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Abstract

The search for gravitational waves with cryogenic resonant detec-
tors is reviewd and the results so far obtained are presented.

1 Gravitational waves in General Relativity

As well known gravitational waves (GW) were a prediction of General Rela-
tivity (GR) in 1916, although they were already foreseen in 1900 by Lorentz
and in 1905 independently by Poincare, on the basis of the analogy of the
Newtonian gravitational force with the Coulombian electrical force.

We recall [1] that the GR fundamental equation is

Ry, = ﬁ(ﬂk — lgikT) (1)
c 2
where R;j, is the Ricci tensor, Tjy if the energy-momentum tensor (T is the
trace) and g, is the metric tensor which enters non-linearly in the expression
of R;;. The tensor g; is the unknown of the non-linear eq. 1 and it describes
the action of gravity via the geometry of space-time.
In vacuum eq. 1 becomes

Ry =0 (2)

This equation, being non linear, cannot be solved in general. However a
simple solution is found (already by Einstein in 1916) if the hypothesis is
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made of a weak gravitational field, that is
ik = Oik + hix (3)

where ¢, is the Kronecker symbol and h;p; << 1. In this case eq. 1 becomes
linear and reduces to the wave equation,

Ohg =0 (4)

in vacuum. Note the important result that the GW travel with the speed of
light.

In general the symmetric tensor h;; has ten components, but a convenient
choice of the reference system and using the Lorentz gauge leave only two
independent components, often indicated with s, and hy corresponding to
two wave polarizations.

For a plane wave travelling along the x-direction we can write

h_|_ — A_l_ei(wt—kx) (5)
hx — Axei(wt—kac) (6)
and the h;, matrix has all null components but

hyy = hee = hy (7)

2 Sources of gravitational waves

In presence of matter eq. 4 is written as

16G

Ohy = o Tik (9)

where 7;;, 1s related to the tensor T;;. The solution of this equation is math-
ematically identical to the solution for the electromagnetic waves (here we
have a tensor instead than a vector) given with the so-called retarded poten-
tial -

hiy = —/(%’“)t_%dv (10)
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r being the distance of the source. The main difference with the electromag-
netic case is that in the multipole expansion the dipole term is null for the
GW. This is because the conservation laws (energy and momentum) in GR
are expressed by 5
Tik
Gor 0 (11)

(null divergence of 7;), and this is just the dipole term in the multipole
expansion of eq. 10. Thus the first term is the quadrupole term, and this
characterizes the GW emission.

It can be shown [1] that the quadrupole term generates a total irradiated
power averaged on all directions given by

G P
- 45c5(ﬁD°“B)2

where we have the third time derivative of D,z which is the mass quadrupole
tensor

(12)

Dap = /p(i’)xa:z;ﬁ — 5aﬁx3)dv (13)

with obvious meaning for symbols (here o and 3 run from 1 to 3, only space
coordinates).

Already Einstein in 1916 noted that the power irradiated by a source
which one can imagine to realize in a laboratory is so small that
it has a practically vanishing value.

It is interesting to calculate such a value for a very large metallic bar
rotating around the x axis perpendicular to its own axis and passing through
its center-of-mass (say, an iron bar 2L.=20 meter long and radius R=1 m
square meter, M=500 tonne).

In the (y,z) plane, considering an unidimensional bar with mass density

A= M

>I» since
y = rcost z = rsinf (14)
we have
L 2 .2 2 ;2 ML? 2 © 2
Dy, = /_L Adr(2r cos™0 — r*sin“f) = 3 (2c0s*0 — sin“0) (15)
and

L ML?
D.. = / Adr(2r?sin®0 — r’cos®0) = 3 (25in*0 — cos*0)  (16)



L 1
Dao :/ Adr(—1?) = =M L? (17)

-L
L
D,. = / Adr(3yz) = M L*sinfcost (18)
-L
Dyy=D,;,=0 (19)
Putting
1
§Z\4L2 =1 (20)
the moment of inertia with respect to the center of mass we calculate
d? 25 .
ﬁDyy = 12w 1sin20 (21)
o3
ﬁDZZ = —12w?Isin26 (22)
d? d?
—5Dv: = 75Dy = —12w? [ cos20 (23)
We have
G & 9 d? d? d?
= — [(—D,. — Dy )+ (5=D..)* +2(==D,, ) 24
4505 [(dtg ) —I_ (dtg Z/y) —I_ (dtg ) —I_ (dtg Y ) ] ( )

G 320
YT 144w I (251020 + 2c05°20) = 5

Numerically we have a total irradiated power of GW

W= *w° (25)

W =22 107* watt (26)

an extremely small quantity which cannot be detected with the present in-
strumentation.

2.1 Emission of GW by binary systems

The quantity %[zuﬁ of eq. 25 is typical for the emission of GW. In the case
of a binary system, two stars (normal or collapsed stars) rotating one with
respect to the other one, the emitted power is
322G, mim
W= ""(———)?R'Q° (27)

5c® “my + my
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for circular orbits of radius R and with angular velocity €. It is interesting
to note that for these systems in the framework of GR we must always have
emission of GW.

A few years ago Hulse and Taylor studied the binary system PSR 1913416
which include a pulsar and found, among many verifications of the GR theory,
that the system was loosing energy at a rate of ~ 6.4 10%* watt in very good
agreement with that calculated with eq. 27 and thus they concluded that
the system was emitting GW. For this work Hulse and Taylor obtained the
Nobel Prize.

2.2 CHIRP emission of GW

A binary system after a few thousand years looses all its rotational energy
via emission of GW. Considering a system made by two collapsed objects,
during the last few minutes before collision, the GW frequency varies in a
way called C HIRP, it increases from a few hertz to the order of 1 kHz and
the wave amplitude also increases in a very specific way.

