INTRODUCTION TO THE MONTE CARLO
METHOD*

A. Pelissetto
Dipartimento di Fisica, Univ. di Pisa

ILN.F.N., Sezione di Pisa

* Lectures given at the
National Seminar of Theoretical Physics
Parma, 1-12 September 1992.

2nd

111

112 A. Pelissetto

1 Uniform Random Number Generators.

An important ingredient in any Monte Carlo calculation is the random number generator.
This is a small subroutine of the program which produces a sequence of numbers which are
not at all random in the statistical sense but may have some properties which are similar
to the properties of a truly random sequence.

A truly random number sequence can only be generated by a random physical process,
for example radioactive decay, thermal noise in electronic devices, cosmic ray arrival time
etc. However these methods are extremely unpractical and at present the longest sequence
has been produced by Frigerio and Clark (N. A. Frigerio and N. Clark, Trans. Am. Nucl.
Soc. 22 (1975) 283). They used a radioactive a-particle source and a high resolution
counter turned on for periods of 20 ms. The average number of decays in this time interval
1s 24.315. When the count was odd they recorded a zero-bit, while when even a one-bit. To
this sequence they applied subsequently a correction to eliminate the bias due to the fact
that an even number of decays has a different probability with respect to an odd number,
obtaining eventually 2.5 x 10° 31-bit truly random numbers.

Exercise 1: By using the Poisson distribution compute the probability of a zero-bit
and of a one-bit in the Frigerio and Clark experiment.

Exercise 2: Consider a random sequence of zeroes and ones, such that the probability
of 1 is p and that of 0 1 — p, with p unknown. Prove that the following method gives a new
sequence where zeroes and ones have the same probability: Consider sequentially pairs of
bits in the sequence; if the bits are equal reject them, otherwise accept the second one.
Prove that the efficiency (percentage of accepted bits) of the method is p(1 — p) .

This method is however not very efficient since it requires large tables which are difficult
to store and long to prepare. Thus at the end of the 40s, with the introduction of computers,
research began on the generation of random numbers using arithmetic operations. The idea
was to produce integers Xg, X7, X5, ... such that 0 < X,, < 2% where w is the word size of
the computer using some rule of the form

Xn—l—l - f(Xn) (11)
and then random numbers U,, with 0 < U, < 1 by
U, = Xn/m. (1.2)

There is a fairly obvious objection to this method: how can this sequence be random,
since each number is completely determined by its predecessor? As J. Von Neumann said,
“anyone who considers arithmetical methods to produce random numbers is in a state of
sin”. The answer is indeed that the sequence is not random at all, but it may appear to be
random for the problem at hand if f is carefully chosen. We want to stress that the choice
of f is very important and that this choice is problem-dependent. A generator which is
random enough for a particular problem may be really bad for another one.

Introduction to the Monte Carlo method 113

Example.

Suppose we want to generate a sequence of integers Xg, X1, X5 ...1in therange 0 < X,, <
m using a rule X, ; = f(X,) where 0 < f(z) < m for 0 < z < m. Let us now choose the
function f randomly, i.e. giving each of the m™ possible functions f(z) equal probability.
Let us now compute the probability that for whatever choice of X, there will be no n such
that X,,,1 = X,,. Indeed in this case we would have X; = X,, for every £ > n and thus
the sequence would be eventually constant and thus generically the function f will not be
acceptable for our purposes (we say generically because it may happen that the function f
is nonetheless a good generator for a sufficiently large number of starting values). What we
have to compute is the probability that f(z) # z for all z. Now, given z, the probability
that f(z) # z is (1 —1/m). Thus the required probability is simply (1 —1/m)™ which goes
to 1/e for m — oo. Thus 63% of the functions f produce for at least one X, a sequence
which becomes eventually constant. Generically these functions will be poor generators of
random numbers. Of course we want to exclude also functions which produce sequences
with X412 = X, and so on. The lesson from this example is that only few f(z) have any
chance of producing decent random numbers: thus simple generators for which rigorous
results are available are to be preferred to more “random” (that is more complicated) ones
for which no theory exists as there is a high probability that these last methods generate
series which are less random than those obtained through simpler, but better understood,
algorithms.

