{g^2(\mu)} = \frac{1}{g^2(M)} + \frac{b_0}{8\pi^2} \log \frac{M}{\mu} - \frac{1}{8\pi^2} \log Z_i(\mu, M)$$
$$\beta_h(g) \equiv \mu \frac{d}{d\mu} g = -\frac{g^3}{16\pi^2} \left(3N_c - \sum_i T_{Fi}(1 - \gamma_i(g)) \right) \,,$$

where $\gamma_i(g(\mu)) = -\mu \frac{\partial}{\partial \mu} \log Z_i(\mu, M)|_{M,g(M)}$

• Actually by recaling $A_{\mu} = g_c A_{c\mu}, \quad \lambda = g_c \lambda_c,$

$$\frac{1}{g^2} = \frac{1}{g_c^2} + \frac{N_c}{8\pi^2} \log g_c^2, \qquad \beta(g_c) = -\frac{g_c^3}{16\pi^2} \frac{3N_c - \sum_i T_{Fi}(1 - \gamma_i(g_c))}{1 - N_c g_c^2 / 8\pi^2}$$

•
$$\gamma(g) = -\frac{g^2}{8\pi^2} \frac{N_c^2 - 1}{N_c} + O(g^4)$$

• Zero of the beta function at g^* where

$$\gamma(g^*) = -\frac{3N_c - N_f}{N_f}$$

Susy Identities

• Susy transf. of
$$\Phi(x, \theta, \bar{\theta}) = \phi(y) + \sqrt{2}\theta\psi + \theta\theta F(y)$$
:
 $[\bar{Q}^{\dot{\alpha}}, \phi] = 0, \qquad \{\bar{Q}^{\dot{\alpha}}, \psi_{\alpha}\} = -\sqrt{2}\bar{\sigma}^{\mu}\partial_{\mu}\phi,$
 $G = \langle T\phi_1(x_1)\phi_2(x_2)\dots\phi_k(x_k)\rangle$
 $\bar{\sigma}^{\mu}\partial_{\mu}^{x_1}G = \langle T[\bar{Q}^{\dot{\alpha}}, (\psi_1(x_1)\phi_2(x_2)\dots)]\rangle = 0,$
etc. *G* indep. of $x_i \to = \prod_i \langle \phi_i \rangle$

• Analytic dep. on g_i, m_i etc $(\mathcal{W}(\Phi) = m \Phi^2 + g \Phi^3 + ...)$ $\frac{\partial G}{\partial m^*} = \langle T[\bar{Q}^{\dot{\alpha}}, (\bar{\Phi}^2|_{\bar{\theta}} \phi_1(x_1)\phi_2(x_2)...)] \rangle = 0, \qquad \frac{\partial G}{\partial g_2 *} = 0$

• Symmetries

Fields	Δ	q_V	q_{λ}	q_X
$Q, ilde{Q}$	1	1, -1	1	$n_c - n_f$
$\psi_Q,\psi_{ ilde Q}$	3/2	1, -1	0	n_c
λ_lpha	$\frac{3}{2}$	0	1	$-n_f$
g_l	2-l	-(l+1)	1 - l	2
Λ^{2N}	2N	2N	$\frac{4N}{3}$	0

Anomalies and Instantons

• $U_A(1)$ anomaly (Steinberger, Schwinger, Adler, Bell, Jackiw)

$$\partial_{\mu}J_{5}^{\mu} = \frac{e^{2}}{16\pi^{2}}F_{\mu\nu}\tilde{F}^{\mu\nu} \qquad (\pi_{0} \to 2\gamma)$$

• QCD:

$$\partial_{\mu}J_{L}^{\mu} = \frac{g^{2}}{32\pi^{2}}G_{\mu\nu^{a}}\tilde{G}^{a,\mu\nu}$$
$$\Delta Q_{5} = 2 n_{f} \int d^{4}x \, \frac{g^{2}}{32\pi^{2}}G_{\mu\nu^{a}}\tilde{G}^{a,\mu\nu} \neq 0!$$

Axial $U_A(1)$ broken: solution of "U(1)" problem $(m_\eta \gg m_\pi$? Why NO $U_A(1)$ Goldstone boson); But $\frac{g^2}{32\pi^2}G_{\mu\nu^a}\tilde{G}^{a,\mu\nu} = \partial_\mu K^\mu$!?

• Finite energy config. classified by the Pontryagin number

$$A_{\mu} \sim U^{-1}(x) \,\partial_{\mu} U(x), \qquad x \to \infty \qquad \Pi_3(SU(2)) = \mathbb{Z}$$

 $\int d^4x \, \frac{g^2}{32\pi^2} G_{\mu\nu^a} \tilde{G}^{a,\mu\nu} = n, \qquad n = 0, \pm 1, \pm 2, \dots$

• Config with n = 1: instanton (¹)

$$A_{\mu} = -\frac{2i}{g^2} \frac{\tau_{\mu\nu} (x - x_0)_{\nu}}{(x - x_0)^2 + \rho^2}, \qquad \tau_{\mu\nu} = \frac{\tau_{\mu} \bar{\tau}_{\nu} - \tau_{\nu} \bar{\tau}_{\mu}}{4}$$

• Instanton effects in QCD ('t Hooft')

$$\mathcal{L}_{eff} \sim \epsilon^{i_1 \dots i_{n_f}} \epsilon_{j_1 \dots j_{n_f}} \bar{\psi}_L^{j_1}(x) \dots \bar{\psi}_L^{j_{n_f}}(x) \psi_{R,i_1}(x) \dots \psi_{R,i_{n_f}}(x)$$

 $U_A(1)$ broken to Z_{2n_f} ; $SU_L(n_f) \times SU_R(n_f)$ unbroken

$$\langle \epsilon^{i_1 \dots i_{n_f}} \epsilon_{j_1 \dots j_{n_f}} \bar{\psi}_L^{j_1}(x_1) \dots \bar{\psi}_L^{j_{n_f}}(x_{n_f}) \psi_{R,i_1}(y_1) \dots \psi_{R,i_{n_f}}(y_{n_f}) \rangle \neq 0$$

¹Belavin, Polyakov, Schwarz, 't Hooft

• θ term

$$\mathcal{L} = heta rac{g^2}{32\pi^2} G_{\mu
u^a} \tilde{G}^{a,\mu
u}$$

renormalizable. Experimentally $(d_n < 10^{-28} \ {
m e} \ {
m cm}
ightarrow | heta| < 10^{-9}$

"Strong CP Problem" (Why?)

PQ symmetry (axions); $m_u = 0$, etc

•
$$\Delta I = \frac{1}{2}$$
 problem (Why $\frac{A(K \to \pi \pi)^{\Delta I = 1/2}}{A(K \to \pi \pi)^{\Delta I = 3/2}} \sim 25$)

Instanton Calculation in Susy QCD

• Strong coulpling (standard) instanton method

$$\langle \lambda \lambda(x_1) \lambda \lambda(x_2) \dots \lambda \lambda(x_{n_c}) \rangle = \text{const.} \Lambda^{3n_c}$$

L.H.S. = const. = $\prod \langle \lambda \lambda \rangle = \langle \lambda \lambda \rangle^{n_c}$

Require disentangle vac. sum $(Z_{2n_c}$ unbroken)

- Weak coupling instanton method (svz)
 - (i) SQCD with massless (Q, \tilde{Q}) 's

(ii) Flat direction \rightarrow Compute instanton corrections at large $\langle Q \rangle \gg \Lambda$;

$$\Delta \mathcal{W}^{(ADS)} = (n_c - n_f) \frac{\Lambda^{(3n_c - n_f)/(n_c - n_f)}}{(\det Q\tilde{Q})^{1/(n_c - n_f)}} \qquad (\#)$$

(iii) Add $W_{mass} = mQ\tilde{Q} \rightarrow \text{min. of the pot.}$

(iv) Decouple the quarks $m \to \infty$, $\Lambda^*_{YM} = m \Lambda^*$

$$\langle \lambda \lambda \rangle = \Lambda^3$$

- Numerical discrepancy ("4/5 puzzle")
- Other methods (Compactification on $\mathbb{R}^3 \times S^1$; $\mathcal{N} = 2$ SYM and decoupling the adjoint scalar) give WCI results
- For $SU(n_c)$:

$$\langle \lambda \lambda \rangle = e^{2\pi i k/n_c} \Lambda^3, \qquad k = 1, 2, \dots n_c$$

• SU(r+1), SO(2r+1), USp(2r), SO(2r) SYM: (apart from $e^{2\pi i k/T_G}$)

$$T_G = r + 1, \ 2r - 1, \ r + 1, \ 2r - 2,$$

$$\left\langle \frac{\mathrm{Tr}\lambda^2}{16\pi^2} \right\rangle_{SU(r+1)} = \Lambda^3 , \qquad \left\langle \frac{\mathrm{Tr}\lambda^2}{16\pi^2} \right\rangle_{SO(2r+1)} = 2^{\frac{4}{2r-1}-1}\Lambda^3 ,$$
$$\left\langle \frac{\mathrm{Tr}\lambda^2}{16\pi^2} \right\rangle_{USp(2r)} = 2^{1-\frac{2}{r+1}}\Lambda^3 , \qquad \left\langle \frac{\mathrm{Tr}\lambda^2}{16\pi^2} \right\rangle_{SO(2r)} = 2^{\frac{2}{r-1}-1}\Lambda^3 ,$$

U(1)-Related (Konishi) Anomaly

$$-\frac{1}{4}\bar{D}^2(Q^{\dagger}e^VQ) = m\tilde{Q}Q + \frac{g^2}{16\pi^2}\mathrm{Tr}W_{\alpha}W^{\alpha}$$

Im. part of the F-component = $U_A(1)$ anomaly

• In SQCD

$$\{\bar{Q}_{\dot{\alpha}}, \bar{\psi}^{\dot{\alpha}}Q\} = m\,\tilde{Q}Q - \frac{g^2}{16\pi^2} \mathrm{Tr}\lambda_{\alpha}\lambda^{\alpha}$$

• Vacuum alligned with mass perturbation

$$\langle m_i \tilde{Q}_i Q_i \rangle = \langle \frac{g^2}{16\pi^2} \text{Tr} \lambda_\alpha \lambda^\alpha \rangle \quad (\text{no sum}) \quad i = 1, \dots n_f$$

cfr. Dashen; $\langle \bar{\psi}_i \psi_i \rangle = -\Lambda^2$ (i = u, d, s)

• General chiral gauge th with $\mathcal{W}(\Phi_i)$

$$-\frac{1}{4}\bar{D}^{2}(\Phi_{i}^{\dagger}e^{V}\Phi_{i}) = \Phi_{i}\frac{\partial\mathcal{W}}{\partial\Phi_{i}} + C(\Phi_{i})\frac{g^{2}}{16\pi^{2}}\mathrm{Tr}W_{\alpha}W^{\alpha} \quad (\S)$$

• Check of dynamical calculation (Instantons) and general argument

- Derivation: $\delta \Phi_i = i A(z) \Phi_i$ (A(z) arbitrary) \rightarrow Jacobian $J = \det(\delta \Phi'_{z'}/\delta \Phi_z) = \det\langle z' | e^{iA(z)}(-\frac{\bar{D}^2}{4}) | z \rangle = e^{\operatorname{Tr} iA(z) - \frac{\bar{D}^2}{4}}$
- Regularize the high eigenvalues by

$$\operatorname{Tr}\left[iA(z)\frac{-\bar{D}^2}{4}\right] \to \lim_{M \to \infty} \operatorname{Tr}\left[iA(z)e^{L/M^2}\left(\frac{-\bar{D}^2}{4}\right)\right]$$
$$L \equiv \bar{D}^2 e^{-V} D^2 e^{V} / 16$$