From the wave amplitude and frequency it is possible to calculate the
distance of the source and all properties of the binary system, in this way
setting a new and absolute way to estimate the distances in the Universe.

2.3 Emission of GW by pulsars

If the pulsar is a perfect sphere there is no emission of GW, since the third
time derivative of the quadrupole moment of inertia is null. However in
the case the pulsar is not spherical, indicating with ¢ and b two different
equatorial radii we have the emission

332G (a — b)?

W= "2 2

5 ¢b ab (28)

As an example we have calculated the possible GW emission by the fast pulsar
19374214, at a distance of 2.5 kpc, rotating with a period of 1.557806448 ms.
If we assume that the observed energy loss of 2 10? watt be due to emission
of GW (which is a strong assumption) we find that the GW amplitude at
the Earth is h ~ 3 10727, corresponding to a deviation from sphericity of
a —b = 100um. We notice that for sources of this type the GW emission
depends strongly on the astrophysical model.



2.4 Emission of GW by supernovae

Also in this case the GW emission depends strongly on the adopted model. If
the gravitational collapse occurs with spherical symmetry no GW are emit-
ted. However many astrophysicists believe that during the collapse the star
breaks in many pieces and the spherical symmetry is not conserved. It is clear
that the estimation of GW emission varies considerably form one model to
an other one.

If we assume that at the end of the collapse a mass M, is entirely con-
verted into GW, the following formula holds

1 8G'M, 10Mpe | M,
h = N 7 —=31107% i 29
Rwgy, CTyw R M, (29)

where 7,,, (conventionally taken equal to 1 ms) is the duration of the burst

around the frequency wy,,, at the distance R. According to the various as-
trophysical models the fraction of mass going into GW varies from zero up
to about 1% of a solar mass.

2.5 Fall into a Schwarzschild black hole

It was worth to mention that GW are emitted if a body with mass m falls
into a Schwarzschild black hole [5] with mass My,. It is calculated that a
burst of GW is emitted with total energy

2 2
AE = 0.0025-° (30)
bh
with a frequency spectrum peaked at the frequency
M,
= 4900 31
o = 1900 0 (31)

3 Interaction of a GW with free masses

As well known, in the GR theory it is always possible to choose a reference
system that nullifies the gravitational field in a given point (think of the
falling elevator). This makes it impossible to measure the properties of a
gravitational field using only one test mass. We recall that the properties of
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a gravitational field are expressed by the curvature tensor R, of which the
Ricci tensor R; 1s a contraction

Rir. = "™ Rijor = Ry, (32)

Only if all components of the tensor R;i;,, are zero we can state that there is
no gravitational field. This is not true for the Ricci tensor, as shown by eq.
2 where R;;, = 0 but a non-null weak field solution exists.

Thus we need two test masses. The experimental problem consists in
measuring the change of their mutual distance under the action of a gravi-
tational field. The distance between them can be determined from the two
geodesic lines written properly with the covariant derivative. It can be shown
that for any vector u' the following formula holds

ulkl - ullk = _Rinklum (33)

where the symbol ; indicates the covariant derivative. From this formula,
identifying the vector u* with the four-velocity of one of the test masses we
obtain the geodesic deviation equation written for the case of velocity much
smaller than light and in absence of other forces but gravity

82772'
0s?

where n' is the distance between the two test masses and s is the coordinate

+ 17" Ropo = 0 (34)

ds = cdr, with 7 the proper time along the particle trajectory.
The eq. 34 is at the basis of all detectors for GW. From this equation,
for the case of GW we obtain
Iyt L0,
orr ~ T o
We apply now this equation to the case of two test masses along the y-axis
at positions :I:% with the GW travelling along the x-axis. We get

(35)

i == Ly (36)
where we indicate with £ the change in the distance n‘. Writing the four
components we obtain for given initial conditions

hy. €=che (1)



More in general for a ring of test masses in the (y,z) plane with radius r,
indicating with # the angle of a diameter with the y-axis we have the following
deformation of the ring

£ = r(hicosh + hysinb) (38)

£* = r(hycost — hysind) (39)

This formula clarifies the relative effect of the two different polarizations. We
notice that the effect produced by the wave h, is identical to that produced
by the wave hy with a rotation by an angle of 45°.

4 Interaction of a GW with an oscillator

A simple harmonic oscillator constituted by two masses at distance [ con-
nected by a spring with dissipation forces and subjected to a GW of ampli-
tude i impinging perpendicularly to its axis obeys to the equation

. . I .
Evopé +uie = O (10)

where we have indicated with £ the change in the distance [ between the two
masses and with 23; the dissipation forces per unit mass. In writing eq. 40
we have started from eq. 38 for § = 0, h = 0 and we have put for simplicity
h_|_ = h.

It is convenient to make use of the Fourier transforms. In our notations:

fw) = [ e ar (41)

€)= o [ Ew)eta (42)

A particular solution of eq. 40 is
¢(w) = To(w)h(w) (43)
where h(w) is the Fourier transform of h(¢) and T, (w) is the transfer function

[ w?
Tolw) = 2 (w? — w2) — 2ifw (44)
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The square modulus |T,(w)|* of the transfer function gives all important

information. For small dissipation we get the quality factor ()
Wo

261

For () >> 1 the transfer function has two resonances at frequencies

Q=

(45)

wi2 = if T w, (46)

and we can write the solution in the form

1 1 oo wzH(w)eM
)= —=

dw (47)

oo (W—wy)(w —w2)

This can be transformed in

L (W wn)(w — wa) — wiwy + w(wy 4 ws)
) = 272 o (Ww—w)(w —w2)

dw (48)

Performing the integral and for the case H(w;) = H(wsy), which is a common
case, we finally obtain

) )
£(t) ~ —§H(wo)6_ﬁltwo sin w,t + §h(t) (49)

4.1 GW modelled as a delta signal

In many real cases the GW can be modelled with a delta-function. This
is for a gravitational collapse when one or several GW bursts are expected,
each burst lasting a small fraction of a second or also for the very final stage
of a coalescence binary system when the two stars collide. In this case the
Fourier spectrum of h(t) is flat and we can apply eq. 49.