Exercise 3: Consider a random number generator defined as in the previous example.
Show that the series contains cycles, i.e. that, for a given Xy, there exist numbers A, p
such that Xo, Xq,...,X,,... X, 4a-1 are distinct and X,4n = X, for n > p. A is called
the period of the sequence.

Prove that the following is a correct algorithm to determine A and u:
(a) Determine the first n such that X, = Xy,;
(b) Determine the first number ¢ such that X; = X,,,; and j such that X,, = X,,;;. Then
p=1,A=7.
(The main advantage of this algorithm consists in the absence of any memory require-
ment).

Finally show that the sequence Y5, Y; ... with Y11 = f(Y,) and Yo = Xi, 0 < k < p+ A,
has the same period as the original sequence for all £ and that the lowest A for which
Y, = Vi is max(0, u — k).

Apply these results to the middle-square method proposed by J. Von Neumann for
four-digit decimal numbers. Here m = 10* and

f(z) = mod(trunc(z®/10%), 10%) (1.3)

where trunc(z) is the largest integer such that z > trunc(z). Compute A and p for every

Xo.

At present the most widespread random number generators use the so-called linear
congruential method, i.e. the rule

Xny1 = mod(aX, + ¢,m) (1.4)

114 A. Pelissetto

Usually m is called the modulus, a (0 < a < m) the multiplier and ¢ (0 < ¢ < m) the
increment. The modulus can in principle be arbitrary. However there is a very convenient
choice which is m = 2¥ where w is the number of bits of a word of the computer. Indeed
in this case the “mod m” operation does not require any division. Given m one must then
choose a and c¢. An obvious property which can be required is that the generated sequence
have the longest possible period, which is obviously m. Two necessary conditions can be
determined very easily: a and ¢ must be relatively prime to m.

Indeed if a is not relatively prime to m, then a = pb, m = pq, ¢ = pk + h, with p # 1,
0<b<q,0<k<gq,0<h<p Then we can write

Xnt1 = pmod(bX,, + k,q) + R (1.5)

implying that only numbers of the form pa + h, 0 < a < g, are produced so that the
sequence does not have maximal period.

To obtain the condition on ¢, let us notice that if the period is m all possible values will
appear in the cycle and thus it is not restrictive to consider Xy = 0. Then in this case

X, = mod[(an _11)c,m] (1.6)

a —

If ¢ is not relatively prime to m and p = ged(m,c), X,, will be a multiple of p and the
period will be at most m/p.

These two conditions are not however sufficient conditions. The maximal period con-
gruential generators are completely known and are classified by the following theorem (Hull

and Dubell, STAM Review 4 (1962) 230):

Theorem 1: A linear congruential generator with modulus m, multiplier a > 1 and
wcrement ¢ has pertod m if and only if:

(1) ¢ is relatively prime to m;
(ii) @ — 1 is a multiple of p for every prime p dividing m;

(iii) @ — 1 is a multiple of 4, if m is a multiple of 4.

In practical implementations where m = 2* this theorem requires ¢ to be odd (and one
usually considers ¢ = 1 or a small odd number) and a = 4n + 1, for some integer n.

The previous theorem gives the conditions which ensure maximal period. Of course
this property alone is not enough to guarantee the goodness of the generator. A second
important quantity which must be investigated is the potency of the multiplier. It is defined
as the least integer s such that

mod((a —1)*,m) = 0 (1.7)

Such an integer exists if (@ — 1) satisfies the condition (ii) of the previous theorem and m
is not prime. It is easy to see that when the potency is low the sequence {X,} is not very
random. Let us notice first of all that s = 1 implies @ = 1. This is a very poor generator as

Xpy1 — X = ¢+ km, (1.8)

Introduction to the Monte Carlo method 115

k = 0,—1, meaning that successive couples (X, X1), (X1, X2)... lie on two lines contained
in the square [0, m[x[0, m].