• Acting on $\frac{-\bar{D}^2}{4}$ $L = P^2 - \frac{1}{2}W^{\alpha}D_{\alpha} + C^{\mu}P_{\mu} + F,$

where

$$\begin{split} W^{\alpha} &= -\frac{1}{4} (\bar{D}^2 e^{-V} D^{\alpha} e^V), \\ C^{\mu} &= -\frac{1}{2} \, \sigma^{\mu}_{\alpha \dot{\alpha}} (\bar{D}^{\dot{\alpha}} e^{-V} D^{\alpha} e^V), \\ F &= (\bar{D}^2 e^{-V} D^2 e^V) / 16. \end{split}$$

• $M \to \infty$;

$$\int d^4 p \, e^{-p^2/M^2} \sim M^4;$$

each power of L/M^2 from the exponent; also

 $\langle \theta \bar{\theta} | D D \bar{D}^2 | \theta \bar{\theta} \rangle \neq 0,$

- \therefore only terms quadratic in $\frac{1}{2}W^{\alpha}D_{\alpha}$ contribute \Rightarrow (§)
- Pauli-Villars, Supergraph 1–loop calculation, Point-splitting, BPHZ, (Clark-Love, Gates-Grisaru-Rocek-Siegel, Piguet-Sibold, Konishi, Konishi-Shizuya); All these methods in Component formalism
- Functional-integral method particulary elegant for generalization

Intrilligator, Leigh, Seiberg ('94)

• $\mathcal{N} = 1$ Gauge theory G with generic matter ϕ_i with

$$\mathcal{W}_{tree}(\phi_i) = \sum_r g_r X^r(\phi_i)$$

- Set $\mathcal{W}_{tree}(\phi_i) = 0$ first. \rightarrow Flat directions along ϕ_i . Reinterpret in terms of gauge invariant composites (as (*) for SQCD).
- Turn on g_r and Λ_s . \mathcal{W}_{eff} restricted by

(i) **holomorphy** (i.e. holomorphic in g_r, X_r, Λ_s .)

(ii) **invariance under various symmetries.** If some symmetry is broken by \mathcal{W} , it can be regarded as exact, by assigning appropriately the charges to g_r , Λ_s

(iii) Asymptotics

• In many cases these are sufficient to determine \mathcal{W}_{eff} exactly.

Phases of SQCD; Seiberg duality

- Massless SQCD
 - \rightarrow Superpot. (#); Vacuum runaway ($n_f < n_c$);
 - \rightarrow No generation of superpotential for $n_f > n_c$
- $n_f = n_c$: $(C.M.S.) \quad \det M - B \tilde{B} = 0 \quad (*)$ $(Q.M.S.) \quad \det M - B \tilde{B} = \Lambda^{2n_f}$
- $\frac{3n_c}{2} < n_f < 3n_c$ (Conformal window), infrared fixed point (SCFT): described either as the original SQCD (with Q, \tilde{Q}) or as dual $SU(\tilde{n}_c) = SU(n_f n_c)$ theory with dual quarks (q, \tilde{q}, M) (Seiberg, Kutasov, Schwimmer, ...)

N_f	Deg.Freed.	Eff. Gauge Group	Phase	Symmetry
0 (SYM)	-	-	Confinement	-
$1 \le N_f < N_c$	-	-	no vacua	-
N_c	$M,B, ilde{B}$	-	Confinement	$U(N_f)$
$N_c + 1$	M, B, \tilde{B}	-	Confinement	Unbroken
$N_c + 1 < N_f < \frac{3N_c}{2}$	$q, ilde{q}, M$	$SU(ilde{N}_c)$	Free-magnetic	Unbroken
$\frac{3N_c}{2} < N_f < 3N_c$	q, \tilde{q}, M or Q, \tilde{Q}	$SU(\tilde{N}_c)$ or $SU(N_c)$	\mathbf{SCFT}	Unbroken
$N_f = 3N_c$	$Q, ilde{Q}$	$SU(N_c)$	SCFT (finite)	Unbroken
$N_f > 3N_c$	$Q, ilde{Q}$	$SU(N_c)$	Free Electric	Unbroken

Lectures on Supersymmetric Gauge Theories II:

Non-Abelian Superconductors and Confinement

K. Konishi

- Confinement in QCD
- Seiberg-Witten solutions for $\mathcal{N} = 2$ susy gauge theories
- Non-Abelian Superconductor: Monopoles, vortices and Confinement

Work with ('98 - '03)

H. Murayama, S. P. Kumar, G. Carlino,

L. Spanu, S. Bolognesi, K. Takenaga,

H. Terao, R. Auzzi, R. Grena, A. Yung

 $\Pi_1(SU(N)/Z_N) \sim Z_N$

 $\implies (Z_N^{(M)}, Z_N^{(E)})$ classification of phases ('t Hooft)

SU(N) YM and Solvable Cousins

• $(Z_N^{(M)}, Z_N^{(E)})$ classification ('t Hooft):

If field with x = (a, b) condense, particles X = (A, B) with

$$\langle x, X \rangle \equiv a B - b A \neq 0 \pmod{N}$$

are confined. (e.g. $\langle \phi_{(0,1)} \rangle \neq 0 \rightarrow$ Higgs phase.)

• Quarks are confined if some field χ exist, s.t.

 $\langle \chi_{(1,0)} \rangle \neq 0$

• Softly Broken N = 4 (to N = 1): all different types of massive vacua, related by SL(2, Z), chiral condensates known

Donagi-Witten, Strassler, Dorey-Kummer

Softly Broken N = 2 Gauge Theories:
 Dynamics particularly transparent

What is χ ? How do they interact ? XSB? θ ; $\frac{\epsilon'}{\epsilon}$; $\Delta I = \frac{1}{2}$?

QCD as **Dual Superconductor**

- *A* Elementary/soliton monopoles
- Monopoles as topological singularities (lines in 4D) of Abelian gauge fixing, $SU(3) \rightarrow U(1)^2$ ('t Hooft)
- SU(2) : $A^a_\mu = \tilde{\sigma}(x)(\partial_\mu \mathbf{n} \times \mathbf{n})^a + \dots, \quad \mathbf{n}(\mathbf{r}) = \frac{\mathbf{r}}{r}$ $\Rightarrow A^a_i = \epsilon_{aij} \frac{r^j}{r^3}$ (Wu-Yang, Cho, Faddeev-Niemi)
- Some evidence in lattice QCD

 $\left(\begin{array}{c} {\rm Di} \mbox{ Giacomo, et. al.} \end{array} \right)$

- Do (Abelian) monopoles carry flavor? (\mathcal{L}_{eff} ?)
- Gauge dependence?
- Dynamical $SU(N) \rightarrow U(1)^{N-1}$ Breaking? Would imply a richer spectrum of mesons $(T_1 \neq T_2, \text{ etc.})$
- In Nature and in QCD:

$$\operatorname{Meson} \sim \sum_{i=1}^{N} | q_i \bar{q}_i \rangle$$

i.e., 1 state vs $\left[\frac{N}{2}\right]$ states ($SU(N) \rightarrow U(1)^{N-1} \times Weyl$ not enough).

Dirac's monopoles

• QED admits pointlike magnetic monopoles if (Dirac)

$$g e = \frac{n}{2}, \qquad n \in \mathbb{Z}, \qquad (1$$

$$\oint_{\partial\Omega} A_i \, dx^i \to \int_{S^2} d\mathbf{S} \cdot \mathbf{H} = 4\pi g, \qquad \mathbf{H} = \nabla \frac{g}{r}.$$

If A regular then LHS $\rightarrow 0$. (!?!) Either Dirac string along $(0,0,0) \rightarrow (0,0,-\infty)$ (invisible if (1) satisfied), or

- Cover S^2 by two regions $a : (0 \le \theta < \frac{\pi}{2} + \epsilon)$ and $b : (\frac{\pi}{2} \epsilon < \theta \le \pi)$ (wu-yang) $(A_{\phi})^a = \frac{g}{r \sin \theta} (1 - \cos \theta), \qquad (A_{\phi})^b = -\frac{g}{r \sin \theta} (1 + \cos \theta),$ $A_i^a = A_i^b - U^{\dagger} \frac{i}{e} \partial_i U, \qquad U = e^{2ige\phi}, \quad \text{OK if } (1))$
- More generally, for dyons (e_1, g_1) , (e_2, g_2) ,

$$e_1 g_2 - e_2 g_1 = \frac{n}{2}, \qquad n \in \mathbb{Z},$$
 (2)

• Topology: $\Pi_1(U(1)) = \mathbb{Z}$

Dirac monopoles in NA gauge theories

- \bullet Use the U(1) subgroup
- But

$$SU(2) \sim S^3$$
, $\Pi_1(SU(2)) = \mathbf{1}$, $SO(3) \sim \frac{S^2}{Z_2}$, $\Pi_1(SO(3)) = \mathbb{Z}_2$, (3)
 \rightarrow NO monopoles in $SU(2)$, $SU(N)$; one type of monopole in $SO(3)$, and so on.

't Hooft-Polyakov

$$SU(2) \xrightarrow{\langle \phi \rangle \neq 0} U(1)$$
$$\mathcal{D}\phi \xrightarrow{r \to \infty} 0, \quad \Rightarrow \quad \phi \sim U \cdot \langle \phi \rangle \cdot U^{-1};$$
$$A_i^a \sim U \cdot \partial_i U^{\dagger} \to \epsilon_{aij} \frac{r_j}{r^3} m, \qquad m = 1, 2, \dots$$

• (ϕ, A_{μ}) represents nontrivial elements of $\Pi_2(SU(2)/U(1)) = \Pi_1(U(1)) = \mathbb{Z}$

• Regular, finite energy configurations (*cfr* Dirac)

$$H = \int d^{3}x \left[\frac{1}{4} (F_{ij}^{a})^{2} + \frac{1}{2} (D_{i}\phi^{a})^{2} + \frac{\lambda}{2} (\phi^{2} - v^{2})^{2} \right]$$

= $\int d^{3}x \left[\frac{1}{4} (F_{ij}^{a} - \epsilon_{ijk}D_{k}\phi^{a})^{2} + \frac{1}{2} F_{ij}^{a}\epsilon_{ijk}D_{k}\phi^{a} + \frac{\lambda}{2} (\phi^{2} - v^{2})^{2} \right]$
• $\frac{1}{2} F_{ij}^{a}\epsilon_{ijk}D_{k}\phi^{a} = \partial_{i}S_{i}; \qquad S_{i} = \frac{1}{2}\epsilon_{ijk}F_{jk}^{a}\phi^{a} = B_{i}^{a}\phi^{a}.$ (Bogomolny equation)
• $H \geq \int d^{3}x \nabla \cdot \mathbf{S} = \frac{4\pi v}{g}m, \quad m = 1, 2, \dots$

• $\lambda = 0$ (BPS):

$$F_{ij}^{a} - \epsilon_{ijk} D_{k} \phi^{a} = 0, \quad \text{or} \quad B_{k}^{a} = D_{k} \phi^{a}, \qquad H = \frac{4\pi v}{g} m,$$
$$A_{i}^{a} = \epsilon_{aij} \frac{r_{j}}{r^{3}} A(r), \qquad \phi^{a} = \frac{r^{a}}{r} \phi(r),$$
$$A(r), \ \phi(r) \text{ known explicitly } (A(r) \to -\frac{1}{r}, \quad \phi(r) \to v),$$

Nonabelian monopoles

 $G \xrightarrow{\langle \phi \rangle \neq 0} H$ $\mathcal{D}\phi \xrightarrow{r \to \infty} 0, \quad \Rightarrow \quad \phi \sim U \cdot \langle \phi \rangle \cdot U^{-1} \sim \Pi_2(G/H) = \Pi_1(H);$ $t^a A_i^a \sim U \cdot \partial_i U^{\dagger} \Longrightarrow F_{ij} = \epsilon_{ijk} \frac{r_k}{r^3} \beta_\ell T_\ell, \qquad T_i \in \text{Cartan S.A. of} \quad H$ **Topological quantization** $\implies 2\alpha \cdot \beta \subset \mathbb{Z}$:

$$\beta_i$$
 = weight vectors of H = dual of H .

