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ABSTRACT

The Two-Dimensional electrons in heterostructures is a unique many-body sys-
tem with extreme features (high mobility, small electron effective mass, small
Landé factor (g-factor), etc.). On this system Quantum Hall Effect (both Inte-
ger and Fractional) can be observed with high accuracy . We think that a lot
of theoretical work has still to be done for a satisfactory understanding of this
phenomenon. Therefore much emphasis will be put on the experimental work
done in the last ten years. The most popular theories are briefly sketched.
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1 Basic language

We assume that the system consists of N electrons confined in the z—y plane with mass m ~
0.067m,, polarization constant ¢ ~ 13, g-factor ~ —0.44, density po = 3 10°,...,10'2 cm™2
(low density in Ref. [1]) and high mobility p ~ 10°cm?/(Volt sec) (for the heterostruc-
ture Al,Ga,_,As — GaAs; in other heterojunctions the parameters can be quite differ-
ent: GagyIn,_,As — InP [2, 3, 4] has m = 0.04Tm,, |g| = 4.1, po = 0.5 10'* cm™? and
p =~ 105cm?/(Volt sec). With different doping the charge carriers are holes. In Si-MOSFET
m = 0.19m,, p = 3.63 10*cm?/(Volt sec) e = 7.7 po = 5 10*°...10* cm™2 [5]). Fig. 1 gives
the geometry of the experimental setup (Hall bar and Corbino). Fig. 2 shows the energy
band structure. The results of a typical magnetotransport experiment are shown in Figs.
3 and 4. The plateaus in the Hall resistance are described by

Ry= " (1.1)

vye

where vy is an integer (IQHE) [8] or a rational number g/p with p odd (FQHE) [9] (apart
few exceptions: v; = 5/2).

Mutual interaction via Coulomb and interaction with the constant magnetic (tilted by
g from the z-axis) are then described by the Hamiltonian (second quantization). For Bloch
electrons, minimal coupling for Bloch electrons, Wannier functions and all that see Ref.

[10] chap. 9.
2.1 9
H= /dmp { (~ihv + A) 5315—§MBUSIS-B}¢S—I—HC,

Ho =< / Prd eV (r — o) [ (0] (b ()
N N \2
=2l + (7)) (1.2)

(interaction with the uniform positive background distributed over the domain A is in-
cluded) where the electromagnetic potential describes only the perpendicular part of the
magnetic field:

A = (-B.y,0) Landau gauge

B
= TJ_(_?/; z) symmetric gauge. (1.3)

Spin indices will be neglected from now on. There are natural units of energy and length

BBJ_

mc

(’;) (1.4)

thus if we measure energies in units of Aw,, lengths in units of A and fields in units of 1/,
the Hamiltonian becomes

hw, we =

A

H= / Propt {3(—¢v +A) —ry0- B}¢ + Hg,
A 2
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He = % [ drdr'V(r — o) [ (r)e! () (' )o(x)

(1.5)

where
SV
gpsB
— ) 1.
K/p Zhwc ( 6)

(in most experiments k. > 1 and £, << 1) and
A = (-y,0) Landau gauge

1
A = 5(—y,m) symmetric gauge. (1.7)

Canonical commutation relations are imposed
{W(e), ¥!(2")}Br = 62(x — X'). (1.8)

The construction of the ground state for vy < 1 is very difficult since all state with ng, =
0 are degenerate (see next subsection). It is believed that single particle approximation
(Slater determinant state) does not work. Nevertheless let us play the game: suppose that

(/ drpi(r ) )) [0) (1.9)

with {f;} orthonormal, then one gets easﬂy

the state is given by

(O1Hei) = 5 3 [ avaevie—x) L0 (150D ) = FOROEER0)]

(1.10)
The first term is very small if the electrons are distributed uniformly in space. The second
term (exchange energy) is negative and usually large (~ x.). Of course this depends on a
judicious choice of {f;}.

By using Lagrange multipliers we get the self-consistent equation
1 .
€ifis(r) = {5(—N +A) b — R0y B} Fiw(T)
b X [ @V =) [f (IOAP0) = ) = Fule) 5000 )] €111

From the above equation one sees that the exchange part does not mix spins: a spin up
electron sees only the other up spins (the direct part is usually very small).

Important issues are the boundary conditions and the introduction of an external electric
field and of a current. These points will be discussed later.
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1.1 Free electrons model

In the Landau gauge (eq. (1.3)) the free part of the Hamiltonian is easily diagonalized.
The eigenfunctions

Xng (Y — k) exp (ikz), (1.12)

where ,, is the Hermite function for the one dimensional oscillator, has energy
E,. =np+ . (1.13)

ny, is called the Landau number and there is degeneracy respect to & (position of the center
of the oscillator). To find the degeneracy we impose some boundary conditions. In a box
with dimensions (L, L,) we require (to be compatible with the algebra of the field: egs.
of motion, etc.)

l,b(:IJ—I—Lz,y) = @b(:l:,y)

Y(z,y+ Ly) = exp(eLyz)p(z,y). (1.14)
Thus periodicity in x requires
n
k=2r— 1.15
7rLz7 ( )

while the condition in y necessitates the introduction of a set of eigenfunctions

o0

Ygi(2,9) = cxp (ikz) Y exp(—inLye)xn, (y — b +nL,) (1.16)

which satisfy the boundary conditions. Then, if

1
9. = —L,L, (in units A?) (1.17)

27

is an integer, k runs over the values
k=0,...,L,(1—g:"). (1.18)

Thus gy, is the degeneracy of the Landau level (for all levels). It says how many oscillators
one can put on the y-axis.