Let us now suppose s = 2. Consider the sequence starting from Xy = 0. Then

m—1 1
X, = mod [(a 1) c, m] = mod (nc + §n(n —1e(a —1) ,m) (1.9)
a[p—
It follows
mod(Xnt1 — Xn,m) = mod(c+ ne(a —1),m) (1.10)

This relation implies that successive couples (Xo, X;), (X1, X5), ... lie on parallel lines
contained in the square [0, m[x[0,m[. This is not completely unexpected. Indeed truly
random numbers would obviously belong to the lines

Xpi1 — X = g (1.11)

with 1 —m < ¢ < m — 1. However in this case the possible values of ¢ are much less than
2m — 1. Indeed it is easy to see that this number is 2m/g.c.d. (m,a — 1) — 1.

Even worse is the situation for triples (Xo, X1, X5), (X1, X2, X3), ... as
mod(Xny2 — 2Xpp1 + X, ,m) = mod(c(a — 1),m) (1.12)
implying that they will lie on the four planes
X2 —2Xpy1 + X, = mod(e(a —1),m) + km (1.13)
with k = —2,—1,0, 1.

The fact that successive d-tuples from a congruential generator lie on a certain finite
number of parallel hyperplanes in d-dimensional space was firstly proved by Marsaglia who
also proved that the maximum number of such hyperplanes is (d! m)*/?¢. This means that if
m = 232, the triples lie on at most 2953 planes, the 4-tuples, the 6-tuples and the 10-tuples
on at most 566, 120 and 41 hyperplanes respectively.

The potency of a generator is strictly connected with this effect: the higher the potency,
the higher is the number of hyperplanes on which successive d-tuples lie. As a rule-of-thumb
generators with potency less than 5 must be rejected as not sufficiently random. When
m = 2% it is easy to give a condition on a ensuring high potency. Notice that because of
Theorem 1 we can have either amod8 =5 or amod8 =1, i.e. either (a — 1)mod8 =4 or
(a —1)mod 8 = 0. In the first case the potency is w/2 if w is even , (w + 1)/2 if w is odd,
while in the second case we have s < (w +2)/3. Thus in order to obtain maximal potency
the multiplier ¢ must have the form a = 8n + 5.

Exercise 4: Consider a linear congruential generator with m = 2% o = 2% + 1,
2 <k <w, c=1. Prove that it has maximal period. If w = 32 compute the potency for all
possible values of k, showing that a potency greater than four is achieved only if k£ < 6, 1.e.
for small multipliers. However small values of a must be avoided as they give rise to high
serial correlations and thus this family of a’s does not give rise to acceptable generators.
(Notice that this choice of a is particularly appealing as X,,,; can be computed without

116 A. Pelissetto

any multiplication (why?) and for this reason generators of this type were of widespread
use in the 50s).

Let us finally discuss some other properties of the sequences obtained from a linear
congruential generator. First of all let us notice that if m = 2% the sequence cannot be
used as a generator of random bits as the right-hand digits of X,, are much less random
than the left-hand digits. Indeed for every divisor d of m, if ¥,, = mod(X,, ,d), then

Y41 = mod (aqYs + ¢4, d) (1.14)
where ag = mod(a,d) and ¢; = mod(c, d) .

Taking d = 2% we obtain that the lowest k-bits of X,, form a sequence whose period is
2% or less. In particular the last bit is constant or alternating.

Exercise 5: Consider the following generators:
RAN supplied by Digital on its computers with m = 232, ¢ = 69069 and ¢ = 1;
RAND the standard Unix generator with m = 23! — 1, a = 1103515245, ¢ = 12345;

DRANDA48 provided by IBM on its RISC machines with m = 2%, ¢ =5DEECE66D1¢ and
Cc = BlG'

For each generator compute the period and the potency.