(Goddard-Nuyts-Olive, E. Weinberg)

 $\tilde{H} \Leftrightarrow H$

$SU(N)/Z_N$	\Leftrightarrow	SU(N)
SO(2N)	\Leftrightarrow	SO(2N)
SO(2N+1)	\Leftrightarrow	USp(2N)

- Dirac monopoles (Wu-Yang) for $|\phi| \to \infty$;
- 't Hooft-Polyakov monopoles for G = SU(2), H = U(1)

Seiberg-Witten Solution in $\mathcal{N} = 2$ Gauge Theories

• SU(2): Lagrangian is Eq.(1) of I with $W(\Phi) = 0$

$$\left\langle \Phi \right\rangle = \begin{pmatrix} a & 0\\ 0 & -a \end{pmatrix},$$

• $a \neq 0$ breaks $SU(2) \rightarrow U(1)$: at IR,

$$\mathcal{L}_{eff} = \operatorname{Im}\left[\int d^4\theta \,\bar{A} \,\frac{\partial \mathcal{F}_p(A)}{\partial A} + \int \frac{1}{2} \frac{\partial^2 \mathcal{F}_p(A)}{\partial A^2} W_\alpha W^\alpha\right]$$

where W_{α}, A describe $\mathcal{N} = 2 U(1)$ theory

• Define $A_D \equiv \frac{\partial \mathcal{F}_p(A)}{\partial A}$: then

$$\frac{dA_D}{du} = \oint_{\alpha} \frac{dx}{y}, \qquad \frac{dA}{du} = \oint_{\beta} \frac{dx}{y},$$

where $(u \equiv \text{Tr} \langle \Phi^2 \rangle$ describes QMS)

$$y^2 = (x-u)(x+\Lambda^2)(x-\Lambda^2)$$

- Exact mass formula (BPS): $m_{n_m,n_e} = \sqrt{2} | n_m A_D + n_e A |$
- $\mu \Phi^2$ perturbation (Confinement)

$$\mathcal{W}_{eff} = \sqrt{2} A_D M \tilde{M} + \mu U(A_D) \Rightarrow \langle M \rangle \sim \sqrt{\mu \Lambda}$$

• At the singularities $u = \pm \Lambda^2$, instanton sum diverges

$$\langle \text{Tr}\Phi^2 \rangle = \frac{a^2}{2} + \frac{\Lambda^4}{a^2} + \ldots = \ldots + 1 + 1 + 1 + \ldots$$

- Dynamical Abelianization, $SU(N) \rightarrow U(1)^{N-1}$ (cfr QCD)
- These "monopoles" are indeed 't Hooft-Polyakov monopoles

$$\frac{2}{g}Q_e = n_e + \left[-\frac{4}{\pi} \operatorname{Arg} a + \frac{1}{2\pi} \sum_{f=1}^{N_f} \operatorname{Arg} (m_f^2 - 2a^2) \right] n_m + \dots$$

- Jackiw-Rebbi for $n_f = 1, 2, 3$;
- Quantum quenching of Quark Numbers (Carlino-Terao-Konishi)
- Susy breaking (e.g. $m_{\lambda} \lambda \lambda$) \rightarrow nontrivial θ dependence
More general $\mathcal{N} = 2$ models

 $SU(n_c)$, $USp(2n_c)$ or $SO(n_c)$ with n_f Quarks

$$\mathcal{L} = \frac{1}{8\pi} \operatorname{Im} \tau_{cl} \left[\int d^4 \theta \, \Phi^{\dagger} e^V \Phi + \int d^2 \theta \, \frac{1}{2} W W \right] + \mathcal{L}^{(quarks)} + \Delta \mathcal{L},$$

where

$$\Delta \mathcal{L} = \int d^2 \theta \ \mu \operatorname{Tr} \Phi^2, \qquad \tau_{cl} \equiv \frac{\theta_0}{\pi} + \frac{8\pi i}{g_0^2}$$

- ($\mathcal{N} = 2$) gauge multiplet $\Phi = \phi + \sqrt{2} \theta \psi + \dots$; $W_{\alpha} = -i\lambda + \frac{i}{2} (\sigma^{\mu} \bar{\sigma}^{\nu})^{\beta}_{\alpha} F_{\mu\nu} \theta_{\beta} + \dots$ both in the adjoint representation;
 - $\mathcal{L}^{(quarks)} = \sum_{i} \left[\int d^{4}\theta \left\{ Q_{i}^{\dagger} e^{V} Q_{i} + \tilde{Q}_{i}^{\dagger} e^{\tilde{V}} \tilde{Q}_{i} \right\} + \int d^{2}\theta \left\{ \sqrt{2} \tilde{Q}_{i} \Phi Q^{i} + m_{i} \tilde{Q}_{i} Q^{i} \right\} \right]$
- Asymptotic Freedom \rightarrow

$$n_f \le 2n_c, \ 2n_c + 2, \ n_c - 2,$$
 for $SU(n_c), \ USp(2n_c), \ SO(n_c).$

• Global Symmetry $(m_i \rightarrow 0)$:

$$G_{F} = \begin{cases} U(n_{f}) \times Z_{2n_{c}-n_{f}} & SU(n_{c});\\ SO(2n_{f}) \times Z_{2n_{c}+2-n_{f}} & USp(2n_{c});\\ USp(2n_{f}) \times Z_{2n_{c}-2n_{f}-4} & SO(n_{c}) \end{cases}$$

Seiberg-Witten curves in general $\mathcal{N} = 2$ theories

 $SU(n_c)$ ($USp(2n_c)$)

$$y^{2} = \prod_{k=1}^{n_{c}} (x - \phi_{k})^{2} + 4\Lambda^{2n_{c} - n_{f}} \prod_{j=1}^{n_{f}} (x + m_{j}), \qquad SU(n_{c}), \ n_{f} \le 2n_{c} - 2,$$

and

$$y^{2} = \prod_{k=1}^{n_{c}} (x - \phi_{k})^{2} + 4\Lambda \prod_{j=1}^{n_{f}} (x + m_{j} + \frac{\Lambda}{n_{c}}), \qquad SU(n_{c}), \quad n_{f} = 2n_{c} - 1,$$

with
$$\sum_{k=1}^{n_c} \phi_k = 0$$
,
 $USp(2n_c)$:
 $xy^2 = \left[x \prod_{a=1}^{n_c} (x - \phi_a^2) + 2\Lambda^{2n_c + 2 - n_f} m_1 \cdots m_{n_f} \right]^2 - 4\Lambda^{2(2n_c + 2 - n_f)} \prod_{i=1}^{n_f} (x + m_i^2).$

 $SO(n_c)$:

$$y^{2} = x \prod_{a=1}^{[n_{c}/2]} (x - \phi_{a}^{2})^{2} - 4\Lambda^{2(n_{c}-2-n_{f})} x^{2+\epsilon} \prod_{i=1}^{n_{f}} (x - m_{i}^{2}),$$
$$y^{2} = x \prod_{a=1}^{[n_{c}/2]} (x - \phi_{a}^{2})^{2} - 4\Lambda^{2(n_{c}-2-n_{f})} x^{2+\epsilon} \prod_{i=1}^{n_{f}} (x - m_{i}^{2}), \qquad m_{i} = 0,$$

where $\epsilon = 1$ if n_c is even; $\epsilon = 0$ if n_c is odd.

Genus K $(n_c - 1, n_c, [n_c/2]$ for the above groups) hypertorus

$\mu \operatorname{Tr} \Phi^2$ perturbation and $\mathcal{N} = 1$ vacua

The effective action near the

$$(n_{m1}, n_{m2}, \dots, n_{mK}; n_{e1}, n_{e2}, \dots, n_{eK}) = (1, 0, \dots, 0; 0, \dots), \dots, (0, 0, \dots, 1; 0, \dots)$$

singularity is:

$$\mathcal{W} = \sum_{i=1}^{K} \tilde{M}_i \{\sqrt{2} \, a_{Di} + \sum_{k=1}^{n_f} S_k^i \, m_k\} M_i + \mu \, u_2(a_D, a)$$

The vacuum equations:

$$-\frac{\mu}{\sqrt{2}} = \sum_{i=1}^{K} \frac{\partial a_{Di}}{\partial u_2} \tilde{M}_i M_i; \qquad 0 = \sum_{i=1}^{K} \frac{\partial a_{Di}}{\partial u_j} \tilde{M}_i M_i, \quad j = 3, 4, \dots, K+1; \qquad (4)$$

For generic m_i , Eqs.(4) $\rightarrow \tilde{M}_i \neq 0$; $M_i \neq 0$, $\forall i \ (\frac{\partial a_{Di}}{\partial u_j} \text{ and } \frac{\partial a_{Di}}{\partial u_2} \text{ satisfy no special relations.})$ This means that

$$\sqrt{2}a_{Di} + \sum_{k=1}^{n_f} S_k^i m_k = 0 \qquad \forall i \tag{6}$$

i.e., all *K* monopoles are simultaneously massless, and condense. Confinement à la 't Hooft-Mandelstam, corresponding to **dual superconductor** in the maximal Abelian subgroup.

Actually, non-abelian dual superconductors in the $m_i \rightarrow 0$ limit

Vacua of general $\mathcal{N} = 2$ models

QMS of N=2 SQCD (SU(n) with nf quarks)

- N=1 Confining vacua (with $\mu \Phi^2$ perturbation)
- O N=1 vacua (with $\mu \Phi^2$ perturbation) in free magnetic phase
- $G_{eff} \sim SU(r) \times U(1)^{n_c r 1}$; n_f dual quarks^{*} in <u>r</u>
- Confining for $r \leq \frac{n_f}{2}$; SCFT at $r = \frac{n_f}{2}^{**}$ *) What are they? **) What DoF?