If we include the spin, the energy becomes

1
En,s=nr+ 3 + Ky (1.19)

The symmetric gauge allows a more complete treatment of the single particle case
(although the results are at the end gauge independent). Complex notation is useful (more

about this algebra in Ref. [11])

w=z+1y Op = %(8,,: —10,) (1.20)
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(our notation is the opposite of the commonly used one: w = z—14y). The first quantization

operators:
ot = %(%—2&”*)
b = %(%—I—Z@w*)

satisfy the commutation relations
[a,al] = [5,0" = 1

[a,b] = [a,b'] =0

and the free Hamiltonian reads .
Hy = ala + 5

(1.21)

(1.22)

(1.23)

(1.24)

Thus a,a! are the step-down and step-up operators for the Landau number, while b, b
commute with the unperturbed Hamiltonian. The single-particle states can be labelled by

two numbers: ny, and ny = bTb. One gets easily the n, = 0 states

Py 0(r) = (2mn!) 73 (
and similarly for ny, = 0

L
2

N
8
|
-~
S
3
o
[¢]
5
LS
|
| 3
S

Gon, () = (2mmp!)~

Y
V2
It is useful to introduce the coherent-state operators

S(e) = exp[ (c*b—ch)]

~
o
Il
S-Sl

exp[ (ca — c*af)]

which can be written in term of translations
1 .
S(c) = exp [—|—§c XT- z] ear:p(cl@z + cgay)
i X
T(c) = exp[—ic XT- z] ear:p(cl@z + cgay)
and satisfy the algebra

S(c)S(d) = S(c+ d)emp[—%c X7,

T(c)T(d) = T(c+ d)emp[%c x 13,

Notice the useful relation

exp (tc-r) = T(—¢)S(é)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)
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where

E=(—cy, ). (1.32)

Since S operators commute with H (the potential V has to be made periodic over the
domain A), they are good for imposing the boundary conditions

S(Liyp = &9
SLaep = ey (1.33)

which are compatible if

S(L1)S(Ls) = S(L3)S(L,) (1.34)

i.e. condition of eq. (1.17):
L1 X L2 . i = 27TgL (135)

(integer number of quantum flux through the parallelogram with side vectors Lq, Ly).

The operators S form the Magnetic Translation Group. The elements S(w) are fixed
by the boundary conditions:

S(w), S(L)] =0  j=1,2—>w= gi(nle —naLy). (1.36)

There is an interesting representation of the MTG, obtained by solving the equation

S(f)dny = oo
S(9)by = €4 (1.37)

with (to guarantee the consistency of the above equations)
fxg-z=2r=[S(f),S(9)] =0. (1.38)
Notice that for any allowed element w of the MTG

S(f)S(w)gz? = e S(w)e”

S(9)S(w)nt = &'S(w)gnt (1.39)
with
o = a—fxw-z mod(2n)
B = B—gxw-z mod(2r). (1.40)

Thus one can start from a cyclic element and then obtain all the others by using egs. (1.39)

and (1.40)
+oo

S e =s(H]” [ 5(9)]” @n, (1.41)

m,n=—oo

N

$aofe = (gr)~

(see eq. (1.25)). The angles can be obtained by using the commensurability of the lattice
(f, g) with the domain:

L, = lpf‘l'l;g
L, = I f+lg (1.42)



The quantum Hall effect 161

where all coefficients are integers and
ol — LI, = g1 (1.43)

The boundary conditions in eq. (1.33) give a finite set of angles. One of them is

1
oo = — (I — Ui + mlli(l, — 1))

gr

1
8o = - (—081 + Loz + wllL(1 — 1)) . (1.44)

Finally from eq. (1.40) we get all values of o, 5:

a = Qg + g_L (lqnl lq’ng)
2T
B = Bo+ " (—tna + Lna) - (1.45)
L

A canonical set of integers can be fixed by the requirements

0 < (lqnl — l;ng) < gr,
0 < (—l;nl + lpng) < gr. (1.46)

The wave function in eq. (1.41) is not normalized

400 ) 1
[ drlgmir = 3 (mmetre ittt ep (— fmf +ngl?).  (147)
A

m,n=—oo

There is a little mystery:
l6™||* = 0. (1.48)

2 Some theorems

There are some important theorems for electrons in presence of a static magnetic field.
They involve features of the system over large distances (low momentum), in contrast with
other features (e.g. interaction with impurities) where the short distances involved are
pertinent for the high momentum.

2.1 Kohn’s theorem

This theorem [12] is very powerful: cyclotron resonance frequency (Landau splitting Aw,)
is not modified by perturbation due to a translation invariant potential:

U= [ Eadyulx -y @) (y)e(s)b(e). (2.49)
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We give some arguments about this theorem. If one excites the system by a radiofre-
quency (weak field), the semiclassical approximation can be used, i.e. an oscillatory term
is added to the external electromagnetic potential (complex notation):

A — A+ AW
A
A = ;—(—Z'Ez + B,)exp —i(wt — kz) (2.50)
w

This amounts to consider a perturbation of the form
/dzrjA(’”) (2.51)

(integration in dz implies some Ansatz on the z-part of the electron wave function) where
(in dimensionless quantities j;/[(ek)/(mA3)])

o = é{[—%m—a*w]www—%m—a*)w}
. 1.1
i = Gllsat a4 st o) (2.52)

(for small electromagnetic field). Thus the typical operator is
o= /d2r¢Ta¢. (2.53)
Now we consider the operator
%(wa —w*al)] = exp[—%w X r - Z]exp(w;0; + wy0;) (2.54)

and its second quantized equivalent

T(w) = exp]

Flw) = exp[%(w& —wah), (2.55)
which is gives ) )
T(w)T H(w) = T(w)p. (2.56)

By using translation invariance
T UT Y (w)=U (2.57)

and

. * 1
T(w)H, /d2r¢ [ (o' + =)@+ —=) + =| ¥. (2.58)
\/_
By differentiating respect to w* and putting w = 0 one gets
[af, U] =0 (2.59)
[at, Hy] = —al. (2.60)
Let |Q2) be the ground state of the Hamiltonian (with no radiofrequency), then we get

Hat

) = ([H,a'] + alH)|Q) = (B + 1)a!