Hint: note that 23! — 1 is a prime number (Marsenne prime).

Let us now pass to discuss other possible random number generators. Another popular
form is simply

Xn+1 = mod(aX,,m) (1.15)

These generators are linear congruential generators with ¢ = 0. This makes these generators
faster but reduces the period (as ¢ = 0 is not relatively prime to m it cannot have maximal
period according to Theorem 1). However with a proper choice of a one can still obtain
sufficiently long periods. In the interesting case m = 2%, w > 3, if amod8 = 3,5 and X,
is odd, the period is 272 which is sufficiently large for many applications. An example of
this class of generators is RANF, the standard generator on CRAY computers, which has
m = 2% o =2875A2E7B175,¢ and period 2.

Exercise 6: Consider the random number generator RANDU supplied by IBM on its
first-generation computers; it is defined by

Xpt1 = mod(65539X,,2%) (1.16)
Compute the period when X, is odd and prove the relation
9X, — 6Xn1 + Xnyo = 0 mod2¥ (1.17)

Show that triples (X,, Xpn11, Xny2) lie on at most 16 planes. Can this generator be a good
source of random numbers?

Introduction to the Monte Carlo method 117

Exercise 7: Prove the formula

k
-1
a4 ! ¢ modm (1.18)

Xop = a*X, +

a —

Use this result to invent a parallel random number generator.

A second important family of random number generators is based on the so-called
primitive polynomials. We do not want to enter in the discussion of this subject which
involves the theory of finite fields. What interests us is that it is possible to find integers
k and [with k£ < [such that the generator

Xn = Xn—k + Xn—l mod 2% (119)

where n > [and and Xg,...,X;_; not all even, has period at least 2 — 1. In general
it is possible to prove that the period of the sequence X, mod 2 is exactly 2/ — 1 while
the full sequence has period 2f(2! — 1) where 0 < f < w. Because of the first property
these generators are very eflicient in generating random bits. However at present is not
completely clear if , beside the long period, these sequences have also the other desirable
properties of random numbers. A particular bad example is the Fibonacci sequence, with
k =1 and [= 2 with period 3 x 2*~! (see exercise 8). However generators with higher
values of k and [({ 2 100) do not show these problems and they have proved very good
under the spectral test.

Exercise 8: Consider the random number generator
X,=X,1+ X,,_o modm (1.20)

Xo and X; not both even. Prove that the relation X,, ; < X, 1 < X,, never holds.

Strictly related to this class of generators are the so-called lagged Fibonacci generators
which have the form

X, = X,_; .BIN.X,,_, (1.21)

where .BIN. stands for every binary operation. An example of these generators is the
KirkPatrick-Stoll generator

Xn - Xn—103 .XOR.XH_250 (122)

with period 2%%° — 1 which, however, has been recently shown to perform badly in Monte
Carlo simulations of the Ising model. Empirical tests show that these generators perform
poorly if [£ 100 especially if the binary operation is the . XOR..

To conclude this discussion on random numbers we want to discuss the important
concept of accuracy of a random number generator. The accuracy is connected with what
we have already said, the fact that successive couples, triples ... lie in planes and do not
fill the square [0, m[?, the cube [0, m[3... uniformly.