)
E(t) = —§e_ﬁlth(wo)wosinwot (50)

!Neglecting the transient delta-term.



4.2 GW modelled as monochromatic wave

In this case, which we expect for GW emitted by pulsars, we have
h(w) = mhy[6(w — Q) + d(w + Q)] (51)

where ) is the frequency of the GW. In the case 2 = w, substituting in eq.
47 and using 45 we get

[
E(t) = —§hOQ5inwt (52)

5 Interaction of GW with a metallic cylinder

The resonant GW detectors in operation today are of cylindrical shape and
made of Aluminium or Niobium. Let us then study [2, 3] the interaction of
a GW with a metallic cylinder of mass M and length L with its axis in the
direction of the z-coordinate.

We split the cylinder in slashes of thickness dz, each slash delimitate by
two sections with coordinates z and z + dz. Fach section vibrates around its
equilibrium position with displacement £(z,t) depending on time on position.
We shall consider the following quantities used in the theory of elasticity: The

strain o¢
and the stress
yu+ 2 (54)
o= —
ol

Y is the Young modulus and D expresses the losses.
We write now the Newton law for the slash of thickness dz and mass
dm = pSdz, where S is the cylinder section:

9*¢ 0o

P = 92 T Iy (55)

where F}, is the force per unit volume due to the GW.

For estimating this force we reason in the following way. Let us consider
two slashes of thickness dz, one located at z and the other one at —z. Under
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the action of the GW alone the distance between the two slashes changes
according to eq. 36, just like under the action of a force per unit volume

pé = pzh (56)

We choose our reference system in such a way that gravity is zero at the
origin. We can consider the motion of one of the two slashes with respect to
the origin as subjected to a force which is one half of that acting between
the two slashes, thus we get

F, = %}; (57)

Putting this in eq. 55 we obtain the equation
0% D D 9 pze

=Yg~ Py = 2t (58)
Using the Fourier transforms £(w, z) we obtain
Pélwz) o, pe
T(Y +iwD) +wipt = 7@ h(w) (59)
The general solution is
. . =
f(w,z) =& (w)e ™ + E(w)e ™ + §h(w) (60)
with
- jw? J :
Q19 = F1 7'0(1 — E) = +ia (61)
where v
= — 62
0= (62)
We now impose the boundary conditions, the displacement is zero at the

origin £(0,w) = 0 and the stress at the bar ends must be zero (%)ig = 0.

oz
We finally obtain the solution

h(w)

Eluy2) = 5

sInaz

) (63)

z
2 2008 5

We notice that there are resonances. This is when

al
0057 ~ () (64)
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Introducing the sound velocity in the bar material

and neglecting the losses (@) >> 1) the denominator is zero when

L Lw T
—~ —— = 2K +1)=
a2 o (2K + )2) (66)

with K integer number. The resonances frequencies are

wp = (2K + 1)% = (2K + 1w, (67)
We obtain the result which we could have expected from general consider-
ations on the tensorial character of GW that the resonance frequencies are
only the odd modes (first, third...). As matter of fact it has been suggested
that an oscillation on the second harmonic might be taken as indicative that
the signal is due to noise or, more optimistically, that the GW do not have
tensorial character.

For large values of () and in proximity of a resonance, say w,, the solution
63 can be approximated with

Lw,sinaz
§(w,2) > h(w) ) (68)
(W—w, — ﬁ)ﬂ'
which is equal to that for a simple harmonic oscillator if we put
l_4L, 4L . w =z (69)
= _gsmnaz ™ — szmrwo

This allows to use the simple solutions found for the simple oscillator by
substituting the expression 69 for the length [.
6 The cross-section

We want to calculate the amount of energy absorbed by a resonant detector
when interacts with a GW. We consider the case of a GW modelled with a
delta-function.
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Combining eqs. 50, 69 we find the displacement of a mass element at

coordinate z
w z

t = - —Pit ., Ot y _
£(z,1) £,e7 " sinw SmwwoL (70)
where o
§o = —h(wo)ws (71)

s

Integrating over the bar length and in a time period we find the absorbed
energy

1
B = Mg (72)

For calculating the energy carried by the GW we recall [1] that in general
this energy per unit time and per unit surface is

03

It) = 167G

(A% +h%) (73)
For one polarization the total energy per unit surface is

03

_ e
I= /_Oo h(t)2dt (74)

Using the Parseval identity we get

03

1,
167G

| el (75)

where [ = ;2. The integrand is called spectral density. At the resonance

P

el joule
o(f,) = 21 h(w,)?
The cross-section is defined by
E 1
_ — _6g(9)2M m?H = (77)

EO_CI)(fO)_ T Cc c

This cross-section has been obtained using a two-side spectral density. For
one-side spectral density we get one half of that given in eq. 77, as most
often given in the literature.
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The subscript o in ¥, indicates that this cross-section has been obtained
for the case of a GW impinging perpendicularly to the bar axis (see eq. 50).
In the general case it can be shown [3] that the cross section is

Y = Y,c05'0c0s*2¢ (78)

where 6 indicates the angle between the bar axis and the direction of the
incoming wave and ¢ is the angle between the y-axis in the reference system
where the bar axis coincide with the z-axis and the y,-axis of the reference
system where the eqs.7, 8 are valid.

The same result can be obtained [4, 5] on a more general basis, following
the lines used in particle physics for determining the cross section of (for
example) the neutron scattering.

A much larger cross-section is instead obtained following the Preparata
[6] quantum theory of matter.

