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Abstract

In the first lecture we will give some motivations and review the two
sides of the AdS/CFT correspondence between N' =4 SYM theory in
d = 4 and type IIB superstring on AdSs x S°. In the second lecture
we will discuss tests of the correspondence, i.e. symmetries, spectrum,
two- and three- point functions of protected operators, instantons vs
D-instantons and extremal correlators. We also discuss some dynam-
ics emerging from OPE of 4-point functions and the interpretation
of logarithmic behaviours in terms of anomalous dimensions of long
multiplets. In the third and last lecture we will discuss holographic
renormalization in the context of RG flows dual to domain wall solu-
tions of 5—d gauged supergravity. Particular attention will be devoted
to the GPPZ flow. Some non-local observables (Wilson loops) and a
brief mention of the novel double scaling limit will conclude the set of
lectures.
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1 Gauge fields or strings?

The Veneziano model was originally introduced as a mean to describe hadronic
resonances and strong interactions. Superstring theory that emerged from
dual models has become the most promising candidate for the unification of
all interactions including gravity. String compactifications and more general
vacuum configurations with branes come close to describe the physics seen at
low energies. The AdS/CFT correspondence proposed by J. Maldacena is by
now a fundamental tool in understanding the interplay between gauge and
string theories. In the simplest and most studied case it relates type I1IB su-
perstring on AdSs x S® to N' = 4 supersymmetric Yang-Mills theory (SYM)
with gauge group SU(N). The correspondence is holographic in that the
dynamics in the bulk is coded in the gauge theory that lives on the boundary
of AdS. The radial direction transverse to the boundary plays the role of the
energy scale in the gauge theory and one gets an UV/IR duality very much
reminiscent of the duality between open and closed strings.

The plan of the lectures is as follows. In the first lecture we will give
some motivations and review the two sides of the correspondence, N=4 SYM
theory in d = 4 and type IIB superstring on AdSs x S°. In the second lecture
we will discuss tests of the correspondence, i.e. symmetries, spectrum, two
and three point functions of protected operators, instantons vs D-instantons
and extremal correlators. If we have time we will also discuss some dynamics
in terms of 4-point and the interpretation of logarithmic behaviours in terms
of anomlaos dimensions of long multiplets. In the third and last lecture we
will dicsuss other conformal field theories, deformations from the conformal
point and some non-local observables (Wilson loops). A brief mention of the
novel double scaling limit will conclude the set of lectures.

1.1 String theory and confinement

Confining gauge theories display string-like behaviour in the IR. Colour-
electric flux lines are squeezed by a colour-magnetic condensate into narrow
flux-tubes that effectively resemble ‘fat’ strings. A quantity that character-
izes the different phases of a gauge theory is the Wilson loop

(W(C))yauge = (Tr Pexpi ?i A, dat) (1.1)



where P denotes path ordering. In a confining phase, the static potential
between well separated static test charges, such as non-dynamical quarks in
QCD, is linear V' = T'|x; — xo|, with T = 1/27a/ the effective string tension,
and (W(C)) decreases as the exponential of the area of the minimal surface
Y bounded by the curve C. In a non-confining phase the perimeter contri-
bution dominates. A. Polyakov has proposed a bosonic string description of
confinement whereby (W (C)) is given by an integral over the embeddings in
spacetime of surfaces ¥ bounded by the loop C

(W(C))swing = [IDX Dyl exp(~S[X. g)) (12)

The worldsheet dynamics is governed by the action

T
S[X, gl =5 /E &0, /7970,X - 9,X (1.3)

After quotienting the infinite group of local symmetries, i.e. reparametriza-
tions and Weyl rescalings, one ends up with a theory of d scalar fields X*
coupled to the Liouville field p. The latter decouples only in the critical di-
mension d = 26. Few months before Maldacena’s proposal A. Polyakov had
observed that one of the drawbacks of the string ansatz, i.e. the lack of the
zig-zag symmetry, could be overcome by assuming the flow of the Liouville
mode of a non-critical string to a fixed point with p = 0. Maldacena’s pro-
posal than looks like what the Doctor ordered in that it puts on the plate the
existence of a fifth coordinate, transverse to the AdS boundary, that could
be identified with the Liouville mode.

What sounds surprising of the initial proposal is that A = 4 SYM theory
is known not to confine at all. The gauge invariant degrees of freedom at
weak and strong coupling are roughly the same and the coupling constant
does not run with the energy scale. In recent developments, however, the
correspondence deals with confining theories. The hope is that understanding
the correspondence in its simplest superconformal case could shed some light
on the phenomenologically more interesting cases.

1.2 Large N gauge theories

Another way to expose the emergence of a stringy behaviour in SU (V) gauge
theories with a large number of colours was suggested by G. ‘t Hooft. In order
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to take the large NV limit it is convenient to introduce the double line notation
that consists in writing the gauge fields as matrices in color space

Al = AT (1.4)

paj

so that the propagator becomes

(Al (2) AL ) = A — ) (5181 — <630 (15)

the last term, which is absent in the case of U(N), is subdominant. Then
one rescales out N in front of the Yang-Mills action

— N 4 %2
S=5 /d wtr(Fy P (1.6)

where A = ¢?N is the ‘t Hooft coupling and considers an L loop connected
diagrams with V' vertices and E propagators. Each loop contributes a factor
of N from the trace over colour indices, each vertex — be it trilinear or quartic
— N/X and each propagator A\/N. The overall coefficient is then given by

A\ N
NL (N) <X> _ NL*P+V)\P7V — NX)\P*V (17)

where y = L — P 4+ V is the Euler characteristic of the (oriented) surface
triangulated by the Feynman diagram. It can be rewritten as y = 2 —
2h where h is the number of handles. A generic amplitude thus admits a
topological expansion

AN N) =3 NP2 ST oAk = S N2 g, () (1.8)
h=0 k h=0

very much of the same form as in oriented closed string theories. Only
“planar” diagramas, i.e. the ones with h = 0 that can be drawn on the
surface of a sphere, survive in the double scaling limit

N—>o00, g—0 with A fixed (1.9)

Intuitively one may think gluon exchange fills in Feynman diagrams com-
pletely in this limit so as to effectively produce a string worldsheet.
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For theories with fields (e.g. quarks) in the fundamental representation
the resulting surfaces may have boundaries (single lines) and their Euler
characteristic is given by y = 2 — 2h — b. Theories with fields in symmetric
or antisymmetric tensors, e.g. theories with orthogonal or symplectic groups,
require the addition of unoriented surfaces with y = 2 — 2h — b — ¢, where
¢ = 0,1,2 is the number of “crosscaps”, i.e. boundaries with diametrically
opposite points identified.

EXERCISE

Show that the first non-planar correction to the vector propagator vanishes
for any group in theories with only fields in the adjoint representation.

1.3 AdS/CFT correspondence: the baby version

That AdSsxS® with N fluxes of the self-dual Ramond-Ramond (R-R) 5-form
be a maximally supersymmetric solution of the type IIB supergravity was
originally observed by J. Schwarz. The motivations that lead Maldacena to
conjecture a relation between this solution and A" =4 SYM are to be found
in the dynamics of D-branes and open strings. Their massless excitations
are vector fields together with their superpartners. All 1/2 BPS Dp-branes
at low-energy are governed by a maximally supersymmetric gauge theory
that results from the dimensional reduction of A/ = 1 SYM from d = 10
to d = p+ 1. In particular for a stack of N coincident D3-branes in type
IIB theory one has U(N) N = 4 SYM in d = 4. Quite remarkably the
resulting gauge theory is known to be exactly superconformal invariant at
the quantum level. This reflects into the fact that the type IIB D3-brane
solution has constant dilaton, ¢ = gs For NV coincident D3-branes the metric
is given by

d82 — (1 + L4/T4)*1/2dx N dx + (1 _|_ L4/7n4)1/2dy . dy (110)

where z are the four coordinates along the brane, 7> = y - y is the transverse
distance from the stack and L* = 4wg,No/> with N measuring the 5-form
flux. The D3-brane solution is an interpolating soliton between maximally
supersymmetric flat 10-D Minkowski spacetime at infinity (r — oo0) and
AdSs x S° near the horizon (r — 0), where the metric reads

7"2

L?
2 _ 2, 727 2
ds® = dex-dx—l— = dr® + L*dws (1.11)
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In the meanwhile 16 out of the 32 Poincaré supercharges at infinity are traded

for as many superconformal charges. Thanks to the infinite gravitational red-

shift near the horizon, Maldacena has been lead to conjecture that gravity

should decouple from the brane at low energies and a perfect equivalence

between the two descriptions — strings in the AdS bulk and N'=4 SYM on

its boundary — should take place when the following identifications are made
2 0

(e = I =
9s (e> 47 Vs <X> 2T

The bulk type IIB partition function with prescribed boundary conditions
J(z) for the string excitations ®(x, r) plays the role of a generating functional
for the boundary theory

(1.12)

Here V collectively denote the gauge fields and their superpartners and O(x)
denote gauge invariant composite operators. Since one has only recently and
in a very specific (Penrose) limit started to understand how to quantize string
theory on (AdS) spaces with R-R background, so far one has been limited
to work in the supergravity approximation L? > (a/)? which in view of the
above identifications describe the regime of strong ‘t Hooft coupling A > 1
in the dual SYM theory. In this regime

Z]]B[(I)[J]] %exp(—SnB[@[J]]) (]_]_4)

where Syrp is the on-shell type IIB action. It admits a double expansion in
powers of the string coupling g, and of /. The first few terms are roughly
of the form

/d“’X\/_{ (R+...)+a(co+er1g? + 3 bpe®™ ) (R 4. ) +...}
k

(1.15)
where 7 = x+i exp(—¢) is the complexified dilaton and R represents the cur-
vature. Performing a constant Weyl rescaling of the metric Gyn = L2Guy
and trading g, and o' for N and A schematically yields

A1/
S = /dloX[{R+ (A§32+Cl +Zbe27”’”)(7z4 )+)
(1.16)
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In principle, at least for the massless excitations and their holographic duals,
one can systematically take into account higher derivative (~ A\7"/?) as well as
string-loops (~ ¢g”) and non-perturbative (~ €?7*7) D-instanton corrections.

1.4 Conformal Field Theories

Local quantum field theories are invariant under the Poincaré group that
includes translations generated by the momenta P, and Lorentz transforma-
tions generated by angular momenta and boosts .J,,,. The (anti-hermitean)
generators satisfies the algebra

PP =0 [T ool = pduw + - [Jun Pl =mpPs— ... (1.17)

This is not the maximal possible (bosonic) symmetry. At least at the classical
level, massless theories are invariant under scale transformations as well as
under transformations that preserve the light cone up to a rescaling i.e. ds? —
Q(x)*ds®. In d dimensions, infinitesimal transformations dz# = &£* of this
kind satisfy

2
8#61/ + 81/5;1 = ga . fnuu (118)

that admits solutions of the form
EH = a" + wh,a” + At + bra® — 2b - pat (1.19)

with constant a, \,w,b and w,, = —w,,. The first three terms correspond
to translations, Lorentz and scale transformations generated by P, = 0,,
Jw = (2,0, — x,0,) and D = —z*0,, respectively. The latter two combine
into a conformal boost generated by K, = (2?0, — 2z,z - 9). D and K,
satisty the following commutation relations

[T K =m0 K, — ... (1.20)

[P,,P)=0 [K,,K,)=0 [P, K,)=2J,+2n,D (1.21)

D,J,]=0 [D,P|=P,—... [D,K,|=-K,—... (1.22)

These relations extend the algebra of the Poincaré group to the (global)
f

conformal algebra in D dimensions? that is isomorphic to the algebra o
SO(d,2).

2In d = 2 there are additional (not globally defined) transformations that make the
conformal group infinite dimensional. This fact plays a crucial role in the worldsheet
dynamics of string theories.



EXERCISE
The easiest way to see this is to define operators Lap with A=0,1,...d—
1,d,d+ 1 according to

Ly =Jdw Lign =D Lay=P,— K, Lapi,= P+ K, (1.23)

and check that they satisfy [Lap, Lcp| = npeLap+... withnap = (Nu;+, —).

In conformal field theory a central role is played by the stress energy
tensor 7, since the generators of the conformal group, whose are essentially
‘modes’ of 7,,. T, is symmetric 7,, = 7,,, conserved 0"7,, = 0 and clas-
sically traceless n**7T,, = 0. If and only if these properties survive quantum
corrections one can fully exploit the implications of (super)conformal symme-
try. Unitary representation of the conformal group are infinite dimensional.
Highest weight states, usually called primary fields, are characterized by their
scaling dimension A and their spin. Primary fields satisfy

(D, O(z)] = i(z*d, —A)O(x) [P, O(z)] = i0,0(x)  (1.24)
[Juw, O(2)] = {i(zu0) — 2,0,) + S} O(2) (1.25)
[K,, O(z)] = {i(2?0, — 22,2"0,, + 2x,A) — 22”5, }O(x) (1.26)

Fields that do not satisfy the above commutation relations are descendants
and can be obtained from primary fields by the action of the conformal group.