Let us firstly define the accuracy: given an integer ¢, consider the points P, = (X,, ...
Xnyt) for n > 0 and consider an arbitrary family of parallel planes passing for all P, and

118 A. Pelissetto

call d the distance between any two successive planes (this makes sense as the planes are
equidistant). Then compute the maximum d,,,, of d taken over all families of such planes.
The ¢-dimensional accuracy v; is then defined by vy = m/d ... For truly random numbers

vy = m for all ¢t while for a generic generator v, < m'/t. A good generator has v, ~ m!/*
for all ¢.
Let us now discuss the meaning of v;. Let us consider N t-tuples P, = (Ugni1, ... Uinat) =

(Xint1, - - - Xinye)/m belonging to the hypercube [0, 1] and a small cube C of side L belong-
ing to [0,1]*. Let us compute the number of points P, which fall in C'. For truly random
numbers we expect this number to be L!/N, but this will be true only if Lm >> 1, that
is if L >> 1/v; no matter how large N is. Indeed if L < 1/m, since the points have the
form n/m, the cube can only be either empty or with one point inside. Thus the accuracy
defines the “spatial” resolution of the random sequence. Analogously, if the sequence is
produced by a random number generator we must keep L >> 1/y; otherwise we see the
“granularity” of the generator. Low accuracy means deviations from random behaviour on
quite large scales and thus these generators must be avoided.

Exercise 9: Suppose you want to get with uniform probability couples of integer
numbers (z,,y,) with 0 < z < k and 0 < y < k and suppose you use a random number
generator with modulus m and two-dimensional accuracy v, in the following way: z, =
trunc(kXs,/m) and y, = trunc(kXani1/m). What are the values of k& for which deviations
from equidistribution will certainly appear? And in the case of triples ? The Digital 32-
bit standard random number generator (see Exercise 5) has v2 = 4243209856 and vZ =
2072544. Show that it can be safely used to generate couples only for £ < 10% and triples
for & < 100.

Exercise 10: Prove that for a random number generator of potency 2 we have v3 < 6
while RANDU satisfies v2 < 118. (Hint: use the relations proved in the text and in Exercise
6).

Exercise 11: A method to improve the accuracy of a generator is the shuffling method
of Bays and Durham. Consider a random number generator which produces a sequence
Xo, X1, Fix then a number k£ and initialize an auxiliary vector V[0],..., V[k — 1] with
Vij] < X,. Set y «— k, 7 < 0. The algorithm is the following:

1. Compute r = trunc(kX,/m) and set Y; «— V]r|.

2. SetV[’f‘]<— y—|—17y<_y—|—27.7(_-7—|_1

The sequence Yy, Y7, . .. is the output of the routine.

Consider as an explicit example X, 11 = mod(69X,+1, 128), Xq = 0, kK = 3. Determine
p and A (see Exercise 3 for the definition) for the output sequence and the number of
distinct couples (z,y) such that z = Y}, y = Y;,;. Repeat the same exercise for the original
sequence X,.

Introduction to the Monte Carlo method 119

2 Numerical Distributions.

We have seen in the previous Section how to generate uniform random numbers. However in
many applications one needs random numbers with other types of distribution. In general
we want to produce numbers z € [a, b] with probability density f(z), i.e. such that

T2

Probz; < X < zy] = / f(z)dz (2.23)
There are various methods to obtain the correct distribution. The simplest one works as
follows: define the distribution function F(z) which is the probability that the random
variable X does not exceed z:

F(z) = Prob[X <] = / " f(2)de (2.24)

F(z) is an increasing function with F(a) =0, F(b) = 1. If F(z) is continuous and strictly
increasing there exists an inverse function F~'(z). Then to generate a random number X
with distribution F(z) one simply generates a uniform random number U between 0 and
1 and computes X = F~!(U). To prove that this is correct notice that

Prob [X < z] = Prob[F'(U) < z] = Prob[U < F(z)] = F(z) (2.25)

Exercise 1: Use this method to generate random numbers with density function:
1. f(z) = pzP~! in the interval [0, 1];

2. f(z) = pe #* for z > 0;

3. f(z) = 2ze™ for z > 0.

Exercise 2: Develop an algorithm which computes two independent normally dis-
tributed variables X; and X,.

Hint: notice that the couple (X1, X») have density f(z1,z2) = e~(@2+23)/2 /97 which is easy
to generate in polar coordinates.