7 Interaction of a resonant detector with par-
ticles

The energy delivered by energetic particles to a body is much larger than
that typical of a Brownian motion. For instance a high-energy muon can
deliver an energy of the order of 200 MeV. In kelvin units this is 2 10'* K.
Fortunately, we are interested in the energy captured at the resonance, which
is much less. We give here a very simple, almost naive, calculation of this
energy [7].

When an energy FE is dissipated in the resonant detector of mass M the
temperature 1" increases by the amount

E
AT = — 79
" (79)
where ¢ is the specific heat.
Consequently the length L increases
AL = ol AT (80)

where « is the linear coeflicient.
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The largest energy of the vibration at the resonance frequency w is

1 9 , 1 ,a*L?E?
€= ZMw (ALY = Y e (81)
The energy E delivered by the particle to the bar over a path [ is
dFE
E=—l 82
o (82)
Introducing the Grineisen v factor defined as
v = 92022 (83)
¢
which is nearly constant over a large range of temperatures we get
IEVREY L4(Ccll_E)2
~ (b L 4
o~ R = (84)
where p is the metal density.
Roughly we get
Loy v o F? —9 772
~—w (=) "— ~6107"F
€ qw (21)2) ; 6 10 (85)

where in the last equality we have expressed E in GeV unit and € in kelvin
unit.

More accurate calculations made by several authors [8, 9, 10] give ap-
proximately the same result, expressed by

c=8107"K*f kelvin (86)

where f is a geometric factor.

8 Semnsitivity and bandwidth of resonant de-
tectors

The detectors of gravitational waves (GW) now operating [11, 12, 13, 14,
15] use resonant transducers (and therefore there are two resonance modes

15



coupled to the gravitational field) in order to obtain high coupling and high
Q.

But for the discussion on the detectors sensitivity and frequency band-
width it is sufficient to consider the simplest resonant antenna, a cylinder of
high Q material, strongly coupled to a non resonant transducer followed by
a very low noise electronic amplifier. The equation for the end bar displace-

i

m

ment ¢ is (see eq. 40)
€+ 2616 + w2 =

where f is the applied force, m the oscillator reduced mass (for a cylinder

m = %) and 3 = 55 is the inverse of the decay time of an oscillation due

to a delta excitation.

(87)

We consider here only the noise which can be easily modeled, the sum of
two terms: the thermal (Brownian) noise and the electronic noise [16]. The
power spectrum due to the thermal noise is

2w,
Q

where T, is the equivalent temperature which includes the effect of the back-

Sy =

mkT, (38)

action from the electronic amplifier.
By referring the noise to the displacement of the bar ends, we obtain the
power spectrum of the displacement due to the Brownian noise:
S 1
B f

m? (w2 — W2)2 4 e

From this we can calculate the mean square displacement

kT

2

o? (90)
that can be also obtained, as well known, from the equipartition of the energy.
To this noise we must add the wide-band noise due to the electronic
amplifier (the contribution to the narrow-band noise due to the amplifier has
been already included in T).
For sake of simplicity we consider an electromechanical transducer that
converts the vibration of the detector in a voltage signal

V =af (91)
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with transducer constant o (typically of the order of 10 V/m). Thus the
electronic wide-band power spectrum, S, , is expressed in units of Xl—z and
the overall noise power spectrum referred to the bar end is given by

QkTewo 1 So
— W22 + "9 (92)
meQ  (w? —w?)? 4 e @

[

S¢

We calculate now the signal due to a gravitational wave with amplitude h
and optimum polarization impinging perpendicularly to the bar axis. The
bar displacement corresponds [2] (see also eq. 69) to the action of a force

9 )

f= FmLh (93)
The bar end spectral displacement due to a flat spectrum of GW (as for a
delta-excitation) is similar to that due to the action of the Brownian force.
Therefore, if only the Brownian noise were present, we would have a nearly
infinite bandwidth 2, in terms of signal to noise ratio (SNR). For a GW
excitation with power spectrum Sy(w), the spectrum of the corresponding
bar end displacement is

. 4L2w45h 1

Se = — 94
& 7.[.4 (wz o wg)z _I_ wQu;o ( )
We can then write the SNR
4L%04 1
snp = Do e — (95)
S N R
where the quantity I' is defined by [17]
o] Tn
O (96)

a2§2 ﬁQTe

T, is the noise temperature of the electronic amplifier and 3 indicates the
fraction of energy which is transferred from the bar to the transducer. It can
be readily seen that I' << 1.

2Already several years ago Joe Weber pointed out this feature of an oscillator with a
very low noise amplifier.
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The GW spectrum that can be detected with SNR=1 is:

, KT, w21 2 w?

= o st T FR*(1 = =)+ =) (97)

2
wo

Sh(w)

where v is the sound velocity in the bar material (v=5400 m/s in aluminum).
For w = w, we obtain the highest sensitivity
, kKT. 1

Sp(w,) =m MQUQCU_O

(98)

having considered I' << 1.
Another useful quantity often used is the spectral amplitude

=1/ (99)

We remark that the best spectral sensitivity, obtained at the resonance
frequency of the detector, only depends, according to eq.98, on the tempera-
ture T, on the mass M and on the quality factor Q of the detector, provided
T = T.. Note that this condition is rather different from that required for
optimum pulse sensitivity (see later). The bandwidth of the detector is found
by imposing that S,(w) be equal to twice the value S, (w,). We obtain , in
terms of the frequency f = =

fo 1

Q VT
The present detector bandwidths are of the order of 1 Hz, but it is expected
that the bandwidths will become of the order of 50 Hz, by improving the
amplifier noise temperature T,, , the coupling parameter § and the quality
factor Q.

In fig.1 we show the spectral amplitude h for the present Aluminium
resonant detectors with mass M=2270 kg operating at a temperature T=0.1
kelvin and the target 2 which will be reached with improved transducers.
The parameters used for calculating the spectral amplitudes are given in
table 1.