QMS of N=2 USp(2n) Theory with n_f Quarks

- N=1 Confining vacua (with $\mu \Phi^2$ perturbation)
- O N=1 vacua (with $\mu \Phi^2$ perturbation) in free magnetic phase
- All r vacua (at finite m) collapse into a single SCFT at $m \to 0$;
- All confining vacua (with $\mu\,\Phi^2$) are of this type;
- Global $SO(2n_f) \to U(n_f)$ Symmetry Breaking $(cfr \langle \bar{\psi} \psi \rangle^{(QCD)} \neq 0)$

Phases of Softly	Broken \mathcal{N}	$\mathcal{N} = 2$ Gauge	Theories
------------------	----------------------	-------------------------	----------

label (r)	Deg.Freed.	Eff. Gauge Group Phase		Global Symmetry
0 (NB)	monopoles	$U(1)^{n_c-1}$	Confinement	$U(n_f)$
1 (NB)	monopoles	$U(1)^{n_c-1}$	Confinement	$U(n_f - 1) \times U(1)$
$2,, \left[\frac{n_f - 1}{2}\right]$ (NB)	dual quarks	$SU(r) \times U(1)^{n_c - r}$	Confinement	$U(n_f - r) \times U(r)$
$n_f/2$ (NB)	rel. nonloc.	-	Almost SCFT	$U(n_f/2) \times U(n_f/2)$
BR	dual quarks	$SU(\tilde{n}_c) \times U(1)^{n_c - \tilde{n}_c}$	Free Magnetic	$U(n_f)$

Table 1: Phases of $SU(n_c)$ gauge theory with n_f flavors. $\tilde{n}_c \equiv n_f - n_c$.

	Deg.Freed.	Eff. Gauge Group	Phase	Global Symmetry
1st Group	rel. nonloc.	-	Almost SCFT	$U(n_f)$
2nd Group	dual quarks	$USp(2\tilde{n}_c) \times U(1)^{n_c - \tilde{n}_c}$	Free Magnetic	$SO(2n_f)$

Table 2: Phases of $USp(2n_c)$ gauge theory with n_f flavors with $m_i \rightarrow 0$. $\tilde{n}_c \equiv n_f - n_c - 2$.

Q.N. of the NA Monopoles

$$SU(3) \xrightarrow{\langle \phi \rangle} \frac{SU(2) \times U(1)}{\mathbb{Z}_2}, \qquad \langle \phi \rangle = \begin{pmatrix} v & 0 & 0\\ 0 & v & 0\\ 0 & 0 & -2v \end{pmatrix}$$

't Hooft-Polyakov solutions in $SU_U(2), SU_V(2) \subset SU(3)$

 \Rightarrow two SU(3) solutions^{*} with $\Pi_1(\frac{SU(2) \times U(1)}{\mathbb{Z}_2}) = \mathbb{Z}$

monopoles	SU(2)	U(1)
\tilde{q}	<u>2</u>	1

$$SU(n) \xrightarrow{\langle \phi \rangle} SU(r) \times U^{n-r}(1), \qquad \langle \phi \rangle = \begin{pmatrix} v_1 \mathbf{1}_{r \times r} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & v_2 & \mathbf{0} & \dots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \dots \\ \mathbf{0} & \mathbf{0} & \dots & v_{n-r+1} \end{pmatrix}$$

- Degenerate *r*-plet of monopole solutions^{**} (q);
- The same charge structure in the *r*-vacua of $\mathcal{N} = 2$ SQCD

monopoles	$\tilde{SU}(r)$	$\tilde{U}_0(1)$	$\tilde{U}_1(1)$	$\tilde{U}_2(1)$		$\tilde{U}_{n-r-1}(1)$
q	<u>r</u>	1	0	0		0
e_1	<u>1</u>	0	1	0		0
e_2	<u>1</u>	0	0	1	0	0
:	<u>1</u>	0				0
e_{n-r-1}	<u>1</u>	0	0			1

• Flavor q.n. of N.A. monopoles? \leftarrow Jackiw-Rebbi

BPS monopoles

* SU(3)

$$SU(3) \xrightarrow{\langle \phi \rangle} SU(2) \times U(1), \qquad \langle \phi \rangle = \begin{pmatrix} v & 0 & 0 \\ 0 & v & 0 \\ 0 & 0 & -2v \end{pmatrix}.$$

A broken $SU_U(2)$ subgroup \rightarrow

$$t^{4} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}; \quad t^{5} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}; \quad \frac{t^{3} + \sqrt{3}t^{8}}{2} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

a solution

$$\phi(\mathbf{r}) = \begin{pmatrix} -\frac{1}{2}v & 0 & 0\\ 0 & v & 0\\ 0 & 0 & -\frac{1}{2}v \end{pmatrix} + 3v(t_4, t_5, \frac{t_3}{2} + \frac{\sqrt{3}t_8}{2}) \cdot \hat{r}\phi(r),$$
$$\vec{A}(\mathbf{r}) = (t_4, t_5, \frac{t_3}{2} + \frac{\sqrt{3}t_8}{2}) \wedge \hat{r}A(r),$$

where $\phi(r)$ and A(r) are BPS- 't Hooft's functions with $\phi(\infty) = 1$, $\phi(0) = 0$, $A(\infty) = -1/r$.

A second solution with the same energy by using another $SU_V(2)$ group.

Nonabelian Monopoles Are Subtle

- ^A "Colored dyons" (?!)¹ (Abouelsaood, Coleman, E. Weinberg, Balachandran, ...)

 I.e. In the background of a non-Abelian monopole not possible to construct globally
 defined T¹ − T³, isomorphic to unbroken SU(2)
- Monopoles are multiplets of the dual \tilde{H} group, not of H. The no-go theorem \rightarrow

$$G_{gauge} \neq H \otimes \tilde{H}$$

- Not justified to study $G \xrightarrow{\langle \phi \rangle \neq 0} H$ as a limit of max.ly broken cases;
- NA monopoles never really semi-classical, even if $\langle \phi \rangle \gg \Lambda_H$:
 - If H broken \Rightarrow approximately degenerate set of monopoles e.g., Pure $\mathcal{N} = 2, SU(3)$
 - If H unbroken \Rightarrow N.A. monopoles in irreps of \tilde{H} . \heartsuit
- \heartsuit realized in the r vacua of $\mathcal{N} = 2$ SQCD with $SU(r) \times U(1)^{n_c-r+1}$ gauge group.

¹No charge fractionalization (Goldstone-Wilczek, Niemi-Paranjape-Semenoff, Witten effect) for non-Abelian charges.

It occurs only for $r < \frac{n_f}{2} \Leftarrow$ Sign-flip of the beta function:

$$b_0^{(dual)} \propto -2r + n_f > 0, \qquad b_0 \propto -2n_c + n_f < 0.$$

- When sign flip not possible (pure $\mathcal{N} = 2$ YM, generic vacua of $\mathcal{N} = 2$ theories) \Rightarrow Dynamical Abelianization!
- QM'ly, NA monopoles requires massless fermions

\mathbb{Z}_N Vortices

 Spanu , Konishi

- \bullet Condensation of NA monopoles \Leftrightarrow Confinement
- $SU(N) \Rightarrow \mathbb{Z}_N$ (in general, $G \Rightarrow C$, a discrete center)
- \exists Vortex if $\Pi_1(G/\mathcal{C})$ nontrivial, e.g. $\Pi_1(SU(N)/\mathbb{Z}_N) = \mathbb{Z}_N$

$$A_i \sim \frac{i}{g} U(\phi) \partial_i U^{\dagger}(\phi); \quad \phi_A \sim U \phi_A^{(0)} U^{\dagger}, \qquad U(\phi) = \exp i \sum_j' \beta_j T_j \phi$$

• Quantization

$$U(2\pi) \in \mathbb{Z}_N, \qquad \alpha \cdot \beta \in \mathbb{Z},$$

- Solutions are irreps of $\tilde{G} = SU(N)$: carry \mathbb{Z}_N (N-ality)
- \mathbb{Z}_N vortices are non-BPS (*cfr.* ANO)
- Tension ratios²

$$T_k \propto \sin \frac{\pi k}{N}$$
? $T_\ell + T_m < T_{\ell+m}$?

²Douglas-Shenker, Hanany-Strassler-Zaffaroni, Herzog-Klebanov, Del Debbio-Panagopoulos-Rossi-Vicari, Lucini-Teper, Auzzi-Konishi

Non-Abelian Vortices Hanany-Tong, Auzzi-Boplognesi-Evslin-Konishi-Yung '03

 $SU(3) \rightarrow SU(2) \times U(1)/\mathbb{Z}_2$:

 $\mathcal{N} = 2$ theory with $4 \le n_f \le 5$ with large bare mass m (with adj mass $\mu \Phi^2$):

$$\Phi = -\frac{1}{\sqrt{2}} \begin{pmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & -2m \end{pmatrix}, \qquad \langle q^{kA} \rangle = \langle \bar{\tilde{q}}^{kA} \rangle = \sqrt{\frac{\xi}{2}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

where $\xi = \sqrt{\mu m} \ll m$. For vortex solution, set $\Phi = \langle \Phi \rangle$; $q = \tilde{q}^{\dagger}$; and $q \to \frac{1}{2}q$:

$$S = \int d^4x \left[\frac{1}{4g_2^2} \left(F^a_{\mu\nu} \right)^2 + \frac{1}{4g_1^2} \left(F^8_{\mu\nu} \right)^2 + \left| \nabla_\mu q^A \right|^2 + \frac{g_2^2}{8} \left(\bar{q}_A \tau^a q^A \right)^2 + \frac{g_1^2}{24} \left(\bar{q}_A q^A - 2\xi \right)^2 \right],$$

$$T = \int d^{2}x \left(\sum_{a=1}^{3} \left[\frac{1}{2g_{2}}F_{ij}^{(a)} \pm \frac{g_{2}}{4}(\bar{q}_{A}\tau^{a}q^{A})\epsilon_{ij}\right]^{2} + \left[\frac{1}{2g_{1}}F_{ij}^{(8)} \pm \frac{g_{1}}{4\sqrt{3}}\left(|q^{A}|^{2} - 2\xi\right)\epsilon_{ij}\right]^{2} + \frac{1}{2}\left|\nabla_{i}q^{A} \pm i\epsilon_{ij}\nabla_{j}q^{A}\right|^{2} \pm \frac{\xi}{2\sqrt{3}}\tilde{F}^{(8)}\right)$$

$$(7)$$

Example of Non-Abelian Vortices in $\mathcal{N} = 2$ SQCD

Non-Abelian Bogomolny equations (Auzzi, Bolognesi, Evslin, Konishi,

Yung, hep-th/0307287)

$$\frac{1}{2g_2}F_{ij}^{(a)} \pm \frac{g_2}{4}(\bar{q}_A\tau^a q^A)\epsilon_{ij} = 0, \qquad (a = 1, 2, 3); \qquad \frac{1}{2g_1}F_{ij}^{(8)} \pm \frac{g_1}{4\sqrt{3}}\left(|q^A|^2 - 2\xi\right)\epsilon_{ij} = 0,$$
$$\nabla_i q^A + i\varepsilon\epsilon_{ij}\nabla_j q^A = 0, \qquad A = 1, 2.$$

Abelian (particular) solutions of $SU(3) \rightarrow U(1) \times U(1)$ by *e.g.* setting $A^1_{\mu} = A^2_{\mu} = 0$, and with squark fields of the 2×2 color-flavor diag. form:

$$q^{kA}(x) = \overline{\tilde{q}}^{kA}(x) \neq 0, \quad \text{only for} \quad k = A = 1, 2.$$

$$q^{kA}(x) = \begin{pmatrix} e^{i\,n\,\varphi}\phi_1(r) & 0\\ 0 & e^{i\,k\,\varphi}\phi_2(r) \end{pmatrix},$$

$$A_i^3(x) = -\varepsilon\epsilon_{ij}\,\frac{x_j}{r^2} \,\left((n-k) - f_3(r)\right), \quad A_i^8(x) = -\sqrt{3}\,\,\varepsilon\epsilon_{ij}\,\frac{x_j}{r^2} \,\left((n+k) - f_8(r)\right)$$

where

$$r\frac{\mathrm{d}}{\mathrm{d}r}\phi_{1}(r) - \frac{1}{2}\left(f_{8}(r) + f_{3}(r)\right)\phi_{1}(r) = 0, \qquad r\frac{\mathrm{d}}{\mathrm{d}r}\phi_{2}(r) - \frac{1}{2}\left(f_{8}(r) - f_{3}(r)\right)\phi_{2}(r) = 0,$$

$$-\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}f_{8}(r) + \frac{g_{1}^{2}}{6}\left(\phi_{1}(r)^{2} + \phi_{2}(r)^{2} - 2\xi\right) = 0, \qquad -\frac{1}{r}\frac{\mathrm{d}}{\mathrm{d}r}f_{3}(r) + \frac{g_{2}^{2}}{2}\left(\phi_{1}(r)^{2} - \phi_{2}(r)^{2}\right) = 0.$$

with boundary conds for the gauge fields:

$$f_3(0) = \varepsilon_{n,k} (n-k), \quad f_8(0) = \varepsilon_{n,k} (n+k), \quad f_3(\infty) = 0, \quad f_8(\infty) = 0$$

and the requirement that the squark fields be everywhere regular. Also

 $\phi_1(\infty) = \sqrt{\xi}, \quad \phi_2(\infty) = \sqrt{\xi}$

Figure 1: Vortex profile functions $\phi_1(r)$ and $\phi_2(r)$ of the (1,0)-string. Note $\phi_1(0) = 0$.