Mass is not a Casimir operator of the conformal group. It has thus
little meaning to form wave packets and asymptotic states and the relevant
observables are not scattering amplitudes but rather correlation functions of
scaling operators

G(x1,...2) = (O1(z1) ... On(zy)) (1.27)

2-point functions of (normalized) primary operators Oa are completely spec-
ified by their scaling dimensions
2A

(2)OA(y)) = —

Similarly the dependence of 3-point functions on the insertions points
is completely fixed by (super)conformal invariance up to trilinear couplings
that appear as coefficients in the operator product expansion (OPE)

C k
On, (21)On, (22) =Y e )Alle2_Ak Op, + - (1.29)
k 12

! (1.28)




OPE is expected to be complete and convergent though involving an infinite
number of fields (primary and descendants). In particular

T (1)O(0) = AO(0)(0,0, — 8,22 (1.30)

EXERCISE

Show that up to an overall costant 2- and 3-point functions of scalar pri-
mary operators are completely fixed by conformal invariance. 4-point func-
tions may depend on a priori arbitrary function of the two independent con-
formally invariant cross ratioes

2 .2 2 .2

_ TioT3y _ Tiy4To3

r=—s, 8= 55" (1.31)
T13T24 T13T24

The fundamental relation between operators and states of CFT’s

0) = liny O(x) 0 (1.32)
can be established in radial quantization, whereby the radial direction in
R? = R* x S9! plays the role of time and the generator of ‘time’ translation
turns out to be Hy4q = Lo g1 = (Po+ Kp)/2. In particular the vacuum state
which is unique corresponds to the identity operator and is annihilated by
the generators of the conformal group.

1.5 AdS geometry

Anti De Sitter spaces are maximally symmetric spaces with negative cosmo-
logical constant A = —d(d — 1)/L?. One way to represent AdS, is as the
quotient space SO(d,2)/SO(d, 1). More intuitively one can picture AdS,; as
the hyperboloid

Xo+ X0, — ZXZ? =17 (1.33)

in flat d + 2 dimensional spacetime with signature (—,+,...;+,—). The
SO(d,2) isometry generated by L p = X405 — Xpd4 manifest. A global set
of coordinates is given by

Xo = Lcosh(o) cos(t) Xgi1 = Leosh(o)sin(r) X; = Lsinh(o)n; (1.34)



with 3, n? = 1. In this coordinate system the metric reads
ds® = L*(— cosh(0)*dr? + do? + sinh(0)*dw] ) (1.35)

where dw?_, is the metric on a unit sphere S? . The hyperboloid, which
has topology S x R? is entirely covered by the patch o > 0 and 0 < 7 < 2.
In order to avoid closed time-like curves one has to take the universal cover
and let —oo < 7 < +00. Another parametrization

-z

2 L2_ .
P+ xde

X, =
d+1 % %,

X, =L (1.36)
P

brings the metric into the manifestly conformally flat form

2
ds* = %(dx -dz + dp?) (1.37)
and makes the location of the boundary at p = 0 evident. This parametriza-
tion is known as the Poincaré patch since it only covers half of the hyper-
boloid. After Wick rotation (¢t — tg = —it), the Poincaré coordinates cover
the entire Euclidean AdS that topologically turns out to be a ball. The AdS
horizon (p — oo) represents the deep interior region.
EXERCISE
Show that the metric in horospherical (Poincaré) coordinates is invariant
under inversions zM — 2™ /(2)%, where 2# = x#, 2° = p and (2)* = -+ p*.
In the correspondence, the UV regime of the field theory is embodied in
the boundary that is at large distances from the centre. The IR is encoded
in the interior. A convenient coordinate system where this property is made
manifest is
ds® = dr® + exp(2r/L)dz - dx (1.38)

Indeed shifting the variable r which is transverse to the boundary by a con-
stant r — r + al requires a compensating rescaling of the coordinates on
the boundary 2 — exp(—a)z. This meanse that the boundary r — oo cor-
responds to small distance scales, i.e. the field theory UV regime, while the
point r — —oo corresponds to large distance scales, i.e. the field theory IR.
In an exactly conformal theory, as A/ = 4 SYM, this rescaling should not
change the physics and indeed the transformation is an isometry. For theo-
ries which are only asymptotically scale invariant the change in the physics
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should be reproduced by the change in the geometry. By carefully studying
the stability of AdS under perturbations P. Breitenlohner and D. Freedman
arrived at setting lower bounds on the masses of propagating particles. For

scalar fields
(ML)? > —(d/2)? (1.39)

Similar bounds obtain for fields of higher spin. Massive particles in AdS can
never reach the boundary because of the explosion of the conformal factor
there. On the contrary light rays can go to the boundary and back in a finite
amount of time if suitable boundary conditions are imposed.

1.6 N=4 SYM theory in d =4

N=4 SYM theory in d = 4 is a very special theory. It enjoys maximal su-
persymmetry for renormalizable theories. It is completely determined by the
choice of the gauge group®. Elementary fields belong to the adjoint represen-
tation and the interactions are proportional to the structure constants fu.
of the gauge group. In addition to the vector fields, A,, there are six real
scalars, ¢’ in the 6 of a global SU(4) R-symmetry, four Weyl spinors, A%,
in the 4 of SU(4). Sometimes it is convenient to put ¢’ = 37 415p*? with
0B = —pP4 and 7 ,p (chiral blocks of) SO(6) y-matrices. The reality
condition translates into @,z = %5ABCD<;)CD.
The N = 4 Lagrangian reads

1, .1 y o1 o
+i(AT" Dy + Ao" DA a) + [@am, NP — ["7 Aa]Ap)} (1.41)

The theory is invariant under the supersymmetry transformations

5o = fiAB)\aAUaBﬂLTiABﬁaAXdB
L - & Loy
(S)WA - _§F;u/0-u aﬁnﬁB + ZpadSOABnB + 5[()0 JSOJ]TUABT]O‘B
0A, = —iNota Ty — i 0 e s (1.42)

3In what follows we will only display group theory factors relevant for the case G =
SU(N). The generalization to an arbitrary gauge group amounts to replacing g?N with
g?C4 and N? — 1 with dim(G), C4 being the quadratic Casimir of the adjoint, that
coincides with the Dynkin index /4 for this representation.
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where as usual 7;,...;, denote p-fold antisymmetric products of 7;.
EXERCISE

Putting Ay = {Au, @i} and X = {\2, A4}, with Ty x = x, perform the
reduction of the lagrangian

1

L=——FyyF"" r'p 1.43
Ig? MN + 292X MX (1.43)
and supersymmetry transformations
1
§Ay =elyx  ox = =FyunI'MVe (1.44)

2

from d =10 to d = 4. A convenient choice of y-matrices is I'), = 7, ® 1,
L =7 ® i%;.

The theory admits a quantum moduli space of vacuum configurations
M = IR®" /Sy parametrized by the vacuum expectation values (VEV’s) of
the scalar fields (¢*) along the Cartan generators, i.e. such that [, ©/] = 0.
Sy is the Weyl group of SU(N). In the unbroken phase {p*) = 0, the theory
is believed to be exactly invariant under A/ = 4 superconformal transforma-
tions. In the broken phase (') # 0, electric-magnetic S-duality transforms
elementary charges into monoples and dyons leaving the theory invariant.
S-duality act by (projective) SL(2,Z) transformations on the complexified
coupling 7 = 9 —+ 47” . Physics is 6 dependent since there are no internal chi-
ral anomahes At the quantum level the absence of UV divergences implies
for instance the exact vanishing of the (-function 3(g) = pdg/ou.

EXERCISE

Check the vanishing of the one-loop [(3-function using

b= —%OA + g > U(Ry) + é > UR,) (1.45)
f s

where C'y = (4 is the Casimir of the adjoint and ((R;), respectively ((Ry),
are the Dynkin indices of the representations scalar fields, respectively (Weyl)
fermions, belong to.

N = 4 superconformal transformations form the supergroup SU(2,2|[4)
generated by (generalized) angular momenta .J,,, momenta P,, conformal

*Anomalies can show up when coupling the theory to to external sources/backgrounds.
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momenta K, dilation D, Poincaré supercharges ()4 and Q4, supercoformal
charges S4 and S, and R-symmetry charges 745. The conformal algebra
was given before, the SU(4) generators commute with SO(d,2) while the
fermionic charges (in the absence of central charges) satisfy

{Qa,Qp} = 64"c"P, {Q4,Qp} =0 (1.46)
{S4 Sp} =64po"K,  {S*SP1=0 (1.47)

1 _
{8%,Qp} =" 6(50" L + D)+ T {$".Q"} =0 (143)
in addition to the usual commutation rules with the bosonic generators

1 1 _
[y Q4] = §UWQA [D, Q4] = §QA [Py, Qa] =0 [K,,Qa] = 0,54
1 1 _
[, S4] = 50—#"5/4 (D, S4] = —55/4 [P, S =0,Q" [K, S =0
1 1
[T"5,Qc] = 6"cQp — Z5ABQC [T45,S% = 6pS" — ZéABSC (1.49)

The Noether currents associated with the superconformal transformations
form the A/ = 4 supercurrent multiplet. It includes the traceless energy-
momentum tensor, 7,,, 15 conserved R-symmetry currents, J" 4B and the
v-traceless supersymmetry currents, X#,4 in the 4* of SU(4). The remaining
components consist of three sets of scalars (a complex singlet C, £(45) in the
10¢, Q¥ in the 20°), two sets of spin-1/2 fermions (YGp in the 20¢ and A*
in the 4) and 6 antisymmetric tensors (BL?,B]).

The fields of N' =4 SYM can be packaged into a “twisted chiral super-
field”

WAB — gOAB + (Q[A)\B] + QAO'MVQBFMV) 4. (150)

that satisfies Dy Wpge + cyclic = 0 on shell. For lack of a manifestly N' = 4
supersymmetric off-shell formalism, it is often useful to decompose the N'=4
multiplet in terms of either N'=1 or A'=2 multiplets. The global symmetry
that is manifest in the AV = 2 description is SU(2)y x SU(2)y x U(1) and the
N=4 elementary supermultiplet decomposes into a N' = 2 vector multiplet
VY and a hypermultiplet, H. The global symmetry that is manifest in the
N = 1 description is SU(3) x U(1), the N'=4 elementary supermultiplet
decomposes into a N' = 1 vector multiplet V' and a three chiral multiplets
ol
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1.7 Type IIB superstring on AdS; x S°

We now turn to consider the other side of the correspondence, i.e. the type
1B superstring on AdSs x S®. In d = 10, this theory enjoys chiral N'=(2,0)
supersymmetry associated to the presence of a complex spin 3/2 gravitino
of definite, say, positive chirality, \Ifg\? and a complex spin 1/2 dilatino A
of negative chirality. The massless bosonic spectrum includes the metric
Gurn, a scalar dilaton, ¢, and a two-form potential Bj,ny in the Neveu-
Schwarz — Neveu-Schwarz (NS-NS) sector and a pseudo-scalar, x, another
antisymmetric tensor Cjry and a four-form potential Ayrypg with self-dual
field-strength, in the R-R sector. The classical theory is invariant under
SL(2,IR) transformations that act projectively on the complex scalar field
7 = x + ie ®. The two antisymmetric tensors form a doublet, while the
metric (in Einstein frame!) and the four-form potential are inert. At the
quantum level the classical continuous symmetry is expected to be broken to
SL(2,Z). Due to the self-duality constraint a covariant action including the
four-form potential has a rather complicated expression. With the proviso of
imposing the self-duality constraint at the end, the bosonic field equations
in the Einstein frame can be obtained by varying

1
S]]B = w/dloX\/a X (151)
87G Ny

<1R b PM L MNP LFMNPQRFMNPQR)

2 6 240

where G\”) = 87%¢2(/)* is the 10-D Newton constant, P = d7/Imr, H; =

(dCQ - TdBQ)/\/ ImT and F5 = dA4 + BQ A dCQ - CQ VAN d32 = *F5.
Compactification of d = 10 type IIB supergravity on S° was studied long

time ago. For a sphere of radius L the Newton constant in d = 5 is given by

GY = GV /Vol(S°) = 8rg? (o) /L° (1.52)