From eqgs. 98 and 100 one can derive the antenna sensitivity to various

Af (100)

types of GW. For delta-like bursts with duration 7, the sensitivity is given

by
1 /25,
h o~ E’/W (101)
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Table 1: Bandwith and sensitivity for presently operating detectors and for

future detectors with improved transducers.
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Figure 1: Spectral amplitudes h present and planned, see eqs. 99 and 97, with

parameters given in table 1 versus frequency [Hz]. The presently operating
detectors have bandwidth ~ 1 Hz. The bandwidth will be much larger in a
near future with improved transducers.
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Another useful formula (derived from eqs.98 and 100) is

L [k
R M

(102)

where L is the length of the bar and 7., is the noise temperature for burst
detection, that is the average value of the noise after applying to the GW
data a filter matched to delta-like signals.

For monochromatic GW the minimum wave amplitude that can be de-
tected with SNR=1, integrating over a continuous time ¢,,, is

2
h = ,/% (103)

Finally eq.88 gives immediately the sensitivity to a GW stochastic back-
ground measuring an upper limit only, since it is practically impossible to
subtract from the measured power spectrum the contribution due to noise.

In order to measure the stochastic background one needs to cross-correlate
the output of two antennas [18] obtaining the measurement of the cross-
spectrum

V' S1r5an
Ny

where t,, is the total time of crosscorrelation and ¢ f is the frequency band-
width in common between the two detectors. From the measured S, we can

Su(f) = (104)

calculate [18] the value of €2, the ratio between the GW energy density and
the energy density needed for a close Universe, using the formula

47’[’2 3
Q=—==5 105
3 H?2 h(f) ( )
where H is the Hubble constant. We notice that, while for burst detection
it is important to have a large frequency bandwidth (attainable with a good
transducer followed by a very low noise electronic amplifier), this is less
important for the stochastic measurements.
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9 Linear filtering for detection of GW short
bursts

We treat this problem in the simple case of a resonant bar equipped with a
non-resonant transducer (i.e., a piezoelectric ceramic) followed by a low noise
amplifier. It is easy to generalize this procedure to the case of a resonant
transducer.

The signal from the low noise amplifier is send to a lock-in amplifier which
extracts the in phase and in quadrature components, x(¢) and y(t), of the
Fourier transform at the bar resonance frequency f,. The lock-in amplifier
has integration time ¢, and both components are sampled with a sampling
time At = 1/1,, in order to minimize the amount of data to be recorded. The
simplest algorithm for extracting a signal due to a GW short bursts from the
noise, employed for the first time by Levine and Garwin and called in the
Rome group the ZOP algorithm (zero-order prediction), consists in taking
the difference between two successive samplings

2(1)" = [a(t) — 2t — AN = [y(t) —y(t — Ap)]? (106)

The key idea is that a short burst will produce a jump in the data, like a
hammer hit, while the fluctuations due to the noise have a relative long time
constant. Let us now estimate the SNR for this algorithm. The noise is
basically due to the narrow-band Brownian noise (in units of volt?) in the

bar
Vi, = a?Si(fo) B (107)
(increased by the back action from the amplifier) and to the white noise S,

from the amplifier. The auto correlation for this noise process at the lock-in
output is

6_7—/7—” o t_oe—T/to So
R(T) = Vﬁb[ 1 — t2;7—2 ] —I— z6_7—/7511 (108)

for each components, x(t) and y(t), of the signal, where 7, = 51_1 is related to
the merit factor ) = 7,7 f,. From the above autocorrelation we derive the
variance for the variable z(?):

4Vnszt+4e—1 S,
e T e Al

o = A[R(0) — R(AL)] = (109)
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where we notice that there are two noises in competition, one increasing
linearly with At¢ and the other one with the inverse of At . The optimum
At is given by

Atopr = Ty/(e = 1T (110)
and
e— 1)l
Topt = 8Vn2b% (111)
where we have made use of the quantity (see eq.(16))
SoTw
I'= 112
VnQb ( )

We have now to calculate the signal for this algorithm. An incoming
GW short burst will produce at the low noise amplifier output a jump in the
signal from the noise level to a value

V, = ai—[;ujoh(wo) (113)
slowly decaying with the time constant 7,. At the lock-in amplifier output
(after the lock-in integration with time constant t,) we take the difference
between two next samples. If we assume that the signal arrives exactly at the
time of a sampling the difference with the next sampling will give V;(1—1/¢).
We introduce the signal energy

1 s
I, = §mw2(%)2 (114)
Recalling that V3 = %, we get
V(1 —1/e)? E 1
svi = el . fe) _ (115)
Tt 4kT./T 1.21

It must be remarked that this results is valid for signals arriving exactly at
the sampling times. If one considers signals arriving at random times he gets
a SNR that, on the average, is smaller by several per cent.

The ZOP filter can be extended by including not just two samplings but
many more. This is done by using the Wiener filter [16] that is based on
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the idea that the data samplings are processed a few seconds after they
have been recorded, in such a way to make use of past as well future data.
The measured variables x(¢) and y(¢) include signal and noise. The best
estimation u(?) of the signal for the variable x(¢) is

alt) = /:z;(t W (t)dr (116)

where W(t) is the filter function which will be estimated with the linear mean
square method. It can be demonstrated [16] that the Fourier transform W( f)
of W(t) which minimize the average difference < (u(t) — (a(t) >? is

(117)

where S, (f) is the power spectrum of x(¢), and Sy, (f) is the cross spectrum
of u(t) and x(t).