This method can be applied in a limited number of cases since it requires the explicit
computation of F~'(z). A more general technique is Von Neumann’s rejection method.
Suppose you want to generate a random variable with probability density f(z) such that
F~'(z) does not have a simple closed form. Choose then a second probability density g(z)
simple enough to allow a quick generation of random numbers distributed according to
it and such that f(z) < cg(z) for all z. Here ¢ is a constant which in principle can be
arbitrarily chosen as long as the bound is satisfied (thus in all cases ¢ > 1). However, in
order to obtain an efficient algorithm ¢ must be as small as possible. Then the algorithm
works as follows:

1. Generate X according to the density g(z) and a uniform random number U between 0
and 1;

120 A. Pelissetto

2. U > f(X)/cg(X) go back to step 1 and repeat with a new X and U; otherwise output
X.

The probability of rejection is clearly

/(1 - f($)> g(z)dz = 1— * (2.26)

cg(z) c

This means that step 1 will be executed ¢ times on average (with standard deviation

c(c — 1), prove it!) and thus a good generator requires ¢ not to be very far from 1.

The idea of the method is very simple. If X is a random variable with distribution
g(z) and U is uniform between 0 and 1, then the couple (z,y) with z = X, y = cUg(X)
is uniformly distributed in the plane region R = {(z,y) : a < z < 5,0 < y < ¢g(z)}.
Then, in order to obtain X distributed with density f(z) we accept the points such that
y < f(z) and reject the others. The accepted points are uniformly distributed in the region
R ={(z,y): a <z <b,0<y< f(z)} and thus X is distributed with probability density
(2.

Exercise 3: Use the rejection method to generate :

L. f(z) =4/2/7 e~ for > 0;
2. f(z) =z*'e */T(a), a > 1 for z > 0;

In the first case use a function g(z) of the form g(z) = A for 0 < z < p, g(z) =
(A/p)z exp(p? — z?) for z > p. In the second case choose g(z) = Az* ' for 0 < z < a—1,
g(z) =Bz Pforz>a—1.

Compute the acceptance in both cases and determine the optimal value of p.

Exercise 4: A simple method to generate random unit vectors in d-dimensional space
is the following:

1. Generate Uy,...,U; uniform random numbers between —1 and 1 and compute r? =
U2+U; +...+U}

2. If r > 1 go back to step 1; otherwise the required vector is (U /r,...,Uq/7).

Explain why this method is correct and compute the acceptance.

Exercise 5: Suppose you want to produce random numbers z in (—1,1) with distri-
bution

1
—(1 —2?) Y dg (2.27)

T
Show that both these methods are correct:

Method A: generate a uniform random number U € [0, 1], then compute z = sin7(2U —1).

Introduction to the Monte Carlo method 121

Method B: generate two uniform random numbers U and V in [0,1]. Reject them if
U? +V?> 1. Otherwise compute

U2 - v?

Method B has the advantage of requiring only elementary operations.

Exercise 6: Consider the following algorithm. Pick U; and U, uniformly in [0, 1]. If
U; < U, stop. Otherwise select Uz and stop if Uz > U,. Otherwise continue this process
until you have Uy > Uy > ...U, and U,, < U,y1. If n is odd define X = Uy, while if n
is even reject all U; and start again. Show that X € [0, 1] is distributed with probability

density proportional to e™¥.
Hint: prove firstly that
Prob(Uy > U,...>U,) = % (2.29)
and
Prob(z < Uy < z+dz|Uy > ...>U,) =nz" 'dz (2.30)

Let us finally discuss the so called binning (or stratified generation) method. This
technique is a simple extension of the rejection method. The idea is very simple: suppose
you want to generate random numbers X with probability density f(z), ¢ < z < b. Then
rewrite

f(e) = kipkfk(m) (2.31)

where

o= [f@)de (2.32)
and

fule) = - F) o1 (2.33)

Here x([e, B]) is the characteristic function of the interval [o, Bl and a = a1 < az... < a, <
Apt1 = b.