In order for the background to be supersymmetric one has to resort to a
Freund-Rubin ansatz and turn on a non-vanishing flux for the self-dual R-R
5-from [gs F5 = 4m3L*/g,. Setting the dilaton to a constant 7 = i/gs, so that
PM = 0, and puttlng BMN = CMN = 0, so that HMNP =0 1mmed1ately
gives the vanishing of the dilatino variation A = 0. One is left with the
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gravitino variation

/8 GG
50y =0 = (Dx + ZLL#FMNPQRFMNPQRFK)E (1.53)

for some chice of € = 445, ® Kg5. Decomposing into internal (i = 5,6,7,8,9,
sphere) and external (1 = 0,1,2,3,4) components the Killing spinor equa-
tions read

1 7
D, = Z%g , Dik= 7k (1.54)

Their integrability condition requires

4 4
Ruvpo = _ﬁ(gupgua — GuoGvp) > Rijm = +ﬁ(gikgjl — gagjk)  (1.55)

that show the existence of an AdSs x S° vacuum configuration with cos-
mological constants Ay, = —Ags = —12/L?. The ten-dimensional metric
turns out to be conformally flat

L2
ds?, 5 = ?(dp2 + drdr) + L*dw? (1.56)

Decomposing the d = 10 fields in spherical harmonics Y7 (9) on S°, with

I a multi-index running from over the possible projections of Z, one can
linearize the field equations around the AdSs; vacuum configuration. For
instance, the spectrum of fluctuations of the dilaton can be deduced from
the Kaluza—Klein (K-K) ansatz

(6+1)(£4+2)% (£+3) /12

> l ~
S DD DI L O ()
£=0 I=1
Using
L0+ 4)
VY = — TE Yo VI (1.57)

one concludes that the d)&a component field, that transforms in the represen-
tation r = [0, £, 0] of SO(6) = SU(4), has AdS mass (M,L)* = ¢(¢ + 4). For
other fields one has to resolve intricate mixings that lead among other things
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to some scalar “tachyons”. At a first look this may sound as an inconsis-
tency. It is easy to check that the scalar tachyons satisfy the Breitenlohner-
Freedman bound that arises in spaces with negative cosmological constant.
We will see that for scalars this simply imply that their dual operators sat-
isfy a unitarity bound, ¢.e. A real and A > 1. The whole spectrum of
linearized fluctuations assembles into representations of the superisometry
group SU(2,2|4) D SO(4,2) x SO(6). Notice however that particles in the
same multiplet may have different AdS mass, since the latter is not a Casimir
operator of SU(2,2|4).

Although a detailed proof is still lacking, it is believed that the full non-
linear theory can be consistently truncated to the lowest K-K excitations that
give rise to N' = 8 gauged supergarvity in d = 5. The latter results from
the gauging of a subgroup of the global non-compact Eg1s) symmetry of
maximally extended Poincaré supergravity that results from compactification
of type IIB (or type ITA) on a five-torus (or d = 11 supergravity on a six-
torus). The starting point is a theory whose bosonic content consists of
a graviton g,,, 27 graviphotons Al*”l and 42 scalars ¢’ that parameterize
the coset M = Eg(16)/Sp(8) and can be assembled into a 27-bein V (¢)47.
In order to gauge the theory one has to dualize 12 vectors into as many
antisymmetric tensors satisfying a self duality condition that reduces their
degrees of freedom from 6 to 3 each. The remaining 15 vectors AL” I can be
used to gauge a 15-dimensional subgroup, e.g. SO(6), of Eg(1¢). The gauge
coupling is given by g5 = 2/L.

The resulting lagrangian is very complicated. We simply display the
bosonic terms in a rather sketchy form

Ls=R+ (B+ F)+BDB+ (D¢)* —V(¢) + AFF (1.58)

Some remarkable features are apparent. The antisymmetric tensors B’s have
first order kinetic terms, that may come from terms like Fj(BodCy — C2dBs)
in d = 10, when Fj is set to its background. Moreover, as in Born-Infeld
type actions for D-branes, the B’s mix with F' ~ dA. Last but not least,
The “topological” Chern-Simons couplings AF'F + ... encode the anomalous
content of the theory at the boundary and completely fix the lagrangian in
combination with supersymmetry. Under SO(6) the 42 scalars decompose
into a complex siglet C', 20’ real @ and 10% complex E. As always in
supergravity theories the scalar potential, V'(¢), is given in terms of the spin
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1/2 and 3/2 fermionic ‘shifts’

5'% = 95W3/2(¢)7u5 5'Xu = 95W1/2(¢)5 (1-59)

V(g) = gz(Wi, — W5),) is invariant under the SL(2) in Egy6) O SL(2) %
SL(6) and admits an SO(6) C SL(6) invariant extremum at Q2o = E19 = 0
and arbitrary C. There are many other extrema but a complete classification
is still lacking and difficult to achieve.

Four-fermi and higher derivative terms can in principle be determined
by reduction from d = 10. The first higher derivative terms is an R* term
that only involves the Weyl tensor and thus vanishes in the conformally flat
AdSs5 x S5 background. The first, second and third functional derivatives of
R* vanish as well, and as a result one finds no corrections to zero, one, two
and 3-point amplitudes of the supergravity fields and their K-K excitations.
There are many terms related to R* by supersymmetry. Schematically one
has

% /d“’X\/ée—W? [fi(r PR 4 fs(r, PV HE + .+ fig(r, PN
(1.60)
In particular we will be concerned with the last sixteen-fermion interaction
involving the complex spin 1/2 dilatino A in a totally antisymmetric contrac-
tion of its spinor indices.

The functions f, (7, 7) are non-holomorphic modular forms of weight (n —
4,4 —n). At weak coupling Imr — oo, they admit asymptotic expansions
that display at most two perturbative contributions (genus zero and one)
and an infinite series of non-perturbative D-instanton contributions. Super-
symmetry arguments imply that the functions f,, say f; and fi4, be related
to one another by the action of SL(2,Z) covariant derivatives. Whereas f,
transforms with modular weight (0, 0), the function fis has weight (12, —12)
and therefore transforms with a 7-dependent phase under SL(2,Z). This
is precisely cancelled by a compensating anomalous U(1)p transformation
of the 16 negative chirality A’s, each with charge +3/2. Similar cancella-
tion occur for the other supersymmetry related terms if the positive chirality
gravitino W, is assigned charge +1/2, the complex 3-form Hy,yp charge +1
and the complex dilaton field-strength P, charge +2.
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2 Testing the AdS/CFT correspondence

The matching of global symmetries provides the initial test and motivation
of Maldacena’s conjecture. We will discuss how A = 4 superconformal sym-
metry is realized on both sides of the correspondence and then describe the
holographic computation of 2-point and 3-point correlations of primary fields.
Up to an overall constant these are fixed by superconformal invariance and
the tests amount to checking the consistency of the relative normalizations
and the (non)-vanishing of some 3-point couplings. More interestingly, SYM
instanton effects can be quantitatively put in correspondence with type IIB
D-instanton effects. Non-renormalization of extremal and next-to-extremal
correlators, though a consequence of superconformal invariance, provides new
insights. 4-point functions of protected operators, on the contrary, together
with their partial non-renormalization property display some interesting dy-
namical issues that we will address later.

2.1 Kinematical tests

The superisometry group of AdS5 x S5 acts by superconformal transforma-
tions on the boundary field theory. The map between gauge invariant com-
posite operators Oa on the boundary and bulk type IIB fields ®,; can be
made very precise. For instance, the A/ = 4 supercurrent multiplet is dual to
the “massless” N' = 8 supergravity multiplet. Higher K-K excitations with
spin up to 2 assemble into 1/2 BPS short multiplets of the superisometry
group with lowest component fields

Qi = tr(d ™. — ") (2.61)

that are chiral primary operators (CPO’s) of dimension A = ¢ belonging
to the ¢-fold tensor product of the fundamental 6 representation of SO(6).
1/2 BPS short multiplets have 32¢?(¢*> — 1) /3 bosonic and as many fermionic
components. Operators dual to string excitations with AdS masses of order
1/+/a' belong to long multiplets with roughly 2'® components. The spins of
the various components of these supermultiplets range over 8 units and their
scaling dimensions are expected to grow like A ~ A/* at strong coupling.
One such example is the N/ = 4 Konishi multiplet whose lowest component
is the scalar SU(4) singlet

K1 =tr(¢'v;) (2.62)
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of naive dimension A, = 2.

Unitary irreducible representations (UIR’s) of SU(2,2|4) have been com-
pletely classified®. A general UIR is specified by the dilation weight A,
the Lorentz spins (ji,J2) and the Dynkin labels [k,[, m] of the SU(4) R-
symmetry®. There are three unitary series, which are distinguished by dif-
ferent relations between the dilation weight and the other quantum numbers

A)jijea #0201 —jo) <m—k  A>2+7j +jo+k+1Hn63)
B)jp=0 2+2j3<m—-k A>1+j+k+l+m (2.64)

When A saturates a bound of type (B) or (C) the UIR is short and BPS.
When A saturates the bound of type (A) multiplet shortening is of the linear
type and can be violated by quantum corrections.

Generic UIR’s can be obtained by tensoring “singleton” representations.
In the harmonic superspace approach, in addition to the usual N' = 4 super-
space variables (z#, 0%, #4) one introduces 4 x 4 matrices, ug, parametrising
the coset SU(4)/U(1)?. Omitting the details of the construction, one defines
“Grassmann analytic” superfields W#! with 1 < k < 3 that satisfy twisted
chirality constraints

DAWD-+ = 1<A<LE, (2.66)
DSW-# = k+1<A<A4,

with D2 = uﬁDé u-projected A/ = 4 superderivatives. The constraints
express that W’s depend on half of the spinor coordinates, i.e. they are 1/2
BPS objects. The list of singletons includes N = 4 chiral superfields, which
- unlike the W’s - may have either left or right handed spinor indices, but
are SU(4) singlets. For instance a scalar chiral superfield, W, satisfies

D4V =0, D*“DPy =9,

where the second (linear type) constraint is a sort of ‘field equation’. The
above construction is by and large formal in that none of the superfields

°In (perturbative) N' = 4 SYM theory only UIR’s of PSU(2,2[4) are actually rele-
vant. They are characterized by the vanishing of the U(1)z central charge that extends
PSU(2,2|4) to SU(2,2/4).

6The dimension of an irrep of SU(4) with Dynkin lables [k, [, m] is given by d[k,l,m] =
E+D(I+D)(m+D)k+1+2){+m+2)(k+1+m+3)/12
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W W2l and ¥ can be expressed in terms of elementary fields. On the
contrary, W% is the fundamental N~ = 4 SYM multiplet that squares to
give the supercurrent multiplet.

Other 1/2 BPS short multiplets of the form (W!2)¢ are dual to the K-K
excitations of the super-graviton. The lowest component of the multiplet
being a scalar Q) of AdS mass (ML)? = ((¢ — 4) which is a mixture of
the trace of the graviton and of the internal R-R 4-form potential and is
the obvious candidate dual of the CPO QY. At the top level one finds a
symmetric tensor H l(f,_Z) and a complex scalar =2 both with AdS mass
(ML)? = (¢ — 2)(¢ + 2), a complex antisymmetric tensor BI%-3% and a
complex vector Al=41 with AdS mass (ML)? = (¢ —1)(¢ + 3), and a real
scalar Q>~*? with AdS mass (ML)? = (¢ — 2)({ +2).

The prototype long multiplet is the Konishi supermultiplet. In free theory
it can be represented as

/C1|go - \If\if (267)

Using (2.67), one may verify that
D*“DBLC |0 =0, De(aD3y Kl = 0. (2.69)
These imply that both the singlet and the 15 components of the current
K.'py = 0,°[Dy, Dap] Kilp,g5-0 (2.70)

are conserved. In the interacting theory the Konishi multiplet has an anoma-
lous dimension, so that one can formally write

Ky = (wo)+) (2.71)

For v # 0 it does not satisfy any differential constraint consistently with its
being a long multiplet. The moral is that shortening conditions which are
not related to BPS bounds can be violated at the quantum level.

"In the interacting theory the situation is more complicate. The rhs of (2.69) does not
vanish but it rather becomes the A" = 4 Konishi anomaly

D¥ADBIK, o« gtr((WAC, WEP] Wep) . (2.68)
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2.2 Three U(1)’s

There are three U(1)’s that play an interesting subtle role in the correspon-
dence.

The first, U(1)z, is a central extension of PSU(2,2|4). Fundamental
fields as well as their composites are neutral with respect to it so that one
usually neglects it. It is conceivable that solitonic states (dyons) could carry
non-vanishing U(1), charge and form novel SU(2,2|4) multiplets.