). (2.61)

Then the excited energy (cyclotron frequency) is not modified by the interaction U.
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2.2 Larmor’s theorem

A similar theorem is valid also for the Zeeman splitting: the mutual interaction among the
electrons (if no spin-orbit potential is present) does not change the electron spin resonance.

The argument to prove this theorem is much similar to the previous discussion: one
consider a radiofrequency coupled to magnetic moment of the electrons:

g'u_B/d2 to o BT (¢ 2 62
The radiation magnetic field is small. Then the relevant matrix element at first order in
perturbation (time dependent) expansion is

(] / drpto,|Q) (2.63)
By using the invariance under spin rotations of Hy and U one gets
(E' - E)(Q’|/d2r¢Taz¢|Q) - —2inp<Q'|/d2r¢TUy¢|Q>. (2.64)

Now, if we can relate the two matrix elements, e.g. by using rotation invariance under o,
rotations (this is not always easy: mixed spin states and/or boundary conditions might
pose some problems):

[0,,04] = 210y (2.65)

Finally we get
E'— FE = +2x,,. (2.66)

This tells that at low momentum the Zeeman splitting is not modified by the interaction
among the electrons. In particular the Coulomb exchange energy cannot be detected by
Electron Spin Resonance experiment [13] (in forward scattering experiments! If the mo-
mentum transfer is large, as in large angle scattering, then the exchange energy shows up.

See Ref. [14])

3 Boundary conditions

The boundary conditions is a nasty problem: the connection with experiments is somewhat
obscure. Periodic conditions, as on a torus, have troubles from interactions with copies; the
system on a sphere might have difficulties to crystallize in the triangular lattice (Wigner
crystal); realistic conditions (as boundary external potential) are too difficult from the
theoretical point of view.

If the electric field is present the situation gets worse, as we would like to illustrate here.
Let us start from far away. Current and electric field are related by

Ji = O'Z'J'Ej (367)

and the inverse
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If there is z — y symmetry then

Oze = Oyy, Ogy = —Oyg. (3.69)

Please notice that p
Opg = ——2— (3.70)

Pra + Poy
thus pg, = 0 implies 0, = 0. Moreover
Pzy

Ogy = —————— 3.71
Yot (3.71)

On the Hall plateaus one has pg; =~ 0; therefore
Ty ™ —Pgy - (3.72)
In the Corbino geometry (disk) the longitudinal current and potential difference are

along a radius. The transverse quantities are not measured. The external potential is
given. Moreover from rotational symmetry

Ey = pgr Jr + poaJs = 0. (373)
If we are sitting on a Hall plateau then
Pog = 0= J, = 0, (374)

i.e. there is no longitudinal current. The argument should be valid also for a cylinder (axis
along y): at the Hall plateau then

Eg=0 and pg =0= J, =0. (3.75)
Thus on a torus the transport of an electron by L, increases the system energy by
elLa - E. (3.76)
To implement this by the boundary conditions we require (E - L;=0)

S(L1)¢II — ei61¢ll
S(Ly)p" = elftatlyr (3.77)

where time is measured in units of w;* and

e\l

€= hw,

(3.78)

(" is used for the field 9 in presence of the electric field). 6; and 6, are time independent.
We introduce the electric field by the scalar potential

Ag=-E 1 (3.79)

l.e.

Hy — H, + / Pryp"E -1y, (3.80)
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A Galilei transformation allows to go back to the static problem. Define
"= SGEE)T(E)exp(i/2|Et)ib. (3.81)

With a little algebra one gets the original Schrodinger equation with £ = 0 and boundary
conditions

Sy = S(L;)S(~5ET(~E)ea(—i/2IE ey
= exp(eb;)y. (3.82)

In the Hall bar geometry, the current along x-axis is given and the potential dif-
ference is measured across y-axis. Thus

Jy = 0ye By + oyy By = 0. (3.83)
If we are on a Hall plateau
Poz =0 = 0gp = 0yy =0 (3.84)
therefore
E,=0. (3.85)

The transport along L; and L, does not require any mechanical work. Thus we can impose
the time independent boundary conditions

SLl'l,bI _ eiel’l)bl
SLyyp = 24 (3.86)

The current J, is induced by some current generator along the x-axis (same direction as
Ly). Thus the stationary state |Q') satisfies

(@j19Q) = (J, 0) (3.87)
(at least as mean value over the device), where
. e 1 ; ; €
i = S + wipw] + Siay). (3.89)

A is the potential for the magnetic field and for the small electric field introduced to drive
the current. Now we can go back to zero current case, by using the transformation

% =T(—(1 + it)E)emp(—%|8|2t)¢'. (3.89)

with £, ~ 0 and

4]
&y WJE. (3.90)
In fact we get the same boundary conditions as before, the current is zero, but the
Schroodinger equation contains a new term in the vector potential

A — A + ctE. (3.91)

Finally the problem to be solved is that of a static system of many electrons in an external
electric on the plane and a magnetic field as usual.
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4 Some phenomenology