Thus the generation of X can be obtained by firstly choosing k& with probability pg
and then computing X € [ag, ag, 1] with probability density fi(z). If the constants a; are
properly chosen the generation of X € [ay, agy1] can be done using the rejection method
with simple trial functions, in most cases a constant g(z) will be efficient enough.

In order to apply this technique a fast way of choosing £ with probability pi is needed.
An ingenious trick is the so-called method of aliases. Suppose you want to generate a
random number X such that X = zy with probability pg, X = z; with probability py, ...,
X = z,_; with probability p,_;. Let us introduce three auxiliary arrays P[k], Q[k] and
Y[k], k=0,...,n—1. Initialize Q[k] < npg. Then define P[k] and Y[k] using the following
algorithm:

1. Find k; such that 0 < Q[k;] < 1. Set Plk;] — Q[k4];

122 A. Pelissetto

2. If Q[k1] =1 go to step 4;
3. Find m; such that Q[my] > 1. Set Y[k| «— z,,, and Q[m1] «— Q[m,] + P[ki] — 1;
4. Set Q[k1] < 0. If Q[k] = 0 for all k exit.

Then the generation algorithm works as follows: choose two random numbers U and V
uniformly distributed between 0 and 1. Let ¢ be the integer part of nU. Then, if V < P[¢]
set X « z; otherwise X « Y;. It is easy to check that each z; is generated with the correct
probability.

3 Monte Carlo Integration.

The Monte Carlo method is a very powerful technique for performing very complicated
calculations. In general a Monte Carlo method is any technique that makes use of random
numbers to solve the problem. The most part of Monte Carlo calculations are to all effect
equivalent to an integration problem. In this Section we will discuss the use of Monte
Carlo in low-dimensional integration problems. It must be clear from the beginning that
Monte Carlo is generically a very bad integration method. As we shall see the error on the
estimate decreases as 1/4/n where n is the number of points where the function is evaluated
independently on the dimensionality d of the integral (this is essentially the central limit
theorem). This should be contrasted with traditional deterministic numerical methods:
for instance the trapezoidal rule converges as n~%/¢, the Simpson’s rule as n~%? and the
m-point Gauss rule as n~(*™~1/4 Thus it is clear that for d = 1 any of these algorithms
will be better than Monte Carlo , while for large d Monte Carlo beats any of them. Thus
Monte Carlo is the best available method when d is large enough. But there are other
disadvantages in using a deterministic method. Suppose for instance you want to apply
the Simpson rule in 6 dimensions. It converges as n~3/%, faster than Monte Carlo. Let us
use 50 nodes per axis (which is a very coarse mesh); then we need at least 50° function
evaluations which is extremely time-consuming especially if the function is complicated.
This brings up two new points:

(1) the feasibility limit, which is the largest number of function evaluations we can efford
to make. Typically this limits the number of points to 10*® — 10'5. This fact limits the use
of higher-order rules to low dimensions and imply that the feasibility limit is reached long
before the crossover point where Monte Carlo converges faster than quadrature, so that
the theoretical convergence rates of higher-order rules in high dimensionalities is of pure
theoretical interest.

(ii) the growth rate is the smallest number of additional function evaluations needed to
improve the current estimate. A Monte Carlo result can be improved by adding a single
point, while any other deterministic rule can only be improved by going to a higher-order
rule or by subdividing the space.

There is one final advantage of Monte Carlo integration. Deterministic rules usually
work reasonably well for multidimensional regions of simple shape while they are of difficult
application when the region of integration is irregular. Monte Carlo on the contrary can
be applied to any situation independently from the shape of the boundary.