The second, U(1)¢, is the abelian factor in U(N). From the D3-brane
perspective it corresponds to the center of mass degrees of freedom. Its low-
energy dynamics on the boundary is not reproduced by the bulk supergravity
action. In a sense there is an additional singleton multiplet not captured by
the correspondence if not for its contribution to “boundary anomalies”.

The third, U(1)g, is a “bonus” symmetry of a restricted class of correla-
tion functions and their dual amplitudes. In SYM it corresponds to a chiral
rotation accompanied by a continuous electric-magnetic duality transforma-
tion. Its type IIB counterpart is the U(1)p anomalous chiral symmetry. As
originally observed by K. Intriligator, when supergravity loops and higher
derivative string corrections are negligible the “bonus” symmetry becomes a
true symmetry. Independently of the coupling A and N, all 2-point correla-
tion functions, 3-point functions with at most one insertion of unprotected
operators and 4-point functions of single-trace protected operators seem to
respect this symmetry.

2.3 Mass to dimension relation

Following S. Gubser, I. Klebanov, A. Polyakov and E. Witten, the standard
prescription for computing correlation functions of gauge-invariant local com-
posite operators using the correspondence starts with solving

Vi — M?® =0 (2.72)
with generalized Dirichlet boundary conditions
D(z, p) = pd(x) (2.73)

as p — 0. In (Euclidean) Poincaré coordinates the scalar laplacian becomes:

! 0. (VGG"3,0) = p°0, (p29,8) + p0 - 00 (2.74)

szdsq) = ﬁ
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The solution may be expressed in terms of the bulk-to-boundary propagator

oA

P = m))
Quite strikingly Ks(p, z; o) resembles the profile of YM instanton! Guess
why.

EXERCISE

Show that K satisfies the Laplace equation and fix the constant ca =
['(A)/mT(A — 2) so that Ka(p, ;1) — p*~26(x — x0) at the boundary.

Plugging K into the equation yields the mass-to-dimension relation

(ML)* = A(A —4) (2.76)

A =2+ \/4+ (mL)? (2.77)

Two remarks are in order. First, A is real as expected in any unitary theory
once the Breitenlohner - Freedman bound (mL)? > —4, required for the sta-
bility of AdS under pertubations, is enforced. Second, one could in principle
use both branches of the square root. The first, say the plus branch, for
which

Ka(p,x;m) = CA( (2.75)

and its inverse

®(z,p) = p' 2+ o(x) (2.78)
is non-normalizable in AdS, corresponds to operator deformations of the

fixed point action as required in the computation of correlation functions.
The second, say the minus branch, for which

O(z, p) ~ p*+o(z) (2.79)
is a normalizable state, corresponds to studying the theory in a background
with non-vanishing VEV for the field. The boundary conditions may be
switched by a Legendre transform. Not without some effort one can establish
the mass-to-dimension relations and their inverse for symmetric tensors

(ML) =A(A—4) A =24/4+ (ML)? (2.80)

p-forms
(ML) = (A+p)(A+p—4) A=2%/(2-p?2+(ML)? (2.81)

and fermions

(ML= (A-2)* A=24+|ML]| (2.82)

Vectors and scalars correspond to p-forms with p = 1,0 respectively.
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2.4 Witten diagrams

In order to compute n-point functions using holography, one has to expand
the type IIB action to the desired order and substitute K(p,z;z") for each
external insertion and the (rather unwieldly) expression for the bulk-to-bulk
propagator G(z, z') for each internal exchange. The resulting diagrams (trees
and loops) are termed “Witten diagrams”.

The computation of the simplest Witten diagrams amounts to integrating
expressions of the form

d*zdp pRi
Tian(zy, .. 2, / 2.83
(a2 ) = H [P + (& — 2;)7% (2.83)
For n = 3 the result is of the form
Cia,
Tiay (@1, 72, 73) = 124) (2.84)

(1‘12)212 (1‘23)223 (1-13)213
where 19 = A; + Ay — A3 and cyclic. Notice the latter integral diverge for
Ay = Ay + Az and cyclic. We will return to these “extremal” cases in due
course.

EXERCISE

Compute the above integrals either using standard Feynman parametriza-
tion and determine Cya,y.

Diagrams with internal exchange are much more involved and we will not
discuss them in these lectures.

2.5 Two-point functions

For 2-point functions the naive procedure gives the correct functional depen-
dence on the insertion points, that however is completely fixed by conformal
invariance. The correct normalization can be found in several ways, e.g. by
imposing Ward identities or by working in momentum space. Eventually we
will describe the procedure of holographic renormalization that allows one to
consistently dispose of the divergences that appear due to the infinite volume
of AdS. For the time being let us proceed rather naively.

Integrating by parts and imposing field equations the on-shell action for
a real scalar field is given by

4

/ &2\ /7Y (DY ®) = lim Z—f@(x, )9.®(x,¢)  (2.85)
€

e—0
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Plugging the solution of the boundary problem
O, p) = [ d'K (w,p0')j(a) (2.86)

into S[®] yields

Si)] = lim [ 22 000 (€5 27 () (2.87)

e—0 2¢3

where the behaviour K(z,€2') ~ ¢*=26(x — 2') near-boundary has been
used. In the same limit

CAAGA_I
0K (z,61") ~ G_o)= (2.88)
where cp = 7r2II:((§)72)' Differentiating twice w.r.t. the sources j’s, yields
AL(A) .
<0A(x)OA(y)> = m($ — :L‘,) 24 (289)

In momentum space with ®(x, p) = f,(p) exp(ip - x), the Klein-Gordon
equation reduces to a Bessel equation

W2F" + uF' — (u2 + (ML)2 + 4)F =0 (290)

where F'(pp) = p~2f,(p) and primes denote derivatives w.r.t. u = pp. Using
the mass-to-dimension relation (ML)? = A(A — 4), the solution which is
regular in the interior (large u) is Ka—a(u). For small u it behaves as

Ka s(u) ~ %F(A _9) <%>2 (2.91)
Plugging
_ P*Ka2(pp) -
O(z,p) = Koa 2 (p6) exp(ip - x) (2.92)

into the action and differentiating twice w.r.t. to the (Fourier transformed)
sources yields

(505} =30+ a)ea - ST (3) st (299)
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where only the leading (in €) non-analytic (in p) term has been displayed.
Terms analytic in p produce local countertems in correlation functions. In
order for the subtractions in different correlations functions to be consis-
tent with one another one has to resort to a systematic procedure such as
holographic renormalization that will be the subject of the third lecture.
Fourier anti-transforming to position space produces the correction factor
(2A — 4)/A.

In all above computations we have negelected a factor of N?/27? arising
from reduction on S® and a constant rescaling of the metric. Once this is
included one finds for CPO’s and conserved currents the same normaliza-
tion as in free field theory at large N. This leads to the conjecture that
operators in 1/2 BPS short multiplet not only have protected scaling di-
mension (typically A & /) but also protected normalization. The resulting
non-renormalization theorem has been shown to hold in perturbation theory
and even non-perturbatively relying on the U(1)p “bonus” symmetry.

2.6 Three-point functions

Three point functions of normalized operators are not completely fixed by
conformal invariance. The dependence on the insertion points, at least for
scalar operators is determined by their dimensions, but there are a priori
undetermined coefficients that carry dynamical information and appear in
OPE’s.

In particular the CP-odd part of the 3-point functions of the SU(4) R-
symmetry currents encode the anomalous content of the theory. Using

L= 3/—3/

2 (z —y)!

Ap(@) A (y)) = 6% 5 (2.94)

for the Wick contractions of the Weyl fermions in the fundamental 4 of the
R-symmetry group yields

(T (@) (W) T5(2))oda = (2.95)
_Z‘NQ _ 1dabcTr5(757ﬂ(¢_3/)71/(3/_4)7;1(2/_31)
36m" (z =)y —2)*(z —2)!

where d*¢ = 2Tr.(T*{T® T°}) is the three-index symmetric tensor of SU(4).
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The Adler-Bardeen theorem implies that the external anomaly

prge =i =L g b e (2.96)
K 38472 we=po '
is one-loop exact. The holographic computation confirms that this is the case.
Indeed the supergravity counterpart of the trilinear CP-odd couplings that
encode the “external” R-symmetry anomaly are the Chern-Simons couplings
that emerge after gauging. The supergravity tree-level result is renormalized
by a one-loop anomaly that can be thought of as living on the boundary and
implies a finite shift N2 — N2 — 1. The physical origin of the anomaly is the
absence of U(1)¢ singleton multiplet, that live on the boundary. Including
its contribution to the anomaly, one would get a coefficient N? as appropriate
for U(N).
Another class of particularly interesting 3-point functions is

IIol )
<Q11 QIzQ13> — 0(611,262?@) (ga 95 N)
L% Ly % 3 |1‘12|l1+42743|1‘23|52+537h |IL’31|Z3+£1*£2

(2.97)

where I is a multindex that runs over the d[0, £,0] = (¢+1)(¢+2)*(¢+3)/12
components of Q) = S/ tro(¢...p") with try(S'S7) = §'/. The Wick
contractions of the scalar fields

51l

(' ()’ (y)) = 2 (r =y (2.98)

account for the dependence on the insertion points. The coefficients C’(IKIIIZ?’@S)

contain a group theory factor and a dynamical factor. The group theory
factor is essentially a Clebsch Gordan coefficient. The dynamical factors can
been computed at weak coupling (free theory). At large N the result is

Vil

I 1>1.
C(le ,%2?43)(97 9, N) = N

tre(S1S35%) (2.99)

This can be compared with the prediction of the AdS/CFT correspondence
in the supergravity approximation that should capture the strong coupling
regime. In order to compute the supergravity counterpart of C(Il_}l{?é?ég) (9,0;N)
one has to go beyond the linearized approximation briefly described above.
Quadratic terms in the field equations or equivalently cubic couplings in the
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action are necessary. Since a precise mapping between gauged supergravity
and type IIB fields is still missing one has to work at the level of the field
equations. This is in general very complicated but for CPO’s the computa-
tion turns out to be feasible. After performing a field redefinitions that brings
the quadratic terms in the field equations into an integrable Lagrangian form
one finds — quite remarkably! — the same result as in free-field theory at large
N. The exact matching between weak and strong coupling results and the
absence of instanton corrections suggest the validity of a non-renormalization
theorem for any A and N. This has been tested at one-loop and to two-loops.
As for 2-point functions, barring contact terms, U(1)p “bonus” symmetry in
combination with A'=2 harmonic superspace techniques gives a demonstra-
tion of the non-renormalization of 3-point functions of CPO’s. The extremal
case, 1 = ly + (3, is subtler. We will return to this issue after discussing
non-perturbative effects.

2.7 Instanton vs D-instantons

As any non-abelian gauge theory, N’ = 4 SYM admits instanton solutions.
Contrary to familiar cases, e.g. QCD, N' = 1 or N = 2 SYM, instantons
do not violate chiral symmetry and their effects interfere with perturbation
theory. The remarkable feature of the SU(2) one-instanton solution

4 U
Iy (P% + (1‘ - 1‘0)2)2 ,

Fo = (2.100)

where 7, is the 't Hooft symbol, is that its moduli space, parameterized
by the position zf and size py, coincides with AdSs! At the classical level
the instanton solution breaks the (Euclidean) conformal group SO(5,1) to

SO(5). The latter is generated by

1 _ 1
Y, =T, + 5975”Ju,, , B, = 5775'/JW, I, =P, +p°K, . (2.101)

The quotient SO(5,1)/SO(5) is is exactly (Euclidean) AdSs. The same is
true for a single type IIB D-instanton on AdS5. This strongly indicates a
correspondence between these sources of non-perturbative effects whereby
the fifth radial coordinate transverse to the boundary plays the role of the
YM instanton size p.
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The correspondence can be made more quantitative. Using the AdS/CFT
dictionary (?7?), the charge-k type IIB D-instanton action S}?B =21k /g5 co-
incides with the action of a charge-k YM instanton S&),, = 87%k/g2,,.
Moreover, the super-instanton measure contains an overall factor giM that
arises from the combination of bosonic and fermionic zero-mode norms and
exactly matches the power expected on the basis of the AdS/CFT correspon-
dence.

The computation of the one-instanton contribution to the SYM correla-
tion function Gig = (A(z1)...A(z)), where A = Tr(F, 0" A%, is the
fermionic composite operator dual to the type IIB dilatino, and its compar-
ison with the D-instanton contribution to the dual type IIB amplitude has
represented the first truly dynamical test of the correspondence. Correlation
functions of this kind are almost completely determined by the systematics
of fermionic zero-modes in the instanton background. Performing (broken)
superconformal transformations on the instanton field-strength

F,, = Ks(p,x;2")op, (2.102)
yields the relevant gaugino zero-modes
1 — v
Ag)::§ﬁL¢ﬂA§A (2.103)

where (4 = n? + z - 04, with n? and £ constant Weyl spinors of opposite
chirality.