For Quantum Hall Effect, two devices have been used: S:— MOSF ET and heterostructures
(e.g. junctions as Al,Ga;_,As — GaAs). In the first material Bloch-electrons have higher
mass as in the second (0.2 m, versus 0.067 m,), thus Landau splitting is smaller. Moreover
the mobility in the first material is at least a factor ten lower as in the second. Although
QHE started with MOSFET, most of recent experiments are done in heterojunctions. The
Hall resistance has a simple classical explanation: if we match Lorentz and electrostatic
force for electrons moving with drift velocity v,:

vy B, = cE,. (4.92)
The current is given by
ja: = _eLyPUz (493)
and therefore v B
Ry=-*t=-— 4.94
7 I ecp ( )
The Integer Quantum Hall Effect comes along if vy quantum levels are filled with degeneracy
L.L,eB
= — 4.95
gL he ( )
Homogeneity of the system gives then
eB
o=, (4.96)
then from eq. (4.94)
h
R = 4.97
H vye? ( )
with .
— = 25,812.8063 {2 (4.98)
e
The Hall plateaus are along the classical line (we forget the sign)
e’ Be
Ry—=—. 4.99
T hep ( )
The scale of the magnetic field is
ch
Bo = Po—, (4:100)
e

thus the density at B = 0 gives the natural unit for the magnetic field (1Tesla = 10*Gauss =
0.24178 10* cm™2). By varying the magnetic field (usual precision AB/B ~ 1073), the
Landau levels move on the energy axis and their degeneracy changes. If the number of
electron is fixed, then the transition between filled levels states is continuous (de Haas-van
Alpen); however, if the number of electrons is free, then the filled levels are those with
energy lower then the chemical potential (this after a bunch of approximations: single
particle state, zero temperature, no impurities, infinite reservoir, etc..) and the transition
is discontinuous. Please notice that the majority of experts prefer to keep the number of
electrons fixed and to account for the sudden variation in the number of charge carriers,
by localizing (or de-localizing) the electrons around the impurities of the material. For
our purposes the two descriptions are equivalent: in both cases a parameter has to be
introduced (the energy necessary to bring-in or to de-localize one electron).
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4.1 Plateaus shape: the spin problem

This simple model (free electron model) encounters here some difficulties. The filling se-
quence, for decreasing magnetic field, is supposed to be 0 |, 0 | +0 T, 0 | 40 T +1 |,
0]40T+1] 417, .... The transition from odd filled plateaus to even filled plateaus cor-
responds to complete filling of a Landau level. However the spin splitting is much smaller
than the Landau splitting:

gusB

2hw,
therefore the odd filled plateaus are expected to be much smaller than the even filled ones.
This fact is contradicted by experiments [6] (see Fig. 5). The Coulomb interaction does
not cure the problem either, since the interaction (at the first non zero perturbation level)

~ 73 x107? (4.101)

leaves the gas of the up-spins independent from the gas of the down-spins. Only a ad hoc
energy contribution coming from the bulk can account [15] (together with the Coulomb
interaction) for the anomaly in the plateaus size. See Fig. 6. This bulk term describes the
electron reservoir as a buffer of finite capacity.

4.2 ESR

In this experiments the spin flip is induced in odd-filled plateaus by some radiofrequency
(up to T0GH z and several hundred mW in Ref. [13]). Absorption of microwave is measured.
Since g ~ —0.44 then Larmor theorem gives (see section 2)

AE = gugB ~ 20GHz (4.102)

at B = 4.5 10*Gauss. In fact an effective g(B,ny) is found
1
9(B,nL) = go +c(ns + 5)B (4.103)

with typical values: go = —0.42 and ¢ = 0.0111 10~*Gauss™*.

The light diffusion experiment [14] reveals that the spin splitting is dependent from the
momentum transfer. See Fig. 7. In the experiment (at vy ~ 1 and B = 8.02 10*Gauss)
the peak at £ ~ 14meV is identified with AE = hw,, i.e. an inter Landau level transition
(¢ = 0), another interesting peak at £ = 17.5meV is assigned to the transition 0 |— 1
and numerically corresponds to a large exchange energy, as predicted by Kallin and Halperin

1

[16] at large momentum transfer g ~ <.

4.3 Activation energies

There is some indirect way to get informations on the excitation energies of the system,
this is by measuring the dependence on the temperature T' of the longitudinal part of the
conductivity tensor

Pyy
O — 4.104
Pz Pzy (4109
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A typical experiment is described in Ref. [17], where the dependence is measured at the
filling factors v; = 1,2,3 (Integer case). There p,, = h/(vse?) and p,, is in comparison
small, thus conductivity and resistivity behave the same. If AE >> kgT then the expected
behavior is

AE
. 4.1
2kBT] (4.105)

Plotting log o,, versus 1/T one expects a straight line yielding the two parameters o and

Opgy = Og €XP [—

AE. See Fig. 8. In the odd-filled plateaus the spin flip is supposed to be the mechanism
of excitation, while for even-filled one expects that inter Landau transitions are involved.
According to Kallin and Halperin [16], the exchange Coulomb energy gives a sizable con-
tribution (large momentum transfers are expected in the interaction electron-impurities).
The experiment shows that the law in eq. (4.105) is valid over a wide range of tempera-
tures, but AE is smaller than the theoretical prediction (50% of the theoretical figures for
even-filled plateaus and only 20% for the odd-filled, where spin-flip enters). Typical values
are: AE ~= 100 °K and AE ~= 20 °K respectively for even- and odd-filled plateaus.
Fig. 9.