The power spectrum of the brownian noise reported at the antenna input

(in units of Xl—z) is white, Sy, = QZEb and so is white the noise S.. = 25, at the
lock-in output, due to the electronic amplifier that enters in the electronic
chain before the lock-in. We notice that I' = gzz We can then consider the
overall electronic chain as made by two pieces. The first piece with transfer
function W,(f) is the bar which, together with the selective part of the lock-

in, acts as a low-pass filter with time constant 7,, the second piece is the

integrating part of the lock-in which is again a low-pass filter with transfer
function W, and time constant ¢,. We get

Sea(f) = S WiWZ 4 S W7 (118)
Sue([) = Sua Wy W, (119)
from which we obtain | |
W(f)= 120
(7 W Wel+ (120)

which solves the problem. If one wants to apply the Wiener filter in the
time-domain, he can calculate the coefficients ay = [ W (t)dt over several
sampling intervals, (k — 1/2)At to (k4 1/2)At, and the estimate
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Applying this filter to the data we get the power spectrum of the noise after
the Wiener filter

SUU
Saa(f) = SeW(f)* = 7 (122)
1+ L
Wa
From this we get the autocorrelation of the noise
S’U/M —
Rug = —S0 oo (123
27,/ T (T + 1

with | |

B3 = ~ (124)

/(T + 10 7VT

Recalling eq.(23) we find that (5 is the antenna bandwidth.

The signal reported at the antenna input has Fourier transform V; (white
spectrum because we consider a GW short burst). For simplicity, we consider
the signal in phase with the lock-in reference frequency. The application of
the Wiener filter gives

o) = VW) = (125)

formally identical to eq.(14). We notice that in absence of electronics noise
(I' = 0) the estimation is perfect, in the sense that its Fourier transform is
equal to the Fourier transform of the GW signal. From the above equations
we get the maximum SNR at time ¢ = 0, when the GW burst arrives, consid-
ering that there is an equal contribution to the noise both from the in-phase
and from the in-quadrature responses of the lock-in,
204 _ 2
SNp— " (t=0) _ 1% _ E
2- Raa(t =0) 27,5, /(T +1) 4kT.V/T

(126)

This shows that the improvement over the optimum ZOP filter seems to be
just a factor of 1.21. Actually, the advantage is that, for the Wiener filter,
one can sample faster than the optimum sampling needed to optimize the
ZOP filter. In this way there is no loss in SNR due to the random arrival
time of the GW bursts.
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10 Search for coincidences. Events and sig-
nals.

Since the beginning of the GW research, the major goal has been to detect
coincident events in two antennas located at large distance one from each
other. The events are extracted from the raw data by applying algorithms
(optimum filters, see for instance [20, 21]) based on least square procedures
under the hypothesis that the signal exciting the detector can be represented
with a delta function. In this section we want to discuss the effect of the
noise on the signal.

After an optimum filter has been applied to the raw data a threshold is
applied. When the filtered data go above this threshold, the time behaviour
is considered until the filtered data go again below the threshold for more
than a given time. The maximum amplitude and its occurrence time define
the event.

By the word signal we mean the response of the detector to an external
excitation in absence of noise. It is then evident that an event is a combi-
nation of signal and noise. In the following we shall use SNR to indicate the
ratio between the signal energy, which we denote with E and the noise T/,

B

SNR =
Ters

(127)

We shall denote with SN R, the threshold energy referred to the noise.

The effect of the noise on the signal has been discussed in [22, 12, 19] and
it turns out to be larger that one could erroneously think. For example, for
SNR ~ SNR;, one could think that most of the signals would be detected.
It turns out that the detection efficiency is of the order of 50%, as the noise
might be in phase with the signal, pushing it even higher over the threshold
or in counter-phase, pushing it below the threshold. This means that the
detection efficiency for m?' coincidences with m detectors, in this case is of
the order of zim

The noise acts also in producing an event time different from the time
the signal was applied. This influences the choice of the coincidence time
window.

By using a simulation [23] we have determined the efficiency of the signal

detection for the Rome detectors EXPLORER and NAUTILUS, as shown in
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Figure 2: Threshold at SN R; = 19.5. On the left figure the stars indicate the
experimental efficiency for EXPLORER and NAUTILUS versus SNR of the

applied signals, calculated with signal simulation on the real noise. The con-

SNR 10

tinuous line shows the expected theoretical efficiency. The discrepancy is due
to the non gaussian character of the noise. On the right figure the standard
deviation of the event time with respect to the signal time is shown versus
SNR. The upper curve refers to NAUTILUS (bandwidth Af = 0.12 Hz).
The lower curve refers to EXPLORER (Af = 1.9 Hz). The lines are the
best fits. See text.
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fig. 2. We notice that an event might be detected even if the signal producing
it is below the threshold, and that signals originally above threshold can
be lost. Only if the signal is more than twice the threshold the detection
efficiency is near unity.

The time when the event is observed deviates from the time the signal
is applied. We show, also in fig. 2, the standard deviation against SNR for
EXPLORER 1991 and for NAUTILUS 1998 which have different bandwidth.

The lines are the best fits with the following equation

1 2
7T 9Af\SNR

(128)

This shows the effect of the bandwidth on the time dispersion.

11 Statistical problems in the search of coin-
cidences

The analysis in a coincidence search consists essentially in comparing the
detected coincidences at zero time delay with the background, that is with
coincidences occurring by chance. In order to measure the background due
to the accidental coincidences, using a procedure adopted since the beginning
of the gravitational wave experiments [24], one shift the time of occurrence
of the events of one of the two detectors a number of times, say 1,000 times
in steps of 2 s, from -1,000 s to +1,000 s. For each time shift one get a
number of coincidences. If the time shift is zero one get the number n. of
real coincidences. The background is calculated from the average number of
the ngp, s accidental coincidences obtained from the one thousand time shifts

Ziooo Nshift
1000

n= (129)

With this experimental procedure for the evaluation of the background
one circumvent the problems arising from a non stationary distribution of the
events, provided one test properly the distribution of the shifted coincidences.
We show an example of a delay hystogram in fig. 3(see reference [26]). It
can be verified that the distribution of these accidental coincidences obeys
the Poisson distribution.
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Figure 3: Example of a delay histogram for coincidences between FEX-
PLORER and NAUTILUS. The biggest asterisk indicate n. = 19 coinci-

dences at zero time delay with a background n = 10.0.