EXERCISE Using Bianchi identities and anti self-duality of F,,,,
mmwyaza

The exact matching with the corresponding type IIB amplitude is quite
impressive and somewhat surprising. Indeed the SYM computation initially
performed for an SU(2) gauge group at weak coupling, i.e. in a regime which
is clearly far from the regime of validity of the supergravity approximation,
has since then been extended to the £ = 1 instanton sector for SU(N) and
to any k in the large N limit. The resulting 16-point functions have the
same dependence on the insertion points. In the large N limit the overall
coefficients of the dominant terms are those predicted by the analysis of
type IIB D-instanton effects. For N z# 2 all but the 16 superconformal
zero-modes (2.103) are lifted by Yukawa interactions. Additional bosonic
coordinates parameterizing S appear in the large N limit as bilinears in the
lifted fermionic zero-modes.

show
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Other correlators that are related by supersymmetry to the A function
and can thus saturate the 16 exact zero-modes have been computed. Correla-
tors that cannot absorb the exact zero-modes receive vanishing contributions.
This is the case for 2- and 3-point functions of CPO’s as well as for extremal
and next-to-extremal correlators to which we now turn our attention.

2.8 Extremal and Next-to-Extremal Correlators

The correlator of CPO’s
G(x,...,x,) = (QY(x) Q) (21) ... Q") (z,)) , (2.104)

is said to be “extremal” when ¢ = ¢, + (5 + ...+ £,. It is easy to check that
(2.104) contains only one SU(4) tensor structure so that computing (2.104)
is equivalent to computing

(Tr((9) @)Tr((@N)" ()] Tr[(@") (za)]) - (2.105)

where ¢ is ¢! = ¢! + ip!*? with, say, I = 1. The tree-level contribution
corresponds to a “flower” diagram with ¢ lines exiting from the point x,
which form n different “petals” connecting x to the points x;, the i-th petal
containing /; lines. The result is of the form

G(z,z1,...,2,) = c(g,N) ﬁ(x — ;) % (2.106)

1=1

The dual supergravity computation is very subtle in that the relevant AdS
integrals are divergent but at the same time extremal trilinear couplings are
formally vanishing. If one carefully analytically continue the computation
away from extremality, one finds a non-vanishing result of the same form
as at tree-level in SYM theory. One is thus lead to conjecture extremal
correlators should satisfy a non-renormalization theorem of the same kind as
2- and 3-point functions of CPQO’s. This has been tested both at one-loop
and non-perturbatively and later shown to be a consequence of SU(2,2[4)
invariance.

At one loop, there are two sources of potential corrections. The first
corresponds to the insertion of a vector lines connecting the chiral lines of
the same petal. Its vanishing is in some sense related to the vanishing of
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one-loop corrections to 2-point functions of CPO’s. The second corresponds
to insertion of vector lines connecting lines belonging to different petals. Its
vanishing is in the same sense as above related to the vanishing of one-loop
correction to 3-point functions of CPO’s. The same analysis can be repeated
step by step in the case of extremal correlators involving multi-trace operators
in short multiplets.

As far as the instanton contributions are concerned, it is easy to check
that (2.105) cannot absorb the relevant 16 zero-modes. The induced scalar
zero-modes read .

Ploy = §T£BCAFILO'”VCB (2.107)
and the 4 exact zero-modes with flavour I = 1 could only be possibly ab-
sorbed at z. Since however ((x)* = 0, the non perturbative corrections to
(2.105) vanishes for any instanton number and for any gauge group in the
leading semiclassical approximation.

EXERCISE

Using [Dy, D,| = F,,,, show that D*¢{y, = 74 5[ Ny, Aty -

Other correlators, involving only one SU (4) singlet projection, enjoy simi-
lar non-renormalization properties. 2- and 3-point functions of CPO’s belong
to this class. The identification of U(1)g-violating nilpotent super-invariants
beginning at five points prevents one from generically extending the same
argument to higher-point functions. However the absence of the relevant
nilpotent super-invariants for next-to-extremal correlators with £ = (3, £;) —2
allows one to include them in the list of protected observables. The absence
of one-loop and instanton corrections in this case can be verified along the
same lines as for the extremal ones. Supergravity computations confirm
the weak coupling result and suggest that near-extremal correlators, with
0= (>; ;) — 4, satisfy a sort of “partial” non renormalization. The a priori
independent contributions to a given correlation function are functionally
related to one another. Functional relations of this form easily emerge in
instanton computations. Some additional effort allows one to derive them in

perturbation theory.

2.9 Four-point functions and logs

The dynamics of a conformal field theory is elegantly encoded in the 4-point
functions. The simplest ones have been computed both at weak coupling, up
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to order ¢g* as well as in the semiclassical instanton approximation, and at
strong coupling from the AdS perspective. At short distance they generically
display logarithmic behaviours that are to be interpreted in terms of anoma-
lous dimensions. At first sight this might seem surprising in a theory, such
as N = 4 SYM, that is known to be finite. Indeed, operators which belong
to short BPS multiplets have protected scaling dimensions and cannot con-
tribute to the logarithmic behaviours. Completeness of the operator product
expansion (OPE) requires however the inclusion of “unprotected” operators
in addition to the “protected” ones. Single-trace operators in Konishi-like
multiplets contribute to the logarithms at weak coupling but are expected
to decouple at strong coupling. On the contrary unprotected multi-trace op-
erators that are holographically dual to multi-particle states appear both at
weak and at strong coupling since their anomalous dimensions are at most
of order 1/N?.

To clarify the point in a simpler setting, consider the 2-point function
of a primary operator of scale dimension A = A” 4 v. In perturbation
theory v = 7(g,,,) is expected to be small and to admit an expansion in the
coupling constant g,.,,. Expanding in v yields

an a(AO)
<OL@$OA@»::Cr—yVA::@p—yVA@ X (2.108)

2

(1= st~ )+ Qoslu(o 07+ ..

Although the exact expression (??) given above is conformally invariant, at
each order in v (or in g,.,,) (2.109) contains logarithms that are an artifact
of the perturbative expansion.

Similar considerations apply to arbitrary correlation functions. Assuming
the convergence of the OPE, a 4-point function of primary operators can be
schematically expanded as

(Qa(7)Qp(y) Qc(2)Qp(w)

) =
CAB ( ya ) K( )
; (:C _ y)AA+AB ( )A0+AD <0K(y)oK(w)> )

where K runs over a (possibly infinite) complete set of primary operators.
Descendants are implicitly taken into account by the presence of derivatives

(2.109)
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in the Wilson coefficients, C’s. To simplify formulae we assume that Q’s
are protected operators, i.e. they have vanishing anomalous dimensions. In
general the operators Ok may have anomalous dimensions, v, so that A =
A(,? +7k. Similarly C7;% C’(O)K+77UK. Indeed, although 3-point functions
of single-trace CPO’s are not renormalized beyond tree level, a priori nothing
can be said concerning corrections to 3-point functions involving unprotected
operators.
Neglecting descendants and keeping the lowest order terms in v and n

(Qa(7)Qr(Y) Qo(2)Qp(w)) ,, = > (Ok (y) Ok (w)) 4

% (v — y)AA+AB*Ag?) (2 — w)AoJrAD—Ag?)

og &= y)*(z — w)?

(y — w)*

whence one can extract both corrections to OPE coefficients and anomalous
dimensions.

In order to exemplify the above considerations, let us consider the 4-point
function of the lowest CPO’s in the N'=4 current multiplet

(0) (0) (0) (0)
HABKO K + OABKT]CD —+ —O KO K

g o ij
Qsor = tr(¢'¢’ — %sokso’“) : (2.110)
Due to the lack of a manifestly N/ = 4 off-shell superfield formalism,
perturbative computations have to be either performed in components or in
one of the two available off-shell superfield formalisms. Although the number
of diagrams is typically larger in the N = 1 superfield approach its simplicity
makes it more accessible than the less familiar A" = 2 harmonic superpace.
For illustrative purposes let us consider the one-loop contribution to 4-
point functions of lowest CPO’s G4 = (QQQQ). The A/ = 1 chiral superfield
propagator reads

615

I §11+§11 2612
(@ ($1,91)@J($2792)> o 47233%2

(2.111)

where &5 = i0;,6"6;. Out of the six SU(4) singlet projections of G4, consider
one that has no connected tree level contribution. The only relevant vertex
at one-loop comes from the superpotential W = v/2gtr(®'[®?, ®3]) and the
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result reads

Gz, 21, 23,24) = ((6")*(21)(61)(22) (6 (w3) (61)* (z4)) = (2.112)

(@2 (81 ) (8 ) (B oo = — i =

B(r, s)

where B(r, s) is a box-type integral, that only depends on the two indepen-

dent conformally invariant cross ratios r and s and their combination
p=1+7r"4+s>—2r—2s—2rs.

and can be expressed as

Mn$:5;%mmm@—bn(+s_l_ﬂvr+

D 2

—2Li2< 2 )—2Li2< : )} |
IL+r—s+p Il—r+s+./p
The other a priori independent 4-point function

Gy (w1, w1, 3, 74) = (") (1) (8])*(w2)(8") (w3) (8])° (w4)) (2.113)

The non-perturbative contributions are quite involved and we refrain to dis-
play them. We simply notice that the relation

1125, G (21, 21, 23, 14) = 27,205,Gv (21, 21, T3, 1) (2.114)

which embodies the content of “partial non-renormalization”, can be easily
derived from the systematics of the fermionic zero-modes. Some additional
effort allows one to derive it in perturbation theory The AdS computation is
even more involved and the final result is quite uninspiring.

In order to extract some physics one has to perform an OPE analysis.
Restricting for brevity our attention to the sectors 1, 20, 84, and 105 the
results can be summarized as follows®.

In the 105 one finds only subdominant logarithms, consistently with the
expected absence of any corrections to the dimension of 1/2 BPS single- and
double-trace operators of dimension A = 4 in the 105.

8Recall that in addition to these irreps, 20’ x 20’ contains 154175 in the antisymmetric
part.
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In the 84 channel, the dominant contribution at one and two loops is
purely logarithmic and consistent with the exchange of the operator Kg4 in
the Konishi multiplet. The absence of dominant logarithmic terms in the
instanton as well as AdS results suggests confirms the absence of any correc-
tions to the dimension and trilinear of a 1/4 BPS operator 1584 of dimension
4, defined by subtracting the Konishi scalar g4 from the projection on the
84 of the naive normal ordered product of two Q.

In the 20’ sector, there is no dominant logarithm suggesting a vanish-
ing anomalous dimension for the unprotected operator : Qso Q2¢/ :20/. This
striking result seems to be a consequence of the partial non-renormalization
of 4-point functions of CPO’s that is valid not only at each order in pertur-
bation theory (beyond tree level!) but also non-perturbatively and at strong
coupling (AdS). In order to disentangle the various scalar operators of naive
dimension 4 exchanged in this channel it is necessary to compute other in-
dependent 4-point functions involving the insertions of the lowest Konishi
operator y.

The analysis of the singlet channel is very complicated by the presence of
a large number of operators. In perturbation theory one has logarithmically-
dressed double pole associated to the exchange of Ky with

2 N 2 N
R s = (2.115)
Non-perturbative and strong coupling results only show a logarithmic singu-
larity that is associated to the exchange of some double-trace unprotected
operator Oy with v~ 1/N2.

The picture that emerges is very interesting. In addition to protected
single an multi-trace operators satisfying shortening conditions of BPS type
as well as single- and multi-trace operators in long multiplets there seems to
be a new class of operators that satisfy a linear type (non BPS!) shortening
condition and have vanishing anomalous dimensions.

Konishi-like operators decouple both from non-perturbative (instanton)
correlators as well as from the strong coupling AdS results but they represent
the only available window on genuine string dynamics. The OPE algebra at
strong coupling requires the inclusion of multi-trace operators of three kinds.
Those dual to multi-particle BPS states, those dual to non BPS-states with
gravitational corrections to their binding energy and those dual to non BPS
states without mass corrections. A deeper understanding of the last two
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classes of operators would help clarifying profound issues in the AdS/CFT
correspondence such as the string exclusion principle that is expected to play
a role at finite V.

2.10 Other conformal theories

Much of what have been said so far can be easily generalized to other
(super)conformal SYM theories that emerge by considering the dynamics
of D3-brane near orbifold and conifold singularities or in F-theory back-
grounds (orientifolds). In general the near horizon geometry looks like some
warped product of AdS; and a 5-dimensional Einstein manifold E°. For
instence the choice E° = T' = SU(2) x SU(2)/U(1), which is the base
of the conifold, gives rise to an N/ = 1 superconformal theory with global
SU(2) x SU(2) x U(1) flavour / baryon symmetry. Deforming or resolving
the conifold determines a logarithmic evolution of the theory on the brane.