4.4 Tilted field

From eqgs. (1.2) and (1.3) it is clear that the Landau term depends from B, and the Pauli
term from B. This allows to perform two type of experiments which are crucial for the

TDE.
A) Coincidence experiments

Let us consider IQHE and parametrize the energy of the levels by (not so correct, see
later)
1 g*
E, s = hw(ng + 5) — ES,UJBB (4.106)

where w, contains B, . If we tilt the field by an angle 6 from the normal to the plane, then
B, = Bcos#f (4.107)

and therefore two levels can coincide in energy for some particular value of 8, e.g. ng,s =1
and ng, +1,s = —1 (Fig. 10). In this situation the two plateaus are expected to disappear
since the vanishing of the energy gap will increase the longitudinal resistivity p,. This will
provide an experiment measurement of ¢* to be confronted with theory. The experiment
in Ref. [18] gives evidence of this effect (§ ~ 87°) (Fig. 11). Unfortunately the theoretical
analysis 1s difficult both because the Coulomb energy has not been taken into account in
eq. (4.106) and even more difficult because the bulk effect is necessary in order to evaluate
the magnetic field at which the transition between two plateaus occurs.

B) New spin phase

In GaInAs — InP the effective g is ten times larger than in AlGaAs — GaAs. Thus it is
easy to increase the Pauli term in tilted field, perhaps to a point where the filling sequence
is0],0 ] +1],0 ] +1 ] +2 |,... (ferromagnetism) at variance with the alternate spin
filling (paramagnetism). Coulomb energy tends to favor this transition, since at the lowest
order the exchange energy for an ensemble of electrons is lower if all spins are in the same



The quantum Hall effect 169

direction than in the alternate spin filling. In this phase the coincidence of levels does not
occur. In Ref. [19] this phase transition is demonstrated experimentally.

C) Mixed spin states

At vy < 1 and high density the magnetic field is very large (see eq. (4.100)) and
therefore the states are supposed to be formed with electrons with s = —1 (Pauli term

goes with ~ B, while Coulomb with ~ BE) Thus in devices where the density is low
we expect that the Pauli term will become small enough to allow mixed spin states. In
this situation a tilted field experiment could reveal the presence of spin up electrons. By
varying the angle the state changes and the energy gap with the excited states is expected
to vary also, thus a variation of p,, respect to tilting angle is to be found. In Ref. [20] this
2.2 (po = 2.4 10" cm™2). From theoretical point
of view this problem is very difficult since nobody is able to construct mixed spin states,

practically.

effect is shown experimentally for vy =

_1

4.5 vy = 5

The odd denominator rule (FQHE) is said to be understood. This self-assuring statement
[21] is disturbed by a recurrent nightmare: the absent v; = ; plateau is investigated
regularly by some experimentalist. We mention some of them.

A) Direct search

The direct search of the vy = % plateau has provided various false alarms. The more
recent investigation is a throughout study of the plateaus accumulating around that value

[22]. They are parametrized by
p

AR

(4.108)

Very close levels are detected (v; = 9/19 and 9/17) and moreover the activation energies are
measured by looking at the temperature dependence of p,, (see eq. (4.105)). No plateau
at vy = % is found, but a very intriguing dependence of the activation energy from B is
found (Fig. 12). There are various theoretical speculations about these results [23, 24].

B) Double-Layer Electron System

Up to now we did not care about the z-direction: some potential well should be at work
with energy levels so far apart that only the lowest (with no nodes in the wave function
carrying z-dependence) is occupied. However also on this side some beautiful experiments
have been done. In Ref. [25] the profile of the potential well is modified in such a way
that a double-layer (in the z-direction) is formed. In Ref. [26] two wells are separated and
tunneling is used to couple the two layers. In both experiments a plateau with the filling
factor vy = % is detected (Fig. 13). This requires particular values in the geometry of the
wells. The appearance of this plateau goes together with a rather anomalous behavior of
the IQHE. The theoretical explanations of this effect are somewhat involved. See Ref. [27]
and the papers quoted therein.

C) Surface acoustic wave
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In the d-c experiments the static properties of the TDE system are investigated. The
use of surface acoustic waves (up to 1 GHz), transmitted very close to the TDE (< 5000121),
allows the analysis of the dynamical properties. The amplitude and the velocity of the
outgoing wave are measured. The attenuation I' (amplitude ~ exp(—I'z)) and velocity can
be related by a simple model to the static conductivity o,,. The experimental results [28]
agree with the prediction of the model, in particular amplitude and velocity increase at

the Hall plateau, both in the IQHE and FQHE. There is a striking anomaly at vy = %
(and perhaps at %), where a sharp minimum both in amplitude and velocity is detected (in
contrast with the prediction of the model, that predicts an opposite behavior). See Fig.
14. The anomaly decreases by increasing the temperature. This phenomenon has started

an intense theoretical analysis of the TDE state at this particular filling factor [24].

4.6 Edge currents

Various theoretical speculations [29, 30] suggest that the longitudinal current flows mostly
along the edges. Numerous experiments have been performed, but no definite conclusion
can be drawn (e.g. surface acoustic wave experiment favor a bulk current picture). As
representative of this intense research we quote Ref. [31, 32], where the authors claim a
strong evidence for current-carrying edge states. See Fig. 15.

4.7 Wigner crystal

At low temperature and small filling factor, a two dimensional electron system without
disorder is supposed to form a Wigner crystal (due to Coulomb interaction). The transi-
tion from liquid to crystal is expected for v; < 1/7. The distinctive properties of a crystal
are many, e.g. resistance to sheer, Bragg scattering, temperature behavior of specific heat,
electric insulation, etc. Unfortunately many of these properties are out of range for ex-
periments. It has been suggested to measure the threshold voltage in the non linear I-V
plot, where the differential resistance drops off. Moreover by increasing the temperature
an Insulating Phase shows a decreasing in the electrical resistance and the opposite is ex-
pected for a fluid (which is supposed to be the phase at the Hall plateaus). We quote two
experimental works where some evidence is given for Wigner crystallization. In Ref. [33]
the insulating phase is found around the plateau at vy = 1/5, where the resistance has very
high value (~ 5 10°Q). The temperature dependence is as described above (Fig. 16). In
Ref. [34] the same evidence is found around the plateau at vy = 1/3 for a device where the
holes are the electric carriers (mass is 5 times larger and mobility is one order of magnitude
lower).