28



In comparing the number of coincidences n. with the background one
evaluate, using the Poisson formula, the probability P that the observed
number n. be due to a fluctuation of the background

N-1

P(>N)=1->

n=0

n"e "

(130)

n!

If P turns out to be sufficiently small, one consider the possibility that the
coincidence excess ~ (n. — n) be due, at least in part, to a signal or to
non-gaussian noise. However one is faced with the possibility that the data
producing the above result be only a subset of all possible data of that kind,
perhaps, even unwillingly, selected by the experimenter in a way that favors
the coincidence excess.

The only way to verify the correctness of a possible interpretation in terms
of coincidence excess is to repeat the analysis using new data.

A more reliable approach is that provided by the Bayes theory. According
to this theory the probability to have a certain result depends not only by
the statistical computations on the experiment one is performing, but also
by the degree of belief, due to previous information, to obtain that result.

To clarify this point we give the following example. Suppose we perform
a coincidence experiment between two GW detectors. Suppose we obtain
n. = 10 coincidences while expecting by chance, on the average, n = 5. We
know the accidental coincidences have a Poissonian distribution. From eq.
130 we calculate the probability to have found n. = 10 coincidences while
expecting on average n = 5. We get P(n.|n) = 0.03. This a rather small
number (one would not bet against), yet we reasonably believe that is much
more likely that the coincidence excess was not due to gravitational waves
but to some other causes, other than a possible fluctuation of the background.
We know this because gravitational wave have not been discovered yet, and
extremely small signals are expected from the known theories.

If we want to express the result of our experiment by a probability (a
probability we would bet in favor or against on equal grounds) we must
write (following Bayes)

probability = Pg(r|n.,n) = P(n.|r,n) Prior(r) (131)

where Prior(r) express our belief to have r coincidences due to GWs. This
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Prior depends only on previous information, and can be updated *.
We want now to apply these considerations to the determination of upper
limits. We introduce [27] the Bayes factor

Ririn) = AL

(n.lr =0,n) (132)

where r is the number of GW signals and f(n.|r,n) is the probability density

and represents the likelihood that having measured n and having observed n.

coincidences we have r GW signals. R is called relative belie f updating ratuo.
Having considered the Poissonian distribution we have

e_(r"'ﬁ)(r +n)

ne!

f(nelr,n) = (133)

from which we obtain
R(rine,n) = e (1 + —)" (134)
n

For clarifying the meaning of R(r;n.,n) we consider the example n = 5

and n. = 10. We want to estimate the upper limit for GW with given bound.
Let us use eq. 134 and obtain fig. 4. The interpretation of this figure is the
following:
Without considering the Prior one can say that the most likely case when
n =5 and n. = 10 is that there are five coincidences due to signals and five
accidental coincidences. This is more likely that having a fluctuation of the
background accounting for the ten coincidences (of course, our Prior nullifies
this interpretation).

If we read the fig. 4 at the ordinate r = 18 we find R(r;n.,n) = 0.05.
This means that the probability to have r = 18 GW signals is 5% of the prob-
ability that the observed number of ten coincidences be due to a background
fluctuation. This result is independent on the assumed Prior. If we want
to estimate the absolute probability to have r = 18, we must use eq. 132
introducing the prior. The final result turns out to be nearly independent on
the prior in a wide range of choices, because no matter what we know from

LOf course the quantity Pg(r|n.,7) must vary between 0 and 1. This might need a
normalizing constant.
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Figure 4: The relative belief updating ratio R(r;n.,n) versus the possible
number r of GW signals, with n =5 and n. = 10.
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past information we certainly estimate improbable, with n = 5 and n. = 10,
that we have r = 18 coincidences due to GW.

Consequently we infer that, assuming a uniform prior, r = 18 is the upper
limit for the existence of GW signals, with a 5% degree of confidence.

12 Experimental results

After the initial controversial results by Weber [24]and an early null search for
triple coincidences among Stanford, Louisiana and Rome [25] the following
results have been obtained 2.

The most important problem with a detector is its calibration. A real
calibration of a GW detector is not possible, since we do not dispose of a
GW source, at present. But we can do alternative calibrations which can
test the proper operation of the apparatus, even without checking whether
it can really measure GW.

The Rome group has done it in two ways. At CERN with EXPLORER,
the near gravitational field generated by a rotor in the vicinity of the detector
has been measured [28]. The measurement was in very good agreement with
the calculation made with the Newton law of gravitation.

In Frascati with NAUTILUS the signals produced by cosmic ray exten-
sive air showers [29](EAS) were detected. This means that the apparatus
is properly working and, in particular, the algorithms needed for extracting
small signals from the noise are also very effective.

By averaging the effect of 92 EAS we found [30] the result shown in fig.5
in good agreement with the expectations, see eq. 86.

12.1 Upper limit

An upper limit for GW bursts has been determined [31] with the measure-
ments made by ALLEGRO and EXPLORER in the year 1991. The upper
limit is shown in fig. 6 where, in addition to the determination quoted in
reference [31], a new determination applying the Bayesan statistics [32] is
shown.

3We do not mention here the results obtained by the Rome group with a room-
temperature bar during the SN1987A since, being an unique event, it requires a
confirmation.
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Figure 5: The average energy over 92 stretches of NAUTILUS data versus
the time referred to the EAS arrival times.
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Figure 6: The asterisks indicate the upper limit calculated with the stan-
dard method. The line indicates the upper limit evaluated with the Bayesan
approach.