Not all (super)conformal theories admit holographic duals. By studying
external Weyl anomalies M. Henningson and K. Skenderis were able to show
that only when the coefficients ¢ and a that appear in the trace anomaly

satisfy
N2 —1V(85 1
c=a—= (5%) = (2.116)
4 V(ES)  GQpse
the theory under consideration has a chance of admitting a holographic dual
at least in the large N limit. We will discuss Ward identities and holographic
anomalies in the next lecture. For the time being In general the coefficients
¢,a are given by
1 1
= —(Ns+ 6N+ 12N,) = —(Ns+ 11Ny 4+ 62N, 2.117
c= (N 46N +12N,) 0= (N, + 1IN; +62N,)  (2117)
where N, Ny, N,, are the number of scalars, (Weyl) fermions, and vectors,
respectively.

Orbifold theories are associated to quiver diagrams that codify the rele-
vant gauge groups and representation of matter fields. Restricting our atten-
tion to the case of C3/Z; singularities that preserve at least A' = 1 supersym-
metry i.e. such that 7, € SU(3) one has to embed the group action into the
Chan-Paton group. For unitary groups one gets the breaking of U(N) into
[TU(N;) with matter fields in the (N;, N, ;) representation. The resulting
theory is superconformal only when N; = N, forany ¢t =1,... k.
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EXERCISE

Check that indeed for N = 4 SYM and the other SCFT’s from D3-branes
at orbifolds the relation ¢ = a s satisfied.

When the condition Z;, € SU(3) is relaxed one gets theories that are only
conformal in the large N limit. The presence of Yukawa and quartic scalar
coupling that are only related to the gauge coupling in the UV regime makes
the evolution of the theory with the scale quite involved. Some insight on RG
flows can thus be gained by means of open-closed string duality. A restricted
class of perturbative open-string backgrounds (often related to F-theory at
constant and weak coupling) show an interesting relation between NS-NS
tadpoles and running of the gauge coupling on the brane much in the same
way as chiral anomalies are associated to R-R tadpoles. Alternatively, by
deforming A" = 4 SYM by relevant operators it is possible to flow from the
superconformal point to phenomenologically more interesting gauge theories
possibly with a dynamically generated mass gap. As we will see, however the
typical energy scale of the resulting (super)glueballs is M ~ 1/L and coin-
cides with the scale of the K-K excitations. This may be cured by uplifting
the solution to d = 10 or equivalently studying branes wrapping (supersym-
metric) cycles in (non-compact) Calabi-Yau (CY) manifolds. We will have
no time at all to discuss these very interesting issues here.

Before discussing holographic RG flows and their supergravity duals,
i.e. 5 — D domain wall solutions, let us comment to what happens at finite
temperature. By conformal invariance the entropy of N' = 4 SYM should
scale as S ~ N2VT? although in qualitative agreement with the entropy of
the D3 — brane the exact coefficients do not match. In the near horizon
limit the relevant supergravity solution is the AdS-Schwarschild black hole.
Computing the free energy F' = E — T'S in (free) field theory, with T = Ty
the Hawking temperature of the dual supergravity solution, and comparing
it with the supergravity prediction Z = [F, with 3 the inverse tempera-
ture and Z the (regulated) action of the (Euclidean) solution, one finds a
(in)famous discrepancy of a factor of 3/4. Indeed F = —m2f(A\)N?VT*/6
where f(A\) =1 for A =0 and f(\) = 3/4 for A = co. First order corrections
in thermal field theories on the boundary as well higher derivative corrections
to the action of the classical supergravity solution, which is not conformally
flat!, tend to reduce the discrepancy pointing towards a reduction of degrees

of freedom from weak to strong coupling.
EXERCISE
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Count the number of bosonic and fermionic species and compute internal
energy, entropy and free energy for a gas of non-interacting N' = 4 parti-
cles in a volume V' at temperature T using Bose-FEinstein and Fermi-Dirac
distributions with p = 0.
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3 Holographic renormalization

Once the correspondence has been “established” in the superconformal case,
one may envisage the possibility of introducing relevant mass-deformations
S — S, + g; [ d*zO" that trigger renormalization group (RG) flows in the
boundary theory. Their holographic counterparts are domain wall solutions
of 5 — d gauged supergravity that interpolate from one critical point (say the
maximally symmetric SO(6) point) of the scalar potential to another critical
point or to the “hades”. In some cases the IR endpoint of the RG flow is
a confining theory. It would be interesting to get predictions for the bound
states that appear in the IR as a result of the RG flow. This amounts to
extracting the spectrum of mass poles in 2- or higher-point functions. In
order to do this one has to handle the divergences that plague the calcu-
lations. A systematic procedure has been developped that goes under the
name of holographic renormalization and consists in the following steps. The
first step is finding a consistent truncation that allows for an asymptotically
AdS domain wall solution, typically preserving some fraction of the original
supersymmetries but breaking conformal invariance. Then one performs the
near boundary analysis of the coupled field equations in a convenient coor-
dinate system in order to identify sources and induced VEV’s. Plugging the
symtotic solutions into the action allows one to isolate a finite number of
counterterms that one has to subtract in order to cancel the large volume
divergences dual to UV divergences in the boundary theory. The resulting
renormalized action has to be expressed in terms of field living at the regu-
lated boundary. In principle, differentiating with respect to the sources one
finds the desired correlation functions that satisfy the correct Ward identities
including anomalies. In practice this would require the knowledge of the non-
local relation between sources and induced VEV’s that is not determined by
the near-boundary analysis. For 2-point functions, one can achieve the goal
by linearizing the field equations around the domain wall background. After
describing the general procedure in detail, we will illustrate it for the simple
but interesting holographic RG flow found by Girardello, Petrini, Porrati and
Zaffaroni (GPPZ).
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3.1 Domain walls and RG flows

The method generally used to obtain asymptotically AdS domain wall solu-
tions of 5-dimensional supergravity relies on symmetry arguments to consis-
tently truncate the full bulk theory, usually d = 5, N' = 8 gauged supergrav-
ity, to a small number of scalar fields interacting with gravity®

N2
T o2

So | &G ER 4 %GH”HIJa“@fayq>J V@) - % [
(3.118)
where I is the trace of the second fundamental form. We work in Euclidean
signature and assume that the potential V' (®) has a stationary point at
® = 0. By a constant Weyl transformation one may set V(®=0) = —3/L?,
so that the action admits a pure AdS solution. We then look for solutions of
the coupled field equations with d = 4 Poincaré symmetry. The most general

ansatz is of the form

ds? = 2" dx - dx + dr? : d' = o'(r) (3.119)

The asymptotic boundary AdS region is at r — 0o, and the scale factor
is exponential in this region, i.e. exp(2A(r)) — exp(2r/L). We set L = 1,
i.e. g5 = 2 henceforth. The asymptotic behavior of the scalar field distin-
guishes solutions which are dual to flows governed by operator deformations
from those triggered by VEV’s.

Even within the ansatz (3.119) it is generally difficult to solve the second
order field equations of (3.118). However, if the potential V(®) is derivable
from a superpotential W (®),

¢ AR A — 12
V=9 aer907 3V (8.120)

then any solution of the first order equations

dA 2 d®’ ow
— = _IW - —HlW_———

dr 3 ’ dr oD/
provides a domain wall solution for the action (3.118). In a supersymmetric
context the superpotential is associated with Killing spinors via Wye® =

We,, and has a critical point at &' = 0.

(3.121)

90ur curvature conventions are as follows R,“,,i)‘ = BMF,,N’\ + FW’\FM" — ¢ v and
R,, = R,
nv UV -
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In order to interpret the radial evolution in terms of RG flows it is con-
venient to identify the warping factor A with the renormalization scale and
define holographic 4 and ¢ functions according to

dd’ 3H" oW
I _ —
O dA 2W 09/ (3.122)

and o7
T s
cy = =— (3.123)
G  eaaPDws

the latter is normalized so that ¢y = N?/4 at the UV boundary, thus mea-
suring the number of degrees of freedom. Using the first order form of the
radial evolution it is easy to check that cy is not increasing along the flow.

EXERCISE

Check that indeed

C
d—j = —2cyHy 0887 (3.124)

This is known as the holographic c-theorem. Its extension to theories
that do not admit a holographic description is still a matter of debate and
intense investigation.

3.2 Field equations

In order to evaluate the on-shell action, including its divergences, as a func-
tional of the sources one has to solve the coupled field equations. For the
sector that includes the stress tensor, certain R-symmetry currents and scalar
operators, the bulk theory is that of gravity coupled to gauge and scalar fields.
For the (final) purpose of computing 2-point functions, it is sufficient to keep
only bilinear terms in the vectors since they have vanishing background. In
this approximation the action for the SO(6) gauge fields reduces to a sum
of uncoupled abelian sectors and it is convenient to use the Stiickelberg for-
malism involving gauge invariant combinations B, = A, + J,«, with « bulk
Goldstone fields.
The bulk Lagrangian that describes this system of fields is given by

| |
S=Sy+ [ &G K@) FpFuGHGY + M (®)G* BB, | (3.1)
M
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where S is given in (3.118) and K (®) and M?(®) are positive semi-definite
functions of the active scalar .
The field equations that follow from this action are

V, (K(®)F™) = M*(®)B" (3.2)
oV 10K 1 0M?
_ Kl AV 1%
O6® = o= +48®G GV FosFu + 5—>=G" ByB, . (3.3)
Ry, =—2|T,, — gGWTrT , (3.4)

where T}, is the matter stress energy tensor and TrT" = G*'T,,,.
In holographic renormalization it is most convenient to work in the coor-
dinate system where the bulk metric takes the form

dp?

ds® = G datdz” = 1 —

+ ;gzj(x p)da'dx’ (3.5)
Any asymptotically AdS metric can be brought to this form near the bound-
ary. The radial variables p and r are related by p = exp(—2r/L). The
boundary is located at p = 0 and the regularized action will be defined by
restricting to p > €.

EXERCISE

Write the coupled field equations in the coordinate system (3.5) and check
that they look as follows.

Scalar fields
1 ov.
4p*®" — 4pd'(1 — ip(logg) )+ p,® — %= (3.6)
oK poM”,
T o5 9" 9" FoeFut + 809" iy Fiy] + 5= [ B;iB;j + 4pB,B,)|

where prime indicates derivative with respect to p, g = det g;;(x, p), and O,
is the scalar Laplacian in the metric g;j(x, p).

Vector fields
AViK"E;) = ML, (37)

VTR 8" Fy) + 490, /TK " F) = MY LB (35)
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Gravity

295 —2(g'97 g )iy + Tr (979" gij ] + Rislg] + 295, — Tr (97'9) 955 =

2
—2 (a@ajq) + 3—p[V(<I>) — V(0)]gi; + M?B;B; + pK[g" Fyy, Fjy + 4pF;, F},]

1
- éngij (g™ g Fr Fru + SPlekaszD

ViTr (g7'g) — VVgl; = —2 (0:90,® + M*B,B, + pK g"' Fy, F)

(3.9)
(3.10)

" 1 — ! — ! 1
Tr (9~ 'g") - 5Tr (g g9 ") = -2 (apq>ap<1> + —[V(®) - V(0)] + M°B,B,

62

2 1
+§nglekap — ﬂKgmnglemanO

3.3 Near boundary analysis

Near the boundary each field F(z, p) admits an asymptotic expansion of the
form

F(z,p) = p" (fo)(@) + fey(@)p + oo + 0" (fran)(2) + 108 p fom () +-..) + ...)
(3.12)
For instance, the expansion of the metric reads'®

9ij (%, p) = g(oyij + 9(2)ijp + P’ [9(a)ij + Pa(ayij 10g p+ hoayij (log p)? +... (3.13)

Field equations are second order differential equations in p, so there are
two independent solutions. Their asymptotic behaviors are p™ and p™*",
respectively. For bosonic fields in domain wall solutions dual to flows driven
by protected operators, n and 2m are non-negative integers. The boundary
field f(o) that multiplies the leading behavior, p™, is interpreted as the source
for the dual operator. In the near-boundary analysis one solves the field
equations iteratively by treating the p-variable as a small parameter. This

10 Tn the Fefferman-Graham framework the most general expansion may contain half-
integrals powers of p, or integral powers of the coordinate U, p = U2. In the case of pure
gravity in d = 4 and for the GPPZ flow, the coefficients with odd powers of U can be
shown to vanish.
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yields algebraic equations for fiar), & < n, that uniquely determine fo) in
terms of f()(x) and derivatives up to order 2k. These equations leave f(o, ()
undetermined. This was to be expected: the coefficient fe,)(x) represents
the boundary condition for a solution which is linearly independent from the
one that starts as p™. As we will shortly see, f(2,) is related to the VEV
of the corresponding operator. The logarithmic term in (3.12), necessary in
order to solve the equations, is also fixed in terms of f()(x) and is related
to conformal anomalies of the dual theory. The latter emerge from bulk
diffeomorphisms that preserve the form of the coordinate system (3.5), but
induce a conformal transformation at the boundary. Correlation functions
will eventually be expressed in terms of certain coefficients in (3.12). It
follows that the (local) RG equations are coded in the transformations of the
coefficients under bulk diffeomorphisms of this kind.