Figure 2: The profile functions $f_3(r)$ and $f_8(r)$ for the (1,0)-string.

Exact Symmetry

The $SU(3) \to SU(2) \times U(1) \to \emptyset$ theory has unbroken (both by inter. and by VEVS) global symmetry, $SU(2)_{C+F}$.

 $SU(2)_{C+F}$ broken (to a U(1)) by a vortex configuration \Rightarrow continuous vortex zero modes (moduli) of

$$SU(2)/U(1) = S^2 = \mathbf{CP}^1$$

Minimum vortex of generic orientation:

$$\begin{aligned} q^{kA} &= U \begin{pmatrix} e^{i\varphi}\phi_1(r) & 0\\ 0 & \phi_2(r) \end{pmatrix} U^{-1} = e^{\frac{i}{2}\varphi(1+n^a\tau^a)} U \begin{pmatrix} \phi_1(r) & 0\\ 0 & \phi_2(r) \end{pmatrix} U^{-1}, \\ \mathbf{A}_i(x) &= U[-\frac{\tau^3}{2}\epsilon_{ij}\frac{x_j}{r^2}[1-f_3(r)]] U^{-1} = -\frac{1}{2}n^a\tau^a\epsilon_{ij}\frac{x_j}{r^2}[1-f_3(r)], \\ A_i^8(x) &= -\sqrt{3}\epsilon_{ij}\frac{x_j}{r^2}[1-f_8(r)] \end{aligned}$$

where³

$$U \in SU(2)_{C+F}$$

The tension

$$T = 2\pi\xi$$

independent of U.

³Explicitly, if $n^a = (\sin \alpha \cos \beta, \sin \alpha \sin \beta, \cos \alpha)$, the rotation matrix is given by $U = \exp -i\beta \tau_3/2 \exp -i\alpha \tau_2/2$.

Remarks

• Reduction of the vortex spectrum (meson spectrum): (Fig)

$$\Pi_1(\frac{U(1) \times U(1)}{\mathbb{Z}_2}) = \mathbb{Z}^2$$

to

$$\Pi_1(\frac{SU(2) \times U(1)}{\mathbb{Z}_2}) = \mathbb{Z}$$

- Transition from abelian (m_i ≠ m_j) to nonabelian (m_i = m) superconductivity reliably and quantum mechanically analysed
- (Indirect) solution for the "existence problem" of nonabelin **monopoles**
- Dynamics of vortex zero modes

$$\mathbf{n} \to \mathbf{n}(z, t)$$
$$S_{\sigma}^{(1+1)} = \beta \int d^2x \, \frac{1}{2} \, (\partial \, n^a)^2 + \text{fermions}.$$

 $O(3) = \mathbb{CP}^1$ sigma model! Dual (shifman et.al.; Vafa-Hori) to a chiral theory with two vacua \rightarrow No spontaneous breaking of $SU(2)_{C+F} \Leftrightarrow$ confining, dual SU(2) (Witten index = 2). Reduction of the vortex spectrum (meson spectrum)

Figure 3: Lattice of (n,k) vortices in the theory $SU(3) \to U(1)^2$.

Figure 4: Reduced lattice of \mathbb{Z} vortices $SU(3) \to SU(2) \times U(1)$.

Subtle are Non-Abelian Vortices (too)

Auzzi, Bolognesi, Evslin, Konishi, Yung; Hanany, Tong

• General setting: **Gauge** group broken as

$$G \xrightarrow{\langle \phi \rangle \neq 0} H \xrightarrow{\langle \phi' \rangle \neq 0} \emptyset, \qquad \langle \phi \rangle \gg \langle \phi' \rangle,$$

• An exact **global** symmetry $H_{C+F} \subset H \otimes G_F$ (not spontaneously broken), but broken by the vortex to G_0

 \Rightarrow Vortex zero modes (moduli) $\sim H_{C+F}/G_0$

• $SU(N) \rightarrow \frac{SU(N-1) \times U(1)}{\mathbb{Z}_{N-1}} \rightarrow \emptyset$ system with $2N > N_f \ge 2(N-1)$ \Rightarrow Vortex with 2(N-2)-parameter family of zeromodes

$$\frac{SU(N-1)}{SU(N-2) \times U(1)} \sim \mathbf{C}\mathbf{P}^{N-2}.$$

- Vortices with non-Abelian quantum numbers
- Monopoles of G/H are confined by magnetic vortices of $H \to \emptyset$;
- **Both** described by $\Pi_1(H)$

- Q-M'ly, non-Abelian vortices also requires massless quark flavors!
- Monopoles can be attached at the ends of the vortex (Figure) (\mathbb{Z}_{N-1} factor crucial)

Almost Superconf. Confining Vacua

Auzzi, Grena, Konishi

Sextet Vacua of SU(3), $n_f = 4$ Model

$$y^{2} = \prod_{i=1}^{3} (x - \phi_{i})^{2} - \prod_{a=1}^{4} (x + m_{a}) \equiv (x^{3} - Ux - V)^{2} - \prod_{a=1}^{4} (x + m_{a}).$$

For equal bare quark masses $(m_a = m)$, it simplifies:

$$y^{2} = \prod_{i=1}^{3} (x - \phi_{i})^{2} - (x + m)^{4} \equiv (x^{3} - Ux - V)^{2} - (x + m)^{4}.$$

The sextet vacua: $diag \phi = (-m, -m, 2m)$, i.e.,

$$U = \langle \operatorname{Tr} \Phi^2 \rangle = 3 \, m^2; \qquad V = \langle \operatorname{Tr} \Phi^3 \rangle = 2 \, m^3,$$

where the curve exhibits a singular behavior, $y^2 \propto (x+m)^4$ corresponding to the unbroken SU(2).

Mass Formula

$$M_{(g_1,g_2;q_1,q_2)} = \sqrt{2} |g_1 a_{D1} + g_2 a_{D2} + q_1 a_1 + q_2 a_2|.$$

$$a_{D1} = \oint_{\alpha_1} \lambda, \qquad a_{D2} = \oint_{\alpha_2} \lambda, \qquad a_1 = \oint_{\beta_1} \lambda, \qquad a_2 = \oint_{\beta_2} \lambda,$$

where the (meromorphic) one-form λ is given by

$$\lambda = \frac{x}{2\pi} d \log \frac{\prod (x - \phi_i) - y}{\prod (x - \phi_i) + y}.$$

Expansion near the SCFT Point

$$U = 3m^2 + u, \qquad V = 2m^3 + v,$$

The discriminant of the curve factorizes as

$$\Delta = \Delta_s \,\Delta_+ \,\Delta_-, \qquad \Delta_s = (m \, u - v)^4$$

and the loci of $\Delta = 0$ are

$$v = m u,$$
 $v = m u + \frac{u^2}{4},$ $v = m u - \frac{u^2}{4}.$

By rescaling $u = m \tilde{u}, v = m^2 \tilde{v}$, intersecting them with a S^3

$$|\tilde{u}|^2 + |\tilde{v}|^2 = 1.$$

and making a stereographic projection from $S^3 \to R^3$

Monodromy and Charges

Monodromy around $M_1 \Rightarrow$

$$\alpha_1 \to \alpha_1, \qquad \beta_1 \to \beta_1 - 4\alpha_1, \qquad \alpha_2 \to \alpha_2, \qquad \beta_2 \to \beta_2.$$

The monodromy transformation:

$$\begin{pmatrix} a_{D1} \\ a_{D2} \\ a_1 \\ a_2 \end{pmatrix} \to M_1 \begin{pmatrix} a_{D1} \\ a_{D2} \\ a_1 \\ a_2 \end{pmatrix}, \qquad M_1 = \tilde{M}_1^4, \quad \tilde{M}_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(8)

From

$$M = \begin{pmatrix} \mathbf{1} + \vec{q} \otimes \vec{g} & \vec{q} \otimes \vec{q} \\ -\vec{g} \otimes \vec{g} & \mathbf{1} - \vec{g} \otimes \vec{q} \end{pmatrix}$$
(9)

the (four) massless particles at the singularity $\tilde{v} = \tilde{u}$ have charges

$$(g_1, g_2; q_1, q_2) = (1, 0; 0, 0).$$

Analogously:

$$M_{2} = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad M_{6} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{pmatrix}, \quad etc.$$

Conjugations:

$$M_{1} = M_{6}^{-1}A_{5}M_{6}, \quad A_{2} = M_{2}^{-1}M_{1}M_{2}, \quad M_{4} = M_{3}^{-1}A_{2}M_{3}, \quad A_{5} = M_{5}^{-1}M_{4}M_{5},$$

$$M_{2} = M_{1}^{-1}A_{6}M_{1}, \quad A_{3} = M_{3}^{-1}M_{2}M_{3}, \quad M_{5} = M_{4}^{-1}A_{3}M_{4}, \quad A_{6} = M_{6}^{-1}M_{5}M_{6},$$

$$M_{3} = M_{2}^{-1}A_{1}M_{2}, \quad A_{4} = M_{4}^{-1}M_{3}M_{4}, \quad M_{6} = M_{5}^{-1}A_{4}M_{5}, \quad A_{1} = M_{1}^{-1}M_{6}M_{1}$$

$$M_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad M_{2} = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad M_{3} = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \end{pmatrix}, \qquad M_{4} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 4 & 1 & 0 \\ 4 & -4 & 0 & 1 \end{pmatrix}, \qquad M_{5} = \begin{pmatrix} -1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 4 & 3 & 0 \\ 4 & -4 & -2 & 1 \end{pmatrix}, \qquad M_{6} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{pmatrix}, \qquad A_{1} = \begin{pmatrix} -3 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -16 & 4 & 5 & 0 \\ 4 & -1 & -1 & 1 \end{pmatrix}, \qquad A_{2} = \begin{pmatrix} -3 & 0 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad A_{3} = \begin{pmatrix} 3 & -2 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 4 & -1 & 0 \\ 4 & -4 & -2 & 1 \end{pmatrix}, \qquad A_{4} = \begin{pmatrix} -3 & 3 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -16 & 12 & 5 & 0 \\ 12 & -9 & -3 & 1 \end{pmatrix}, \qquad A_{5} = \begin{pmatrix} -3 & 4 & 4 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 4 & 5 & 0 \\ 4 & -4 & -4 & 1 \end{pmatrix}, \qquad A_{6} = \begin{pmatrix} 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -4 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

N.B.

$$M_1 = (\tilde{M}_1)^4$$
, $M_4 = (\tilde{M}_4)^4$, $A_2 = (\tilde{A}_2)^4$, $A_5 = (\tilde{A}_5)^4$,

with

$$\tilde{M}_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \tilde{M}_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix},$$
$$\tilde{A}_{2} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \tilde{A}_{5} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 1 & 2 & 0 \\ 1 & -1 & -1 & 1 \end{pmatrix}.$$

\Rightarrow Charges

$$\begin{split} M_1 &: (1,0;0,0)^4, \quad M_4 :: (-1,1;0,0)^4, \quad M_2 :: (-2,0;1,0), \quad M_5 :: (2,-2;-1,0), \\ A_2 &: (-1,0;1,0)^4, \quad A_5 :: (1,-1;-1,0)^4, \quad A_3 :: (-2,2;-1,0), \quad A_6 :: (2,0;1,0), \\ M_3 &: (0,1;-1,0), \quad M_6 :: (0,1;1,0), \quad A_4 :: (4,-3;-1,0), \quad A_1 :: (-4,1;1,0), \end{split}$$

(A) Which q.n. with respect to $SU(2) \times U(1)$?