4.8 Photoluminescence

In a series of beautiful experiments the Stuttgart and Chernogolovka clubs have analysed
the optical properties of the TDE system. The radiative recombination of 2D electrons with
photoexcited holes in a monolayer of acceptors has been studied. The trick of creating a
spatially separated layer (6 layer) of acceptors is used in order to avoid the masking effect of
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strong electron-hole correlation (excitons). The experiment (see for instance Ref. [35], Fig.
17) shows clearly the optical transitions to IQHE levels (Landau fan), where, according to
Kohn’s theorem, the energies are in quanta of Aw,, and steps (in the excitation energies)

at various fractional fillings (FQHE). Fig. 18 (left).

In a recent paper [36] the group showed that time resolved luminescence measurements
allow to investigate the properties of liquid and solid phase independently and to derive a
phase diagram for the Wigner crystallization (the recombination time for electrons in the
pinned Wigner-solid phase is up to several orders of magnitude longer than for electrons in

the liquid phase). Fig.18 (right).

5 Theorist’s side

In order to follow the common notation, we change the definition
z=xz4+w—oz=c¢—1y (5.109)

and correspondingly

1 /2*

T _

v ﬂ(z 262)

b = i(z—*+2a) (5.110)
V2 \2 ’ '

(see egs. (1.20), (1.21)).

The IQHE seems to be understood, although (contrary to common belief) not in terms
of free electrons model. The basic approach is the Hartee-Fock approximation, together
with lowest order radiative corrections (in particular excitons energies) [16]. Some problems
remain, particularly the low value of the measured activation energies (Sect. 4, subsection
C) and the profile of the Hall resistance: odd filled plateaus have strong anomalies [15]
(Sect. 4, subsection A).

The FQHE is a very difficult problem, because any perturbative approach has to face
the high degeneracy (if all electrons, with vy < 1, are in n;, = 0 state, they have the
same unperturbed energy). Various approaches have been attempted. Exact solutions
for small systems (N ~ 10) have been done. They are somewhat unreliable, because of
the very strong influence of boundary conditions (we think that it should be N > 200).
Hartree-Fock calculations give rather high value for the total energy (for v; = 1/3 one gets
E¢/N = —0.387¢?/(e) to be compared with Laughlin state value of —0.41) and moreover
they cannot explain the odd denominator rule.

This section gives a brief account of the Laughlin Ansatz and of further developments.

5.1 Laughlin state

The Laughlin Ansatz concerns the wave function of a (hopefully) ground state |L)

1

Ym = N!

(0lgp(21) - - - 9p(2w)| L) (5.111)

3
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Let us assume that all spins are down and moreover that all electrons are in the lowest
Landau level. Then the ground state is a superposition of single particle states

N
1+ gn) = [[ . 10). (5.112)
=1

Where the operator ¢; destroys an electron described by a wave function given in eq. (1.26)
with n, = 7. Then the general form of ¢, is

| N
Ym = flz1,...,2n5) exp <_1 > |Zz'|2> ; (5.113)

=1

where f is an analytic function of z; (remember the change in notations given in eq. (5.109))
and moreover it should be antisymmetric (Fermi statistics). Laughlin [37] proposed

W = [[(7 = 2, exp (&é |zi|2> , (5.114)

i<j

with m odd (not normalized). For m = 1 f is just the Vandermonde determinant and
corresponds to fill all the states j; = 0,...,75y = N — 1 in eq. (5.112). This is the state
with vy = 1. For m > 1 the calculation of the expectation value of a dynamical variable A
proceeds as follows

(LIALL) = |lom]| 7 [ &21 - dwiy Ao (5.115)
Notice that
[Ym|* = exp(—BHa), (5.116)
with
2 m 9 9
B=— and Hy = _Z|Zz| - m Zln|zi—zj|. (5.117)
m 45 i<j

H,, describes a One Component Plasma (or jellium) in two dimensions of classical charges
m in a background with charge density
1 r? 1

U__27TA4 =5 (5.118)
The evaluation of the mean value in eq. (5.115) is then equivalent to the problem of
the statistical mechanics of the classical OCP at temperature 8~!. In plasma physics the
important parameter is I' = €?8; here I' = 2m (try with a scale transformation ...). At
this point any method of classical statistical mechanics is good: classical Monte Carlo,
Langevin equation, hypernetted chain approximation, etc.. An amusing game can bring
you to surprisingly good results. The fictitious particles will form a droplet (for high T' a
solid), of radius R, which neutralizes the charge of the (infinite) disk. Thus

R=(2m N)3. (5.119)

Then the density of the electrons is

p=— = —— (5.120)
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Then the filling factor is

1
vg=2mp = — (5.121)

(here A = 1). Thus the Laughlin state describes a TDE system as a liquid (incompressible,
if the excited states are separated by a energy gap). There is some problems, however. For
finite N, the distribution in space of the droplet is not uniform: at the border the density
has some oscillations [38] (in the variable r) and these oscillations are more pronounced for
high m. This problem (edge states) is far from been solved and the connection with the
edge excitations might be important. See Figs. 19 and 20

The energy per particle has been evaluated with many methods and turns out to be
very low (in comparison with other proposed states). For instance at m = 3 and for large

systems the energy is
2

e
E¢/N = —-041 —. 122
cf 0.41 — (5.122)
The Laughlin function describes states with filling factor v; = 1/m. Particle-hole symmetry
allows to use the function for v; = ™=1,