3.4 Counterterms

Asymptotic solutions can be inserted in the regulated action and a finite
number of terms which diverge as ¢ — 0 can be isolated. The on-shell action
takes the form

Swslfiiel = [

- d4x. /9(0) [ef”a(g) + 67(V+1)a(2) +...—loge a2y + 0(60)]

(3.14)
where v is a positive number that only depends on the scale dimension of
the dual operator and ay) are local functions of the source(s) f). The
counterterm action is defined as

Sct[F(x,€); €] = —divergent terms of Siee[f(0); €] (3.15)

where divergent terms are expressed in terms of the fields F(z,¢€) ‘living’ at
the regulated surface p = € and the induced metric there, v;; = g;;(z, €)/e.
This is required for covariance and entails an “inversion” of the expansions
(3.13),(3.12) up to the required order.
To obtain the renormalized action we first define a subtracted action at
the cutoff
Ssub[F(, €); €] = Sreg| fr0); €] + St [ F (2, €); €]. (3.16)

The subtracted action has a finite limit as ¢ — 0, and the renormalized action
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is a functional of the sources defined by this limit, i.e.
Sren[f(o)] = ll_{% Ssub[f; 6] (317)

The distinction between Sy, and Sie, is needed because the variations re-
quired to obtain correlation functions are performed before the limit ¢ — 0
is taken.

The procedure above amounts to a “minimal” scheme in which the diver-
gences of Sye are subtracted. As in standard quantum field theory, one still
has the freedom to add finite invariant counterterms. These correspond to a
change of scheme. For example, such finite counterterms may be needed in
order to restore some symmetry (e.g. supersymmetry).

Given a bulk action there is a universal set of counterterms that makes
the on-shell action finite for any solution of the bulk field equations with
given Dirichlet boundary data. The counterterms are different for different
bulk actions, 7.e. for different truncations that lead to different potentials
V(®).

3.5 Correlation functions

Having obtained the renormalized on-shell action one can compute correla-
tion functions by functionally differentiating S, with respect to the sources.
The variation of (3.1) reads

|
6 Sren|9(0)i> D(0)» A0)i> A(0)] = /d4$\/g(o)[§(7§j>5g(ﬁ) + (Os)d 9 0)
+(JYA )i + (Oa)da )] (3.18)

i

where g(g), A0y, P(0); a0y are sources for the dual operators and appear as the
leading coefficients in the near boundary expansions of the bulk metric G,
gauge field A,, active scalar ® and Stiickelberg field o, respectively.

The expectation value of a scalar operator is defined by

> _ 1 651‘611
Y Jam) 9%0)

It can be computed by rewriting it in terms of the fields living at the regulated

(3.19)
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boundary*!

I 1 Sew
Og) =1l — 3.20

< <I>> e% <€A/2 \/’_Y(S(I)(ZU,€)> ( )
where 7;;(z) = gij(x,€)/e is the induced metric on the boundary and v =
det(7;;). In general one can prove that

(Oo) = (2A — 4)¢(2n) + local (3.21)

where the local terms are completely fixed by the choice of ¢ ).
The expectation value of the stress-energy tensor of the dual theory is
given by

(1) = =5 2 Sy (L)) a2
70 59(%) e—0 g(x,e)égzy(x,e) e—0 \ e

where Tj;[7] is the stress-energy tensor of the theory at p = e. From the
gravitational point of view this is the Brown-York stress energy tensor sup-
plemented by appropriated counterterms contributions

Tiily] = T* + T3, (3.23)
T;® comes from the regulated bulk action and it is equal to
reg 1
Ti*l) = —5(’%' — Kij) (3.24)

= oy + s O Tl () + g, 0)

where [Cj; is the extrinsic curvature tensor. T} is the contribution due to
the counterterms.
Similarly, the one-point function of R-symmetry currents reads

. 1 (SSren . 11 5Ssub )
JY = =lm|—-——7-— 3.25
< > 9(0) (SA(O)Z- €—0 (62 ﬁ (SAZ (1’, 6) ( )

The one-point functions (Og), (T;;) and (.J;) depend on all sources. Field
theory VEV’s can be obtained by setting the sources to zero.

HFor scalars of dimension 2, an additional loge is needed in this formula, see (?7).
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In order to obtain higher point functions we need to functionally differ-
entiate one-point functions with respect to the sources. In pratice one has to
restrict at most to 2-point functions.

For example one can define and compute the connected 2-point functions
of the stress tensor as

2 o(T(2))

(Tij(2)Tu(y)) = — TN (3.26)
90)(y) 99(0)(¥)
and the connected 2-point function of the currents as
1 6{Ji(z))
(Ji(2) Jr(y)) = — N (3.27)
Va0 () 940 (¥)
In terms of the projectors
iDj 1 1
Tij = 52']' - %, sz;fl = i(ﬂikﬂ.ﬂ + ﬂ'z'lﬂ'jk) - gTrijﬂ'kl (328)

the (Fourier transform of the) former decomposes into
(T;; () Tea(—=p)) = T 1,Gr (p°) + mijmaGr (p?) (3.29)

while the latter into

(Ji(p) Je(=p)) = T Fr(p?) + p;j;’“ Fi(p?) (3.30)

Supersymmetry Ward identities imply Gr = Fr and G;, = F;, when .J is an
R-symmetry current.

3.6 Ward identities

Bulk gauge fields couple to boundary currents associated to global symme-
tries. It follows that bulk gauge invariance translates into Ward identities of
the boundary quantum field theory. The holographically computed one-point
functions do satisfy these Ward identities including anomalies.

Using (3.18), invariance of (3.1) under diffeomorphisms,

Sy = —(V'E + V7)), 860) = E'Vid),
da) = E'Via), Ay = EViAw) + Vi€ Ay, (3.31)
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implies the Ward identity for the conservation of the stress tensor!?,
Vi{T) = —(08)V;é0) — (0a)Vjam — Foy(T) + Aw;VilJ')  (3.32)

where Flg);; is the field strength of A ).
Invariance under Weyl transformations,

09" = —204", dp) = —(4 — A)ogy)
0y = =0 A, da@) = —0oa (3.33)

leads to the conformal Ward identity
(T7) = =(4 = 8)$0)(Oa) = a(0)(Oa) = (J) A + A. (3.34)

where we have allowed for the conformal anomaly A. By Wess-Zumino con-
sistency conditions, A is conformally invariant and obtains directly from the
logarithmic counterterm of the the bulk action. When the only external
source is the background metric A = A4, with

N2

1
- LRV P2
Agran = 75— (RiRY = ) (3.35)

Comparing with the standard formula
c

(T}) = —— WiuW " —

1672

a
1672

éz‘jszijkl (3.36)

one immediately concludes that ¢ = a by the absence of terms bilinear in the
Riemann tensor.

3.7 Two-point functions and superglueballs

The near boundary analysis does not fix certain asymptotic coefficients, as-
sociated with operator VEV’s, in terms of the corresponding sources. One
needs a solution of the field equations which is valid beyond the asymptotic
region of small p. For the purpose of computing 2-point functions a linearized
solution around a given background is enough.

12Notice that these Ward identities are valid in the presence of sources. In particular,
(T3;) depends on sources. In field theory one usually expresses the Ward identities in terms
of the stress energy tensor with the sources set equal to zero, (T3;)orr = (Tij)|sources=0-
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For supersymmetric flows, transverse modes of the metric and vectors
can be expressed in terms of an auxiliary “massless scalar field” f(r). For
transverse traceless tensor fluctuations one has

hig' (r, @) = eij(p)e™ fo(r) (3.37)
while for transverse vectors one finds

ai (r,x) = vi(p)eP K (®(r)) 2240 f1(r) (3.38)
Longitudinal and radial modes are less universal and must be studied on a
case by case basis.

Once the non-local relation between sources and VEV’s has been estab-
lished, one can relatively easily compute 2-point functions. In some cases,
the resulting mass poles form a discrete spectrum and deserve the name of
(super)glueballs. The typical mass scale is A ~ 1/L, i.e. (M, L)> = f(n). In
some cases the spectrum is continuous with or without a mass gap of order
M., =~ 1/L. Notice that all mass scales are of the same order as those of
the K-K excitations. This is the main drawback of the supergravity approxi-
mation. In order to go beyond this point one would need to understand how
to quantize string theory in (asymptotically) AdS spaces. Some progress has
been made very recently in a double scaling limit which is dual to a pp-wave
background obtain by a Penrose limit of AdSs x S°.

3.8 GPPZ flow: a case study

Let us exemplify the procedure of holographic renormalization for the case
of the GPPZ flow!®. This solution corresponds to adding an operator of
dimension A = 3 to the Lagrangian that gives a common mass to the three

13Let us mention that by rescaling the vector fields so that their kinetic term is canoni-
cally normalized, one obtains that all transverse vector fluctuations have a universal mass

LK |

2 —_— —
Meff_2K K 4

— =-2024>0.
% +K 0;A>0

oK 1 (am)Q M?
This has been checked for any vector field in all analytically known supersymmetric flows
with one active scalar.

M For simplicity we only consider the flow with one active scalar. More general solutions
with VEV’s for the bulk field dual to the gaugino bilinear have been considered by GPPZ.
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N =1 chiral multiplets appearing in the decomposition of the N" = 4 vector
multiplet. The solution was proposed as the holographic dual of pure N' =1
SYM theory. Although it does not capture all of the expected properties of
the field theory, it is particularly simple and still displays some interesting
features.

The active scalar is a singlet under an SO(3) subgroup of SO(6). A
consistent truncation to the SO(3) singlets yields N' = 2 gauged supergravity
coupled to two hypermultiplets describing a G'a(2)/SO(4) coset. After lengthy
calculation one gets the 5 — d superpotential that reads

W(®) = —Z [1 + cosh (%)] (3.39)

Near & = 0, the potential has an expansion,

3 1
V() = -3 - 5<1>2 — 5@4 + O(9%) (3.40)
The mass of ® is M? = —3, (in units such that L = 1) indicating that the
dual scalar operator has indeed dimension A = 3 in the UV. The domain-wall
solution is given by

b= lee T i I
where u = 1 — exp(—2r). The boundary is at © = 1 and the solution has
a naked singularity of “good” type at u = 0. Since ® ~ \/3exp(—r) near
the boundary, we are dealing with an operator deformation, namely the top
component of the superpotential AW = 3_, ®2, rather than a VEV.

EXERCISE

Solve the field equations in first order form and check that indeed ® =
®(u) and A = A(u) is a solution.

Up to a numerical rescaling, the kinetic term of the graviphoton is canon-
ical and its mass is given by

M? = sinh? (%) - (1;2“). (3.42)

The bulk Stiickelberg gauge invariance implies a corresponding Ward
identity. We find convenient to use normalizations such that B, = A, —

, (3.41)
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36,a/2. Then the bulk gauge invariance implies

: . 2

and

V(i) = (Oa) (3.44)

2
3
follows.

When expressed in terms of the radial variable u, the “massless” scalar
field equation turns out to reduce to a hypergeometric equation that admits

the solution

Folu) = (1 — u)2F (2 + ig, 2 ig; 2 ) . (3.45)
For the transverse components of the U(1)g graviphoton one has
6O (1) = u(l — u)F(2 + z'g, 2 z'g; 3: ) (3.46)

after dropping an irrelevant p-dependent factor.
For the longitudinal and radial components one finds

3 1 3 1
Cp(u) = =8B, = uF (‘ +35¢,5— 3¢ 3; u>

2 2 2
q: Q/]_ —p2 (348)

We are now ready to combine results of near boundary analysis with the
fluctuations to obtain correlation functions of the U(1)g current and the
scalar operator O,.