(B) Which of them are actually there at the SCFT Point as LEEDF ?

- (C) How do they give $\beta = 0$?
- (D) How do they interact ?

Ans. to (A):

$$\tilde{m}_1 = m_1; \quad \tilde{q}_1 = q_1 - \frac{1}{2}q_2; \qquad U_1(1) \subset SU(2);$$

and

$$\tilde{m}_2 = m_1 + 2 m_2; \quad \tilde{q}_2 = \frac{1}{2} q_2, \qquad U_2(1);$$

 \Rightarrow

Matrix	Charge
M_1, M_4	$(\pm 1, 1, 0, 0)^4$
A_{2}, A_{5}	$(\pm 1, -1, \mp 1, 0)^4$
M_2, M_5	$(\pm 2, 2, \mp 1, 0)$
A_{3}, A_{6}	$(\pm 2, -2, \pm 1, 0)$
M_3, M_6	$(0, 2, \pm 1, 0)$
A_1, A_4	$(\pm 4, -2, \mp 1, 0)$

Superconformal Limit (u = 0, v = 0) :

• Large torus: $\tau_{22} \rightarrow 1$ (Weakly interacting U(1) theory);

- Small torus (SU(2)) : τ_{11} depends on the way $u, v \to 0$!
- τ_{11} depends only on ρ where $v = \epsilon^2$; $u = \epsilon \rho$
- At different phase of ε ⇒ different sections (SU(2, Z)-related descriptions of the same physics!) (
 Ans. to (B))

+2i	(0, 1)	(4, -1)	(0, 1)	(0, -1)	(-4, 1)	(0, -1)	
2	(2,1)	(2, -1)	(2, -1)	(-2, -1)	(-2, 1)	(-2,1)	
-2i	(0, -1)	(-4, 1)	(0, -1)	(0, 1)	(4, -1)	(0, 1)	
-2	(-2, -1)	(-2,1)	(-2,1)	(2,1)	(2, -1)	(2, -1)	
∞	$(\pm 1, 0)^4$	$(\mp 1, 0)^4$	$(\pm 1, \mp 1)^4$	$(\mp 1, 0)^4$	$(\pm 1, 0)^4$	$(\mp 1, \pm 1)^4$	

 $\label{eq:constraint} \heartsuit \ \ {\rm Define \ SCFT \ in \ the \ limit,} \quad \epsilon \to 0, \quad \rho \to 0.$

Renormalization-Group Fixed Point

• Inversion formula

$$\frac{1}{2} = \frac{\theta_{00}^4(0,\tau_{11})}{\theta_{10}^4(0,\tau_{11})} \longrightarrow \tau_{11} = \frac{\pm 1+i}{2}, \quad \frac{\pm 3+i}{10}, \quad \dots$$

Other solutions by SL(2,Z) transformations $\tau \to \tau + 2$; $\tau \to \frac{\tau}{1-2\tau}$

• Cancellation of b_0 (Consider $U_1(1) \subset SU(2)$)

i) $(\mp 1, 0)^4$ cancel the contr. of the gauge multiplets ;

ii) $(\pm 2, \pm 1)$ and $(0, \pm 1)$ cancel (*cfr*: Argyres-Douglas)

$$\sum_{i} (q_i + m_i \tau)^2 = 1 + (2\tau + 1)^2 = 0, \quad \text{for} \quad \tau^* = \frac{-1+i}{2}$$

iii) In the second section $(\pm 4, \mp 1)$ and $(\pm 2, \mp 1)$ cancel for $\tau^* = \frac{3+i}{10}!$

- iv) Different sections \Rightarrow Different description of the Same physics
- Low Energy Theory is an interacting SCFT with

 $SU(2) \times U(1)$ Gauge Group and 4 magnetic monopole doublets, one dyon doublet and one electric doublet. (Ans. to (C))
Unequal masses: Six Colliding $\mathcal{N} = 1$ Local Vacua:

- Each $\mathcal{N} = 1$ theory is a local $U(1)^2$ theory with $M_i, \tilde{M}_i, (i = 1, 2) \Rightarrow 12$ hypermultiplets (as in the SCFT);
- Effect of $\mathcal{N} = 1$ perturbation $\mu \operatorname{Tr} \Phi^2$ in terms of an effective Lagrangian:

$$\mathcal{P} = \sum_{i=1}^{2} \sqrt{2} A_{D_i} M_i \tilde{M}_i + \mu U(A_{D1}, A_{D2}) + \text{mass terms}$$

 $\Rightarrow \langle M_i \rangle \neq 0, \ \langle \tilde{M}_i \rangle \neq 0$ (Confinement);

• But in the $m_i \rightarrow m$ (SCFT Limit)

$$\langle M_i \rangle \to 0, \quad \langle \tilde{M}_i \rangle \to 0,$$

!!?? Deconfinement? (cfr. Gorski, Yung, Vainshtein)

• We do know (the large μ analysis, vacuum counting, and holomorphic dependence of physic on μ) that

$$G_F = SU(4) \times U(1) \Rightarrow U(2) \times U(2)$$

• Order parameter of the symmetry breaking?

ANS: Condensation of SU(2) doublets \mathcal{M}^i_{α} , ($\alpha = 1, 2, i = 1, ..., 4$)

$$\langle \mathcal{M}^i_{\alpha} \mathcal{M}^j_{\beta} \rangle = \epsilon_{\alpha\beta} C^{ij} \neq 0, \quad \text{or} \quad \langle \mathcal{M}^i_{\alpha} \rangle = \delta^i_{\alpha} v \neq 0$$

due to the SU(2) interactions. (Probable Ans. to (D))

Summarizing:

Softly broken $\mathcal{N} = 2$, $SU(n_c)$ gauge theories with n_f quarks \Rightarrow confining vacua with:

• Physics quite different for

(i) $r = 0, 1 \Rightarrow$ Weakly coupled Abelian monopoles; (ii) $r < \frac{n_f}{2} \Rightarrow$ Weakly coupled non-Abelian monopoles; (iii) $r = \frac{n_f}{2} \Rightarrow$ Strongly coupled non-Abelian monopoles,

• Both at generic r - vacua and at the SCFT $(r=\frac{n_f}{2})$ vacua,

$$\langle \mathcal{M}^i_{\alpha} \rangle = \delta^i_{\alpha} v \neq 0, \qquad (\alpha = 1, 2, \dots, r; \quad i = 1, 2, \dots, n_f)$$

("Color-Flavor-Locking")

• Gauge invariant condensates are

$$\epsilon^{\alpha_1 \alpha_2 \dots \alpha_r} \mathcal{M}^{i_1}_{\alpha_1} \mathcal{M}^{i_2}_{\alpha_2} \dots \mathcal{M}^{i_r}_{\alpha_r} \sim U(1)$$
 monopole?

- No dynamical Abelianization
- QCD with n_f flavor ($\tilde{n}_c = 2, 3, n_f = 2, 3$)

$$b_0 = 11 n_c - 2 n_f \quad \Rightarrow \quad \tilde{b}_0 = 11 \tilde{n}_c - n_f$$

No sign flip (no weakly-coupled nonabelian monopoles)

- Strongly-interacting nonabelian superconductor
- \bullet Hint from r-vacua and from the almost SCF vacua

$$\langle \mathcal{M}_{L,\alpha}^i \rangle = \delta^i_{\alpha} v_R \neq 0, \quad \langle \mathcal{M}_{R,i}^\alpha \rangle = \delta^\alpha_i v_L \neq 0, \quad (\alpha = 1, 2, \dots \tilde{n}_c; i = 1, 2, \dots n_f)$$

• A better picture might be

$$\langle \mathcal{M}_{L,\alpha}^{i} \mathcal{M}_{R,j}^{\alpha} \rangle = \text{const.} \, \delta_{j}^{i} \neq 0;$$

for $\tilde{n}_c = 2, n_f = 2$

$$G_F = SU_L(2) \times SU_R(2) \Rightarrow SU_V(2)$$

Lectures on Supersymmetric Gauge Theories III:

Recent developments

 $(Dijkgraaf-Vafa \ hep-th/0208048, \ Cachazo-Douglas-Seiberg-Witten \ hep-th/0211170)$

K. Konishi

- Chiral Rings of Operators
- Generalized Konishi anomaly and Determination of W_{eff}
- Confinement Index
- $\mathcal{N} = 2$ vs $\mathcal{N} = 1$ approaches
- Phases and Multiplication Maps

Veneziano-Yankielovicz Eff. Action

• $\mathcal{N} = 1$ susy SU(N) Yang-Mills ($W_{\alpha} = -i\lambda + \frac{i}{2} (\sigma^{\mu} \bar{\sigma}^{\nu})^{\beta}_{\alpha} F_{\mu\nu} \theta_{\beta} + \dots$) $\mathcal{L}^{bare} = \int d^2 \theta \frac{1}{g_0^2} WW = \int d^2 \theta \frac{1}{g_0^2} S$

$$S \equiv W^{\alpha}W_{\alpha} = -\lambda\lambda + \dots - \frac{1}{2}F_{\mu\nu}^{2} - i\lambda\sigma^{\nu}\mathcal{D}_{\nu}\bar{\lambda} + \mathcal{L}^{VY} = kin.term - \int d^{2}\theta S \left[\log\frac{S^{N}}{\Lambda^{3N}} - N\right] + h.c. \quad (\&)$$

• 1-loop renormalization

$$\left[\frac{1}{g_0^2} + b_0 \log \frac{M}{S^{1/3}}\right]S = \frac{1}{g(S)^2}S = b_0 S \log \frac{S^{1/3}}{\Lambda}, \qquad b_0 = 3N$$

• $\mathcal{L}^{VY} \to \langle S \rangle = \Lambda^3 \exp 2\pi i k / N$, with k = 1, 2, ... N ($Z_{2N} \subset U_A(1)$ broken to Z_2)

• Under $\lambda \to e^{i\alpha}\lambda$

$$\Delta \mathcal{L}^{VY} = 2N \, \alpha \, F_{\mu\nu} \tilde{F}^{\mu\nu}$$

• $\int e^{iS}$ invariant under Z_{2N} while (&) not invariant under Z_{2N} !?! \rightarrow Chirally symmetric vacuum (Kovner, Shifman) ? No.