5.2 Quasi-holes and quasi-electrons

Let us consider the wave function

o — (1511 zi> TT(z — 2;)™ exp (& 5 |zi|2> (5.123)

and use the trick of the OCP. This corresponds to a new classical hamiltonian

H: = —m21n|zi|—I—%Z|zi|2—m221n|zi—zj|. (5.124)

i<j

The new term describes a particle in the centre with (classical) charge 1. This external
charge depletes an equal amount of charge, i.e. a region of area

1
6 =—=2m. 5.125

Lo (5.125)
Since the density of the electrons is p = 1/(27rm) (see eq. (5.120)), the depleted true charge
(not the charge of the OCP) is —epé = —e/m. We conclude that the new function describes

a hole in the centre with charge
e

g = —. (5.126)
m
The process could be iterated by multiplying v by

w0 = Tz - 0. (5.127)

K]

Notice that
[A(¢), A(¢)] = 0, (5.128)

thus the quasi-holes are Bosons. They carry charge e/m if they are far apart.
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The construction of quasi-electrons is not so straightforward. Laughlin proposed

sder=em (-1 1af) (Mg~ ) M-z (G129)

1= 1<g

The interpretation of 1, as a system of N electrons with a quasi-electron carrying charge
—e/m is not as simple as for the quasi-hole. See Ref. [39]. There the energy to create a
pair of quasi-hole and quasi-electron is estimated to be ~ 0.05¢?/(¢)) (Morf and Halperin

[40] found 0.1€%/(e)) ~ 5.8°K at B = 150 kGauss, a good value for the activation energy).
Also for quasi-electrons Bose statistics applies.

Other types of excited states have been considered (but always in the subspace nz, = 0)
by Girvin et al. [41]:

/ Prapt(r)S(ik)(r)| L). (5.130)
These states are the projection on the ny = 0 subspace of
/ &2t (r) exp(ik - r)p(r)|L). (5.131)
The last equation is reminiscent (in the usual Translations group) of the Single Mode
2 it
q

where é; creates an electron with momentum ¢q. The authors quote values of excitation
energy ranging from 0.1 to 0.15 in units €?/(g]).

Excitations

L) (5.132)

5.3 Hierarchy and related

From the previous subsection we learned that v; = 1/m filling can be described by a
Laughlin state and that excited states can be constructed with charge +e/m. The idea of
hierarchy, introduced to explain the v; = p/q fillings, consists in the use of quasi-holes (or
quasi-electrons) as elementary objects. A similar procedure was used when we forgot the
lattice potential and considered the Bloch electrons as elementary. The price is generalized
statistics (anyons of Wilczek [42]). Hierarchy has been introduced by various authors

[43, 44, 45]; we follow the approach of Ref. [45].

Jain [23] has developed a scheme for the FQHE, which seems to describe better, than
the hierarchy model, the observed filling factor sequence.

6 Kubo formula or linear response theory

The fundamental tool for the theoretical discussion of the QHE is provided by the Kubo for-
mula [46], which gives the response function ¢p4, describing the variation of B in presence
of a perturbation (small) due to a force F' coupled to a variable A

Hp=H— A-F(t) (6.133)
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Thus .
t) = /_ $palt — )F(2)dt". (6.134)

This is based on linearity and causality.

By taking the Fourier transform of eq. (6.134) we get the complex admittance (or general-
ized susceptibility)

AB(w) = x(w)F(w) (6.135)

with
XBa(w) = 11I0I_l|_/ dpa(t)exp(—twt — et). (6.136)
We derive the response function. At ¢ = —oo the perturbation is off and the system is

at equilibrium, i.e. p(—00) = po, with

[H, po] = 0 (6.137)
at any ¢
dp 1
— = =, p|. 1
Let Ap = p — po, then
dAp 1
— = 7 (H, Ap] = F()[A, Ap] = F(2)[A, pol). (6.139)

In the limit of very small perturbation the second term is neglected and the equation can
be formally integrated

/ exp (—i(t — ) )[4, po] exp (it — ¢) L) F (£t (6.140)
T ik I I
and finally
1 t
AB@y:wum@ﬂn:—f#r/ [A, po] B(t — t")F(t")dt' (6.141)
(2 —oo
The response function is then
1 1
dpa(t) = _EtT[A’ po] B(t) = %tT[A’ B(t)]po. (6.142)

Notice that the evaluation of the response function is performed on the unperturbed

system (F(¢t) = 0)!

Sometimes the Kubo formula is given in the following notation (which should not be scar-
ing): in the canonical ensemble (py = exp(—BH))

dpa(t) = —%tr (7% (P Ae™®H B(t) — AB(1))) = trpo /0 ’ dAA(—ihA)B(t).  (6.143)

In the zero temperature limit § — oo and for non degenerate ground state

) 1
lim 654(t) = (2[4, BE)]I9). (6.144)



176 R. Ferrari

The conductivity tensor at w = 0 (static field) and § — oo is then

" dte‘“%(QHA, B()|Q). (6.145)

oA — lim
e=0 Jg

If the system consists of N electrons in presence of an electric field

Hp=H— (=€) 1 E (6.146)

then
A= —e / drtrap (6.147)

for some 2. The measured quantity is the current. Since

1 1
&= —[o,H) = —(ps + “A;) = v, (6.148)
C

7 m

one gets
1 e? ) . it _ it _
"”’:ZEZ/O dte™t ((Qr; 1) (U]vil Q)™ Fo=E) — (Qu;|1) (1]r;|Q)exF=E)) | (6.149)
4

We use now

1
(QUrs)(Es — B = (o). (6.150)
Finally the conductivity tensor is
1, ., 1
= —(1e’h ———— ((Qv;|1) (1| ) — (Q]ws|l) {I]w;]Q)) . 151
o = 500 S g (Ol i) — (01 ) (6.151)

6.1 Thouless + 3

It is tempting to try to solve the FQHE by introducing an interaction which removes the
degeneracy of the Landau levels. Thus if the chemical potential is in a energy gap, there is
fractional filling. The use of eq. (4.94) would yield plateaus at non-integer filling. Thouless
et al. [47] proved that this hope is not justified for a model of independent electrons in
an external periodic potential. The result has been generalized to the case of interacting
electrons [48, 49], with the main assumption that the ground state is non-degenerate.