It is again useful to ‘integrate’ the first order variation §S,., to obtain
a quadratic action from which the 2-point correlators may be immediately
read. Analytic continuation as u — 1 of the hypergeometric function that
appear in (3.46) yields gives

(3.47)

where

Bi= Aws(l -+ DR~ D —logp) + 1] +.) (349

for the transverse components, where K = ¢(3) +v(1) — (2 +ip/2) — (2 —
ip/2). One then finds

By = —Apil(1 + 5K = ) +1] (350



Similarly, for the radial component, (3.47) gives
By = —B)J, (3.51)

where J = 2¢(1) —(3/2+¢/2) —(3/2 — q/2) and from the near-boundary
analysis we know that _ .
Vi By = —4B, (3.52)

The renormalized action to quadratic order in the sources thus reads (in
momentum space)

N2 2 1 2

_ 4 i AL T Py 2y P-
1 i 2., 27
37 (iAo + 3 aq))"J (3.53)

The fact that the the longitudinal part of the Ay and the a() appear as
a total square is a consequence of the [-function operator relation (3.58)
between the divergence of J; and O,. An analogous phenomenon takes place
in the graviton-scalar sector.

The transverse 2-point function reads

N2 o 1. P
; — = —7ma|l(1+—)(K—-=)—— .54
(Ao = g (04D - =) 50

It has poles at p? = —4(n + 2)? (we are using Euclidean signature) with
n = 0,1,..., as expected, but also a disturbing massless pole whose residue

is —(N?%/67%)(K(p=0) — 1/2) = (N?/67?). Happily, as we now show, the
longitudinal 2-point function also contains a massless pole and the two con-
tributions cancel each other!

The remaining correlators are

(i) Ti(=p)y = 1]2\[; p;’;" J (3.55)
U0 = o gip (3.50
Oulp)OlD) = o p] 357)



The residue of the zero mass pole in (J;(p)Ji(—p)) @) is N?/(672), and indeed
the zero mass poles cancel.
These correlation functions are consistent with the operator relation

, 2 2
V'], = -0, =—=50yg (3.58)
3 3
where 3 = —v/3. The same [-function can be found in the graviton-scalar

sector since the Ward identity for the R-symmetry current is related by su-
persymmetry to the trace Ward identity, 7! = 30g. Similar results obtain
in the stress energy — active scalar sector where the mixing is rather intricate
and we leave its study to the interested reader. Let us simply summarize the
three distinct glueball spectra for the operators dual to bulk fields which are
singlets under the SO(3) subgroup of SU(4) that leaves AW invariant.

For the A/ = 1 supercurrent multiplet 7,4 = Tr (W, W4+ ...) dual to the
transverse components of the bulk supergravity multiplet {%,,, w}f, B}, we
have states with momenta:

(pL)> =4(n+2)*> n=0,1,2,.... (3.59)

For the N/ = 1 chiral anomaly multiplet A = Tr(®?) dual to the active
hypermultiplet {p, €12 m}:

(pL)> =4(n+1)(n+2) n=0,1,2,.... (3.60)

For the A/ = 1 chiral “Lagrangian” multiplet S = Tr (W? + ...) dual to the
dilaton hypermultiplet {o, £3*, 7},

(pL)? =4n(n+3) n=0,1,2,..., (3.61)

including a zero-mass pole for the lowest component operators dual to o.
This pattern agrees with physical expectations, but it emerges in a subtle
way from the interwoven symmetries and dynamics of the bulk supergravity
theory. In order to deal with the dilaton and axion fields 7 correctly one is
forced to confront oneself with the complexity of a Gy9)/SO(4) coset.

4 Wilson loops

In the introduction we have seen that Wilson loops are the basic non-local
observables in gauge theories. Their scaling with the area was presented as
a suggestive hint to an underlying string description of confinement.
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In supersymmetric theories the concept of the gauge connection general-
izes to a superfield that contains other components beyond the usual vector
potential. In A/ =4 SYM the natural generalization of the Wilson loop is

(W(e)) = %(Tr? exp {i /C(Aux'” + [0, 0P A + 05T g AP + hoc] + ipiyt)ds)),

(4.62)
The curve C now represents the worldline in ‘superspace’ — in other words
this kind of Wilson loop depends not only on the curve z#(s) but also on
y'(s) and 64(s). The six variables 3 are in a sense conjugate to the central
charges Z; in the N' = 4 supersymmetry algebra and #* contains the sixteen
odd (Grassmann) variables of N = 4 on-shell superspace. The expression
(4.62) is appropriate to euclidean signature whereas the factor of i in the
last term in the exponent is absent with Minkowski signature and arises
from the Wick rotation. Its presence is important, among other reasons,
because it implies that the exponential is not purely a phase. The expression
(4.62) can be motivated by considering the holonomy of a supersymmetric
test particle of infinite mass that is generated by breaking the gauge group
U(N)toU(N —1) x U(1).

In the context of the AdS/CFT correspondence the Wilson loop is in-
terpreted as the functional integral over all world-sheets embedded in AdSs
and bounded by the loop. In the supergravity limit (the small o/ limit of the
string theory) this integration over fluctuating surfaces is dominated by the
surface of minimum area in AdSs. The behaviour of the loop is therefore

<W(C)> ~ exp(_TAmin(z))

where T' = 1/2ma/ is the string tension. Since the metric is singular near
the boundary of AdSs an infinite perimeter term arises that is eliminated
by a suitable choice of boundary conditions. In this manner one ends up
with results applicable to the strong 'tHooft coupling limit of the N' = 4
gauge theory that in general (for non BPS configurations) differ from the
weak coupling ones.

Wilson loops that satisfy a BPS condition, 7.e. that are invariant under
a fraction (say one half) of the 32 superconformal supersymmetries enjoy
special properties. Setting for simplicity §4(s) = 0, the sixteen residual

supersymmetries are defined by spinor parameters 2, % that are related by

LT AL (4.63)
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More generally, the BPS condition allows 64 to be freely shifted by any Killing
spinor k4. This BPS condition has a close connection with the presence of
K symmetry of the massless (p*> = 0) superparticle. The condition (4.63)
implies that |&| = |g|.

EXERCISE
Show that thanks to cancellations between scalar and vector exchanges
there in no one-loop perimeter divergence for a Wilson loop with || = |g].

A particularly symmetric example of a BPS Wilson loop is the circular
loop of radius R. Superconformal invariance implies that the expectation
value of such a loop cannot depend on R so that (W(R)) is a constant.
Indeed extremizing the area for a loop in the (1,2) plane with the ansatz

X = f(p) (€ cos(¢) + €5 sin(¢)) (4.64)
one finds f(p) =/ R2 — p?. Plugging into the string action on AdSs yields

- — / /R ftdp L—2 (5 _ 1) (4.65)

Subtracting the divergent term, one finally gets
(W)eircie = exp(—S) = exp(L?/a') = exp(V}) (4.66)

S =TAnin(E

that is indeed independent of R. A class of perturbative contributions to
Wilson loops of this kind has been calculated to all orders in the coupling
constant and argued to be the only relevant ones at least in the large N
limit. This consists of the ‘rainbow diagrams’, i.e. planar diagrams in which
all propagators begin and end on the loop (there are no internal interaction
vertices). A suggestion has been made for extending this to all orders in the
1/N expansion by use of an ‘anomaly’ argument that relies on the fact that
a Wilson loop that is a straight line has no perturbative contributions. The
conformal transformation that maps the line to a circle is singular at a point
on the loop and it was argued that this induces an anomalous behaviour that
gives rise to a nontrivial correction to (W (R)). The form of this correction
was determined in terms of a zero-dimensional gaussian matrix model. It
coincides with the results found above in the A >> 1.

EXERCISE

Sow that inversions of the plane generically map circles and straight lines
onto circles. When does a circle map onto a line? And when a line onto a
line?
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Recently the one-instanton contribution to a circular Wilson loop in
SU(N) N = 4 Yang-Mills in semi-classical approximation — to lowest order
in the Yang—Mills coupling constant, g,.,, has also been computed. As usual,
the instanton computation boils down to an integral over the supermoduli
space spanned by eight bosonic and sixteen fermionic collective coordinates.
The presence of the loop breaks the SO(4,2) conformal invariance but for a
circular loop there a residual unbroken SO(2,2) subgroup allows one to map
an arbitrary instanton to one that is located at the centre of the loop. Thus
effectively abelianizing the instanton connection. AN = 4 superconformal
symmetry implies the existence of sixteen fermionic generatorsan that en-
hancement SO(2,2) to an OSp(2,2|4) subgroup of SU(2,2|4). After lenghty
and computer-aided manipulations and subtraction of a perimeter divergence
which is an artifact of the cutoff procedure one gets a unique finite result.
The problem of reconciling the instanton contributions to the Wilson loop
with the SL(2,7) Montonen-Olive duality and with strong coupling super-
gravity predictions is still open and may not forgo a better understanding of
D-instanton effects in this context.

5 Penrose as a novel double scaling limit

The AdS/CFT correspondence has recently received a sudden twist con-
nected with the double scaling limit that corresponds to type IIB superstring
around a pp-wave supported by a R-R 5-form flux. From the supergravity
perspective this corresponds to performing a Penrose limit around a null
geodesic at the center of AdSs x S°. In the Penrose limit the SU(2,2|4)
super-isometry of AdSs x S° undergoes an Inonii-Wigner contraction. In
particular SO(4,2) — SO(4)x x U(1)a and SO(6) — SO(4)y x U(1); but
at the same time a Heisenberg group, H(8), emerges so that the total number
of generators remains equal to 30 as for AdSs x S°. A similar rearrangement
takes place for the 32 supersymmetry charges.
The resulting maximally supersymmetric geometry!®

ds* = —ddotde™ — 2 (K + [VP)(det) + (dXP + [dFP)  (5.67)

Fiogse = Frous=p , e =g, (5.68)

15Tn our conventions, the indices of X run over 1,4,7,8 and those of Y over 2,3,5,6.
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with all other fields set to zero, admits an exactly solvable worldsheet de-
scription in the Green-Schwarz formalism. Indeed, in the light-cone gauge,
one simply has 8 massive bosons and as many massive fermions. The former
getting their mass from the (| X|? 4 |V[?)(dz")?-term in the metric. The
latter from their coupling to the R-R 5-form flux. The action read

c 1 e S = ~ ~ s -
Ses) = 5/dQU{aX-3X+8Y-8Y+V2(|X|2+ IY|*) 4+ S0S + S0S +vSTS}
(5.69)

where m = o/p™p and T’ = [M'y356. Expanding in normal modes one gets

w(n) = £vn? +v? (5.70)

Modes with n > 0 are left-movers, those with n < 0 are right-movers. Notice
that the “zero-modes” with n = 0 have w = v thus contributing to the mass
of the string excitation. Level matching requires ), nN,, = 0.

In addition to the standard holographic identifications

2

g L
9s =4 > EZ\/gQN , (5.71)

at large N and large J, with J ~ v/N, the relevant coupling turns out to be
Vo 9N
4 J?’
where J is the U(1); charge that appears in the above decomposition of
SO(6) ' and can be identified with the light cone momentum P
A+

J~uptl? = 5 (5.73)

Operators with A = J and A = J + 1 are known to be protected, as a
consequence of SU(2,2|4) shortening conditions of BPS type that survive the
relevant Inonti-Wigner contraction. The simplest nearly protected operators,

that are expected to correspond to the lowest type IIB superstring excitations
Yey? |pt), are of the form

(5.72)

J
0 =3"qgbtr(Z7- 'Yy Z'Y?) (5.74)
£=0

16This U(1),; does not coincide with the U(1)g in the N' = 1 decomposition of N = 4
SYM used so far.
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where ¢, = exp(2min/(J + 1)) and, in our previous notation, Z = ¢' and
Y =¢*fora=2,3,506

The knowledge of the free spectrum of the light cone Hamiltonian P~
gives a prediction for the ‘planar’ contributions to the anomalous dimensions

of the operators O, i.e.
4 gy Nn?
(A—J):%,/H%. (5.75)

n
this has recently been tested using N' = 1 superfield techniques. The effective
string loop counting parameter is J?/N. The first ‘non-planar’ corrections
in SYM theory have been explicitly computed and matched with string one-
loop corrections. An intricate operator mixing problem remains to be solved
at this order.

Despite the success of the proposal, the way holography is realized in
the pp-wave background is still a matter of debate. This prevents a naive
application of the procedure that for (asymptotically) AdS spaces has lead
to ‘holographic renormalization’. Moreover even the simplest amplitudes
are very laborious to compute in the light-cone gauge. However conformal
flatness of the background, that is made manifest by the coordinate trans-
formation

0=

p_:

+ < z — Y

), ¥ = cos(zt)’ v cos(xt)’
(5.76)

guarantees the absence of higher derivative corrections to amplitudes with

fewer than four insertions, much in the same way as in AdSs; x S°, and

makes one hope that a viable, i.e. covariant, superstring description could

be not far from reach. Hopefully this should open the way to more interesting

superstring backgrounds with R-R fluxes.

1
u=tan(z"), v = x_—§(|f|2+|g7|2) tan(x
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