Chiral Rings in Theory with adjoint field Φ

- $\mathcal{N} = 1$ susy U(N) gauge theory $\mathcal{L} = \frac{1}{8\pi} \operatorname{Im} \tau_{cl} \left[\int d^4 \theta \, \Phi^{\dagger} e^V \Phi + \int d^2 \theta \, \frac{1}{2} W W \right] + \int d^2 \theta \, \mathcal{W}(\Phi) + h.c.$ $\Delta \mathcal{L} = \int d^2 \theta \, \mu \operatorname{Tr} \Phi^2 + h.c., \qquad \tau_{cl} \equiv \frac{\theta_0}{\pi} + \frac{8\pi i}{g_0^2}$ • $(\mathcal{N} = 1)$ multiplets $\Phi = \phi + \sqrt{2} \theta \, \psi + \dots; W_{\alpha} = -i\lambda + \frac{i}{2} (\sigma^{\mu} \bar{\sigma}^{\nu})^{\beta}_{\alpha} F_{\mu\nu} \theta_{\beta} + \dots$ $\mathcal{W}(\Phi) = \sum_{k=0}^n \frac{g_k}{k+1} \operatorname{Tr} \Phi^{k+1}. \qquad (1)$
- Gauge inv. chiral composites, modulo $\{\bar{Q}, \ldots\} \rightarrow$

{ Tr Φ^k , Tr $W_{\alpha} \Phi^k$, Tr $W^{\alpha} W_{\alpha} \Phi^k$ } (%)

• Perturbatively (for k > N), e.g.,

$$\operatorname{Tr} \Phi^{k} = \mathcal{P}(\{u_{i}\}), \qquad u_{i} = \operatorname{Tr} \Phi^{j}, \qquad j \leq N,$$
$$\frac{\partial}{\partial \Phi} \mathcal{W}(\Phi) = \bar{D}^{2}(\ldots) = 0, \qquad S^{N} = 0, \qquad (\$)$$

Problem

• Classically $\{a_i\}$ = eigenvalues of Φ ,

$$\mathcal{W}'(z) = g_n \prod_i^n (z - a_i) \quad \to \quad U(N) \Rightarrow \prod_i U(N_i)$$

• Low-energy eff. degrees of freedom are

$$S_{i} = \frac{1}{16\pi^{2}} \operatorname{Tr} W_{i}^{\alpha} W_{\alpha i}, \qquad w_{\alpha i} = \frac{1}{4\pi} \operatorname{Tr} W_{\alpha i} :$$
$$\mathcal{L}_{eff} = \int d^{2}\theta \, \mathcal{W}_{eff}(S_{i}, w_{\alpha i}, g_{k}) + \dots$$

 \bullet

$$\int \mathcal{D}\Phi \, e^{iS} = e^{i\int \mathcal{L}_{eff}} = \exp i \int d^6 z \, \mathcal{W}_{eff}(S_i, w_{\alpha i}, g_k)$$

- Problem: Compute $W_{eff}(S_i, w_{\alpha i}, g_k)$
- Idea

$$\frac{\partial}{\partial g_k} \mathcal{W}_{eff}(S_i, w_{\alpha i}, g_k) = \langle \operatorname{Tr} \frac{\Phi^{k+1}}{k+1} \rangle, \qquad (2)$$

etc. Determine all chiral condensates as fns of $S_i, w_{\alpha i}, g_k$

Symmetries

Fields	Δ	Q_{Φ}	Q_R	Q_{θ}
Φ	1	1	$\frac{2}{3}$	0
W_{α}	$\frac{3}{2}$	0	1	1
g_l	2-l	-(l+1)	$\frac{2}{3}(2-l)$	2
Λ^{2N}	2N	2N	$\frac{4N}{3}$	0

• $U_{\Phi}(1)$: $\Phi \to e^{i\alpha} \Phi$ is anomalous at one loop only \Rightarrow for $\geq 2 \, loops$

$$\mathcal{W}_{eff} = W_{\alpha}^2 F(g_k W_{\alpha}^{k-1}/g_1^{(k+1)/2}), \quad \text{or}$$
$$\left[\sum_k (2-k) g_k \frac{\partial}{\partial g_k} + \frac{3}{2} W_{\alpha} \frac{\partial}{W_{\alpha}}\right] \mathcal{W}_{eff} = 3 \mathcal{W}_{eff}$$

• Index loops (L), vertices (k_i) , genus (g)

$$L = 2 - 2g + \frac{1}{2}\sum_{i}(k_i - 1)$$

- \therefore Only planar diagrams contribute to \mathcal{W}_{eff} (Proof of the conjecture by Dijkgraaf-Vafa)
- $U(1) \subset U(N)$ is free: $\mathcal{W}_{eff}(S_i, w_{\alpha i}, g_k)$ inv under

$$W_{\alpha} \to W_{\alpha} - 4\pi\psi_{\alpha}$$

 \Rightarrow General form of \mathcal{W}_{eff}

$$U(N) \Rightarrow \prod_{i} U(N_{i}),$$

$$\mathcal{W}_{eff} = \sum N_{i} \frac{\partial \mathcal{F}_{p}(S_{k}, g_{k})}{\partial S_{i}} + \frac{1}{2} \sum_{i,j} \frac{\partial^{2} \mathcal{F}_{p}(S_{k}, g_{k})}{\partial S_{i} \partial S_{j}} w_{\alpha i} w_{j}^{\alpha}.$$

$$= \int d^{2} \psi \ \mathcal{F}_{p}(\mathcal{S}_{i}, g_{k});$$

$$\mathcal{S}_{i} = -\frac{1}{2} \operatorname{Tr} \left(\frac{1}{4\pi} W_{\alpha i} - \psi_{\alpha}\right) \left(\frac{1}{4\pi} W_{i}^{\alpha} - \psi^{\alpha}\right) = S_{i} + \psi_{\alpha} w_{i}^{\alpha} - N_{i} \psi_{\alpha} \psi^{\alpha}$$
(3)

ullet (2) \Rightarrow

$$\frac{\partial \mathcal{W}_{eff}}{\partial g_k} = \int d^2 \psi \, \frac{\partial \mathcal{F}_p(\mathcal{S}_i, g_k)}{\partial g_k} = \langle \frac{\Phi^{k+1}}{k+1} \rangle_\Phi$$
$$= -\frac{1}{2(k+1)} \int d^2 \psi \, \langle \operatorname{Tr} \, (\frac{1}{4\pi} W_\alpha - \psi_\alpha)^2 \, \Phi^{k+1} \rangle_\Phi$$

• So

$$\frac{\partial \mathcal{F}_p(\mathcal{S}_i, g_k)}{\partial g_k} = -\frac{1}{2(k+1)} \int d^2 \psi \langle \operatorname{Tr}(\frac{1}{4\pi} W_\alpha - \psi_\alpha)^2 \, \Phi^{k+1} \rangle_\Phi$$

• Problem: find the right hand side

Generalized Konishi Anomaly

• Konishi Anomaly

$$\bar{D}^{2} \operatorname{Tr}\{\bar{\Phi}e^{V}\Phi\} = \operatorname{Tr}\Phi\frac{\partial\mathcal{W}}{\partial\Phi} + \frac{1}{32\pi^{2}}\operatorname{Tr}\left(ad\,W_{\alpha}\,ad\,W^{\alpha}\right) \tag{4}$$

$$\bar{D}^{2}\mathrm{Tr}\{\bar{\Phi}e^{V}\Phi\} = \mathrm{Tr}\,\Phi\frac{\partial\mathcal{W}}{\partial\Phi} + \frac{N}{16\pi^{2}}\mathrm{Tr}\,(W_{\alpha}W^{\alpha}) - \frac{1}{16\pi^{2}}\mathrm{Tr}\,W_{\alpha}\mathrm{Tr}\,W^{\alpha}$$

- \bullet Supersymmetrized form of $U_{\Phi}(1)$ anomaly
- Taking the VEVS

$$\langle \operatorname{Tr} \Phi \frac{\partial \mathcal{W}}{\partial \Phi} \rangle = -\frac{N}{16\pi^2} \langle \operatorname{Tr} (W_{\alpha} W^{\alpha}) \rangle.$$

But

$$L.H.S. = \langle \operatorname{Tr} \sum_{k} g_k \Phi^{k+1} \rangle = \sum_{k} (k+1) g_k \frac{\partial}{\partial g_k} \mathcal{W}_{eff}$$

• (4) à la Fujikawa (Shizuya-Konishi) $\delta \Phi = \alpha \Phi$.

• Generalization $(J_f = \text{Tr}\{\bar{\Phi}e^V f(\Phi, W_\alpha)\})$:

$$\delta \Phi = f(\Phi, W_{\alpha}) \tag{5}$$

$$\bar{D}^2 J_f = \operatorname{Tr} f(\Phi, W_\alpha) \frac{\partial \mathcal{W}}{\partial \Phi} + \frac{1}{32\pi^2} \sum_{ij} [W_\alpha, [W^\alpha, \frac{\partial f}{\partial \Phi_{ij}}]]_{ij}$$
(6)
$$\langle R.H.S. \rangle = 0.$$

• Define

$$\mathcal{R}(z,\phi) = -\frac{1}{2} \operatorname{Tr} \left(\frac{1}{4\pi} W_{\alpha} - \psi_{\alpha}\right)^2 \frac{1}{z - \Phi},$$

$$= R(z) + \psi_{\alpha} w^{\alpha}(z) - \psi^1 \psi^2 T(z),$$
(7)

where generating functions are

$$T(z) = \operatorname{Tr} \frac{1}{z - \Phi}, \quad w^{\alpha} = \frac{1}{4\pi} \operatorname{Tr} W_{\alpha} \frac{1}{z - \Phi},$$
$$R(z) = -\frac{1}{32\pi^{2}} \operatorname{Tr} W_{\alpha} W^{\alpha} \frac{1}{z - \Phi},$$

• By choosing $f(\Phi) = W_{\alpha}W^{\alpha}\frac{1}{z-\Phi}$ in (5):

$$\left\langle -\frac{1}{32\pi^2} \sum_{ij} [W_{\alpha}, [W^{\alpha}, \frac{\partial}{\partial \Phi_{ij}} (W_{\beta} W^{\beta} \frac{1}{z - \Phi})]]_{ij} = \left\langle \operatorname{Tr} \left[\frac{\partial \mathcal{W}}{\partial \Phi} W_{\alpha} W^{\alpha} \frac{1}{z - \Phi} \right] \right\rangle.$$

By identity

$$\sum_{ij} \left[\chi_1, \left[\chi_2, \frac{\partial}{\partial \Phi_{ij}} \frac{\chi_1 \, \chi_2}{z - \Phi} \right] \right]_{ij} = (\mathrm{Tr} \frac{\chi_1 \, \chi_2}{z - \Phi})^2$$