In the proof of Thouless et al. it is assumed that the flux through the unit cell (a,b) is a
rational number in units of quantum flux: ® = abB5. = p/q. Then one gets g energy bands.
The solution of the dynamical problem is given in terms of the functions (generalized Bloch
conditions for periodic potential, with 0 < & < 27/a and 0 < ky < 27/(gb))

Uk ky = Yiok, €XP(—1k1T — thoy) (6.152)

where ug, 1, satisfy the usual boundary conditions given in eq. (1.14) and are eigenstates
of the Hamiltonian

A~

H(kl, kz) =

1
m

(o= By i)+ (ot b +ato). (650



The quantum Hall effect 177

The velocity is
10

h Ok;
The Hall conductivity (eq. (6.151)) becomes

- H (k1 k). (6.154)

v; =

0 - 0 - 0 - 0 -
—H —H — | —H —H :
eaggp E;F {(‘%1 )aﬂ (‘9’92 );aa (‘%2 )aﬂ <6k1 );aa}
(6.155)
Now consider
(H (k1 k) — €a) ua = 0, (6.156)
take the derivative and finally the scalar product with ug # u,:
0 - 0 ., 0
(6—]{;1H> . = (Ea - 6,5)<B7 6—]{:101) = (Ea - 6,5) / dz’r"u,ﬂa—kl’u,a. (6157)

With this the conductivity in (6.155) becomes
= ——E;F E;F{ a, 018)(B, 0hcx) — (c, 82B)(B, B1cv) } . (6.158)
But (0, B,8) = —(Brc, B) gives
e;F S;F{ (810, B)(B, Bact) — (Bacx, B)(B, Brat) } . (6.159)

A little algebra shows that the sum can be extended to all states

o = Ah Z {{01c, Oat) — (Oacx, O10) } . (6.160)

a,€q<€ER

The sum over the states can be written as a sum over the filled bands and the integral over
the wave vectors:

o = ﬁ Z /dzk{ O, Orct) — (Oox, O10) } . (6.161)

ﬁ]ledbands

The term in brackets is half the curl of
G = (o, 0;0) — (i, ) = /dzr {us0ug — Oulbty } . (6.162)
Then the Stokes theorem gives
oy = 47rh Z/dk /dzfr {u*0u — Gu*u}. (6.163)
This quantity is in some sense gauge tnvariant: by changing

u — exp(28(ky, k) )u (6.164)
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og does not change. Moreover according to the authors one has
/dki / d*r {u*Ou — B;u*u} = 471 X integer. (6.165)

The argument runs as follows. u is an analytic function of ki, ks (no band crossing). Then
the following periodicity conditions must be valid (on the Brillouin zone)

27

u(ky, ky = E) = exp(tP(k1))u(ky, ky = 0) (6.166)
and 5
u(ky = % ks) = exp(iv(k2))u(ky = 0, ky). (6.167)
Then the integral is
[k [ @r o — dru) = 2 <¢(2q—7;) — (0) + $(0) — qs(%”).) (6.168)

The matching of the phases ¢ and 9 on the border of the unit cell (k-space) imposes that
the term in brackets is an integer multiple of 2. Thus the Quantum Hall Effect is always
integer. This theorem can be evaded if the ground state is degenerate.
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7 Figure Captions

Figure 1:

Figure 2:
Figure 3:
Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:

Figure 19:

Figure 20:

Top: the experimental setup of the Hall bar geometry. Bottom: Corbino
geometry .

Band structure in heterostructure .
Hall plateaus for IQHE [6] .
Hall plateaus showing FQHE (notice the vy = 5/2) [7] .

The prediction of the free electron model (continuous) compared with the data

of Ref. [6] (dashed) .

Hall plateaus for IQHE in a model with Coulomb and finite buffer capacity of
the bulk [15] (continuous) compared with the data of Ref. [6] (dashed). .

The light diffusion experiment at large angle shows the contribution of ex-
change energy in the transition SF (at 17.5meV) [14] .

Arrenius plots for activation energies [17] .

Activation energies [17] .

Coincidence of levels in tilted field [18] .

Disappearance of plateaus in a coincidence experiment [18] .
Plateaus around vy = 1/2. Ref. [22] .

Hall plateaus in double layer (presence of v, = 1/2 structure). Ref. [26] (top)
and Ref. [25] (bottom) .

Anomaly in surface acoustic wave experiment [28] .

Edge current experiment: influence of ohmic contacts on longitudinal resistiv-
ity [32] .

Insulating Phase near vy = 1/5. Ref. [33] .

6 doping and IQHE levels (left). Energy position of the peak due to recombi-
nation (right). Ref. [35] .

Energy position of the peak due to recombination (left) [35]. Phase diagram
for Wigner crystallization (right) [36] .

Profile of the single particle density versus radius in the Laughlin state m = 3

for N = 7,10,20,43,91,200. Ref. [38] .

Energy per particle for subsystems (of N, particles, x-axis) embedded in a

larger system (with N = 43,91, 200 particles). Ref. [38]
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