12.2 Stochastic background

The crosscorrelation of the data taken with two detectors allows to measure
the GW stochastic background. This has been done with the EXPLORER
and NAUTILUS detectors [33] as illustrated in fig.7. The obtained value
Q = 60 is much larger than the expected one, but this is the first measurement
made with two cryogenic resonant GW detectors and it shows the feasibility
of this type of experiment.

12.3 The IGEC collaboration

There are at present five cryogenic bars in operation [12, 15, 11, 14, 13] (Al-
legro, Auriga, Explorer, Nautilus and Niobe). They have roughly the same
experimental sensitivity given in table 2. Niobe, made with niobium, has res-
onance frequency of 700 Hz, the other ones, with aluminum, have resonance
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Table 2: Sensitivity of the resonant detectors in operation

minimum h

minimum h

resonance h =+/S), frequency minimum
frequency | at resonance | bandwidth | for 1 ms | for continuous Q
[H z] [ 11112] of [Hz] bursts waves
900-700 7-107% 0.5-1 4-1071 2.107% 0.1
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Table 3: IGEC collaboration. Net common observation time when at least
N detectors were simultaneously operating.

N | days
625
260.4
89.7
15.5
0

U= W N —

frequency near 900 Hz. The above minimum values for monochromatic waves
and for the quantity ) have been estimated for one year of integration time
(we suppose to use the cross-correlation of two identical antennas).

On July 1997 the IGEC (International Gravitational Event Collabora-
tion) was established among the groups of
ALLEGRO, AURIGA, EXPLORER/NAUTILUS and NIOBE.
Each group has put on a common WEB site the list of the events extracted
independently from the data of its own detector. The five detectors were in
operation only part of the time. In table 3 we give the number of days during
the years 1997 and 1998 when N detectors were simultaneously taking data.
The coincidence search during this period gave no excess over the accidental
coincidences [34]. However due to the short time period of observation there
was no improvement on the previously determined [31] upper limit.

12.4 Coincidences among EXPLORER, Nautilus and
NIOBE

Before the work within the IGEC Collaboration, coincidences were searched
among the above three detectors. No double coincidence excess was found
between EXPLORER and NIOBE and NAUTILUS and NIOBE, but some
intriguing result was found when searching for coincidences between EX-
PLORER and NAUTILUS [35]. We show in Table 4 some result obtained
when searching for coincidences between Explorer and Nautilus during the
years 1995 and 1996.

In the first column we give the number of days when both antennas were
simultaneously operating. The small number of useful days shows that it was
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Table 4: Results of a coincidence search between data from Explorer and
Nautilus during the years 1995 and 1996. See text for explanation.

number of number of number of n Ne | Ppoisson
days Explorer events | Nautilus events %
29.2 8527 5679 11.0 | 19 1.5

difficult to keep a cryogenic GW antenna in operation continuously with good
behavior. At present a coverage of about 70% of the total time is attained. In
the second and third column we show the number of candidate events. We
notice the large number of candidate events that make practically impossible,
on individual basis, to search for a particular signal due to GW. The big
improvement is obtained by the comparison of the two detectors. Then we
have to worry only for the number of accidental coincidences. In the fourth
column we give the expected number of accidental coincidences measured by
means of 10,000 shifts of the event times of one detector with respect to the
other one. This number of accidentals is small enough to start considering the
possibility to search for a coincidence excess (though, according astrophysical
expectations, this excess should be much smaller than the observed number of
accidentals). In this case the number of coincidences n., reported in column
five, turns out to be slightly larger than the expected number of accidentals.
Finally in columns sixth we report the Poisson probability that the observed
excess was accidental.

13 Perspectives for resonant detectors

The burst sensitivity for all bars can be increased by improving the transducer
and associated electronics. It has been estimated [36] that a factor of 50 be
within the technical possibilities.

In addition to increase the bandwidth, Auriga and Nautilus can improve,
see table 5, their spectral sensitivity by making full use of their capability
to go down in temperature to 7' = 0.10 K. At present the major difficulty
is due to excess noise, sometimes of unknown origin, and work is in progress
for eliminating this noise.

New resonant detectors of different shape and much larger mass [37, 38,
39, 40] have been proposed for obtaining a greater sensitivity. The best
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Table 5: Target sensitivity for Auriga, Nautilus and a spherical detector.

Detector h =+/S), frequency | minimum A | minimum A | minimum
at resonance | bandwidth | for 1 ms | for continuous
[ 11112] df [Hz] bursts waves
AURIGA 6-107%° 50 31072 2.107%
NAUTILUS
SPHERE 6-107%4 50 3-107% 2.10727
38 tonne

geometry for a resonant detector is the spherical one, because a sphere has
the largest possible mass for a given occupied space and because a spherical
detector can be instrumented with transducers installed in various locations
on its surface, allowing the best detection of GW with any direction and
polarization.

Among various proposals an aluminum sphere with a diameter of 3 m,
having the mass M=38 ton and operating at T=20 mK has been considered.
The estimated sensitivity for this detector is shown in table 5. We have
assumed that the detector operates near the quantum limit, that is with
Teff ~ 1077 K.

Furthermore we must consider that the sphere is sensitive to GW with
any incoming direction and degree of polarization and is sensitive also to

scalar GW.

14 Conclusions

Today there are sensitive resonant antennas in operation, producing data in
an unexplored field of physics, allowing at least to obtain new upper limits
for various types of GW.

It is important to realize that it is possible to increase the sensitivity of
the resonant detectors by two orders of magnitude, approaching the limit for
GW predicted by the present viable theories.

Finally we want to call the attention to the importance to develop spher-
ical detectors, which are really complete GW observatories, for all directions,
polarizations and able to discriminate among various possible theories of
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gravity.
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