(valid if $\chi_1^2 = \chi_2^2 = 0$, $[\chi_i, \Phi] = 0$) one gets

$$R(z,\psi)^2 = \operatorname{Tr}\left(\mathcal{W}'(\Phi)R(z,\psi)\right)$$

• Analogously, with $f(\Phi) = \mathcal{R}$ (r.h.s of (7) without trace)

$$\mathcal{R}(z,\psi)^2 = \operatorname{Tr}\left(\mathcal{W}'(\Phi)\mathcal{R}(z,\psi)\right)$$

which can be rewritten as

$$\mathcal{R}(z,\psi)^2 = \operatorname{Tr}\left(\mathcal{W}'(z)\mathcal{R}(z,\psi)\right) + \frac{1}{4}f(z,\psi),\tag{8}$$

$$R^{2}(z) = \mathcal{W}'(z)R(z) + \frac{1}{4}f(z);$$

$$2R(z)w^{\alpha}(z) = \mathcal{W}'(z)w^{\alpha}(z) + \frac{1}{4}\rho^{\alpha};$$

$$2R(z)T(z) + w_{\alpha}(z)w^{\alpha}(z) = \mathcal{W}'(z)T(z) + \frac{1}{4}c(z).$$

with

$$f(z,\psi) = \frac{1}{8\pi^2} \operatorname{Tr} \frac{(\mathcal{W}'(z) - \mathcal{W}'(\Phi))(W_{\alpha} - 4\pi\psi_{\alpha})(W^{\alpha} - 4\pi\psi^{\alpha})}{z - \Phi},$$

= $f(z) + \psi_{\alpha} \rho^{\alpha}(z) - \psi_1 \psi_2 c(z)$

where $f(\boldsymbol{z})$ is an $n\mathbf{th}$ order polynomial in \boldsymbol{z}

• Solving the quadratic euation

$$2\mathcal{R}(z,\psi) = \mathcal{W}'(z) - \sqrt{\mathcal{W}'(z)^2 + f(z,\psi)}$$

or

$$2R(z) = \mathcal{W}'(z) - \sqrt{\mathcal{W}'(z)^2 + f(z)}$$

etc.

• $R(z) = -\frac{1}{32\pi^2} \operatorname{Tr} W_{\alpha} W^{\alpha} \frac{1}{z-\Phi}$ determined in terms of f_i where

$$f(z) = \sum_{i=0}^{n-1} f_i z^i$$

• (3) and def of $\mathcal{R}(z,\psi) \Rightarrow$

$$\mathcal{S}_i = S_i + \psi_\alpha w_i^\alpha - N_i \psi_\alpha \psi^\alpha = \frac{1}{2\pi i} \oint_{C_i} dz \,\mathcal{R}(z,\psi)$$

 \Rightarrow **Relations** $\{f_i\} \leftrightarrow (S_i, w_i^{\alpha})$

• Finally

$$\frac{\partial \mathcal{F}_p(\mathcal{S}_i, g_k)}{\partial g_k} = -\frac{1}{2(k+1)} \int d^2 \psi \langle \operatorname{Tr}(\frac{1}{4\pi} W_\alpha - \psi_\alpha)^2 \Phi^{k+1} \rangle_\Phi$$
$$= -\frac{1}{2(k+1)} \oint dz \, z^{k+1} \mathcal{R}(z, \phi)$$

• By integrating over g_k and adding integration constant - g_k independent, 1 - loop, contribution (VY), we get \mathcal{W}_{eff} in terms of $(S_i, w_i^{\alpha}, \Lambda_i)$

Matrix Model (Dijkgraaf-Vafa)

- Integral over $\hat{N} \times \hat{N}$ Hermitian matrices M
- Free energy (cfr $\mathcal{W}(\Phi)$)

$$\exp{-\frac{\hat{N}^2}{g_m^2}}F_{m.m.} = \int d^{\hat{N}^2}M \ \exp{-\frac{\hat{N}}{g_m}}\operatorname{Tr}\mathcal{W}(M)$$

•
$$\delta M = \epsilon M^{n+1} \rightarrow 0 = \int d^{\hat{N}^2} M \ e^{-\frac{\hat{N}}{g_m} \operatorname{Tr} \mathcal{W}(M)} \left[\operatorname{Tr} \frac{\partial}{\partial M} M^n - \frac{\hat{N}}{g_m} \operatorname{Tr} \mathcal{W}' M^n \right]$$

 $\langle R_m(z)^2 \rangle = \langle W'(z) R_m(z) \rangle + \frac{1}{4} f_m(z), \quad \text{where} \quad R_m(z) = \frac{g_m}{\hat{N}} \langle \operatorname{Tr} \frac{1}{z - M} \rangle$

• Take now $\hat{N} \to \infty$: \to factorization

$$\langle R_m(z) \rangle^2 = \langle W' \rangle \langle R_m(z) \rangle + \frac{1}{4} f_m(z),$$

-

: relation identical to Eq. (6) !!!

$$S_{i} = \frac{1}{2\pi i} \oint_{C_{i}} R_{m}(z) dz \qquad \frac{\partial F_{m.m}}{\partial g_{k}} = \langle \frac{\operatorname{Tr} M^{k+1}}{k+1} \rangle$$

$$F_{m.m}(S_{i}, g_{k}) \Rightarrow \text{identify with } \mathcal{F}_{p}(\mathcal{S}_{i}, g_{k}) \to \mathcal{W}_{eff}(S_{i}, w_{i}^{\alpha}, \Lambda_{i})$$

Further development

(Cachazo-Seiberg-Witten, hep-th/0301006)

$$\mathcal{L}^{U(N)} = \frac{1}{8\pi} \operatorname{Im} \tau_{cl} \left[\int d^4\theta \, \Phi^{\dagger} e^V \Phi + \int d^2\theta \, \frac{1}{2} WW \right] + \int d^2\theta \, \mathcal{W}(\Phi)$$

where $\mathcal{W}(\Phi) = \sum_{r=0}^{k} \frac{g_r}{r+1} \operatorname{Tr} \Phi^{r+1}$ (superpotential)

- $\mathcal{W}(\Phi) = 0 \Rightarrow \mathcal{N} = 2 \Rightarrow G \sim U(1)^{N-1}$ on a generic point of QMS.
- Special points where some N n monopoles become massless (condensation and Higgs mech. for N - n dual gauge bosons) $\Rightarrow G \sim U(1)^n$
- Curve factorizes (cond. on QMS)

$$y^{2} = P_{N}^{2}(x) - 4\Lambda^{2} = F_{2n} H_{N-n}^{2}(x)$$
(9)

• Classically $\{a_i\}$ = eigenvalues of Φ ,

$$\mathcal{W}'(z) = g_k \prod_i^k (z - a_i) \qquad \text{diag} \, \Phi = \{a_1, \dots, a_1, a_2, \dots, \dots, a_n, \dots, a_n\}$$
$$U(N) \Rightarrow \prod_i^n U(N_i) \Rightarrow U(1)^n \qquad n \le k \tag{10}$$

• Problem: find QM'ly the relation

Vacua (10) $\iff \mathcal{W}(\Phi)$

• Ans: the Factorization condition (9) with (for k = n)

$$F_{2n}(x) = \frac{1}{g_n^2} \mathcal{W}'(x)^2 + f_n(x)$$

 $f_n(x) = O(x^{n-1})$ with *n* unknown coefficients.

- Generalized Konishi anomaly (electric variables) from $\mathcal{N} = 2$ curves (whose singularities related magnetic variables)
- Use of Konishi anomaly in $\mathcal{N} = 2$, SU(2) theory with $n_f = 1 \Leftrightarrow$ the knowledge of the curve (Gorsky-Vainshtein-Yung)
- Detailed knowledge about the decoupling of Φ Vacua of $\mathcal{N} = 2$ theory \rightarrow Vacua of $\mathcal{N} = 1$ theory

Confinement Index

- \equiv Smallest possible $r \in Z_N^{(E)}$ for which Wilson loop displays no area law
- SU(N) YM: r = N completely confining; r = 1 totally Higgs
- r = 1 in a theory with

$$SU(N) \to SU(N-1) \times U(1)$$

• $\mathcal{N} = 1$ Susy SU(N) theory broken (by adjoint VEV) as

$$SU(N) \to SU(N_1) \times SU(N_2) \times U(1)$$

Then

$$r = l.c.d\{N_1, N_2, r_1 - r_2\}$$

where

$$r_1 = 0, 1, 2, \dots, N_1 - 1, \qquad r_2 = 0, 1, 2, \dots, N_2 - 1$$

label the vacua in which $(n_m, n_e) = (1, r_1)$ and $(n_m, n_e) = (1, r_2)$ are condensed

Multiplication Map

 $U(N) \Leftrightarrow U(tN)$ with the same superpotential $\mathcal{W}(\Phi)$

- Vacua with $\prod_{i=1}^{n} U(N_i)$ of $U(N) \Leftrightarrow$ vacua with $\prod_{i=1}^{n} U(tN_i)$ of U(tN);
- Confinement Index r gets simply multiplied by t;
- All confining vacua with r = t in the U(tN) theory, arise from the Coulomb vacua of U(N) theory
- Map of the chiral condensates

$$\langle \operatorname{Tr} \frac{1}{x - \Phi} \rangle = t \langle \operatorname{Tr} \frac{1}{x - \Phi_0} \rangle$$

• $USp(N) \Leftrightarrow U(N+2n)$ map in the theory with order $n+1 \mathcal{W}(\Phi)$ (Cachazo)

$$\Pi_{i=1}^{n} USp(N_{i}) \Leftrightarrow \Pi_{i=1}^{n} U(N_{i}+2):$$
$$\langle \operatorname{Tr} \frac{1}{z-\Phi} \rangle = \langle \operatorname{Tr} \frac{1}{z-\Phi_{U}} \rangle - \frac{d}{dz} \log(W'(z)^{2} + f(z))$$

Authors

• Matrix model

Dijkgraaf-Vafa, Cachazo-Intrilligator-Vafa, Argurio-Campos-Ferretti-Heise, Suzuki.H, Bena-Roiban, Tachikawa,T. Itoh, Kraus-Ryzkov-Shigemori, Abbaspur-Imaanpur-Parvizi, Berenstein, Gorsky, ...;

• Field Theory

Cachazo-Douglas-Seiberg-Witten, Cachazo-Seiberg-Witten, Alday-Cirafici, Brandhuber-Ita-Nieder-Oz-Römelsberger, Eguchi-Sugawara, Matone, Feng, Ahn-Ookouchi, Feng, Huang-Naqvi, Ahn-Nam, Shih, Svrcek, Merlatti, Gripaios-Wheater, David-Gava-Narain,

Summary

- \mathcal{W}_{eff} of U(N) theory with superpotential $\mathcal{W}(\Phi)$ in terms of $(S_i, w_i^{\alpha}, \Lambda_i)$
- Only planar diagrams contribute to the effective superpotential
- Complete set of Chiral ring relations (Ward-Takahashi Identities)
- e.g. for SU(N) SYM

$$S^N = \Lambda^{3N} + \{\bar{Q}_{\dot{\alpha}}, X^{\dot{\alpha}}\}$$

as an operator relation \rightarrow No chirally symmetric vacuum with $\langle \lambda \lambda \rangle = 0$.

- Whole results elegantly summarized by matrix model bookkeeping
- \bullet Addition of matter; other gauge groups (SO(N), USp(2N))
- More precise relations $\mathcal{N} = 2$ vs $\mathcal{N} = 1$ theories (Generalized K anomaly relations from $\mathcal{N} = 2$!)
- Phases, new duality (continuous and discrete maps among the vacua of the same or different theories), etc.

Symmetry, Quantization, Phase Factor

 \sim Melodies of Theoretical Physics of the 20th Century

C.N. Yang

Do we need something else ?