Introduction to the Monte Carlo method 123

Let us now discuss how to perform integration with Monte Carlo. The least eflicient
method is the so-called hit-or-miss method. Suppose you want to integrate

b
1= / f(z)de (3.34)
Let m < mingepap) f(z) and M > maxgefop) f(2). Then use the following algorithm:

1. Set n « 1;

2. Choose two uniform deviates U,, and Us,, 1 between 0 and 1;
3. Set z — (a+(b—a)ls,) and y — (M — m)Uspy1;

4. If f(z) >y + m set p, « 1; otherwise p, « O0;

5.1f n > N, where N is the required number of iterations, stop; otherwise set n « (n 4 1)
and go to 2.

Then
I= (% Z;pn) (b= a)(M —m) +m(b—a) (3.35)

(with a slight abuse of notation we have used I both for the exact integral and its estimate,
since no confusion can arise). The idea behind this algorithm is very simple. Suppose for
a moment f(z) > 0 for a < z < b and consider the smallest rectangle R which contains
the region G = {(z,y): e <z <b,0<y < f(2)}. Then pick up points in R with uniform
probability. The percentage of points which belong also to G is equal to the ratio between
the area of G and the area of R. Thus the required integral is equal to the percentage of
hits times the area of R. If the function can be negative some care must be exercised and

A

in this case the same method can be applied to f(z) = f(z) — min f(z).

Exercise 1: Compute the variance of I. For the explicit case f(z) = cosz, a = 0,
b= 7/2 compute N in order to get 1% accuracy.

Hint: the number of hits follows a binomial distribution.

Exercise 2: Consider the following method to compute 7 (this method is due to Buffon,
1777). Lay out on the floor a pattern of parallel lines separated by a distance d. Repeatedly
throw randomly a needle of length d onto this striped pattern. Each time the needle lands
in such a way as to cross the boundary between two stripes, count a hit, otherwise count a
miss. Prove that 7 can be estimated as twice the number of trials divided by the number
of hits.

A second method which is slightly better than the previous one is the so-called crude
Monte Carlo. To compute I we use the following algorithm:

1. Initialize n «— 1.

2. Choose a uniform random number U,, between 0 and 1.

3. Set z —a+ (b—a)U, and f, — f(z).

124 A. Pelissetto

4. If n > N where N is the required number of iterations, stop; otherwise set n « (n + 1)
and go to 2.

Then

b—a Y
I = 5 nz::lfn (3.36)

The idea is even simpler: the numbers z are uniformly distributed between a and b, i.e.
have probability measure dp = dz/(b — a). Thus

I=(b-a) [dnf(z) = (b-a)(f) (3.37)

Exercise 3: Compute the variance of the previous formula. For the explicit case
f(z) = cosz, a = 0, b = 7/2 compute N in order to get 1% accuracy. Compare with
Exercise 1.

The crude Monte Carlo method can easily be extended to multidimensional integrals
and can deal in a straightforward way with essentially any finite region. The standard
technique for dealing with odd-shaped regions is to embed the domain in the smallest
hyperrectangle that surrounds it. The algorithm works as follows:

1. Initialize n « 1, p < 0.
2. Choose a uniform random point z in the hyperrectangle.
3. If z belongs to the integration domain set p «— (p + 1), f, — f(=).

4. If n > N where N is the required number of iterations, stop; otherwise set n « (n + 1)
and go to 2.

Then v
r=Yys (3.38)

where V' is the volume of the hyperrectangle.

Exercise 4: Prove the previous formula and compute its variance. Note that both f;
and p are random variables.

This method of integration introduces some inefficiency due to the rejected points, but
its main property is its full generality. It can also be easily improved by using the stratified
sampling technique. The idea here is to write the integral

I = / flz) d (3.39)
R
as a sum of integrals over smaller subdomains R; which have the following two properties:
1. f(z) is slowly varying in each R;;

2. R; has a somewhat regular shape.

Introduction to the Monte Carlo method 125

Then the Monte Carlo method is applied to each R; separately, carefully choosing the
number of iterations performed in each R;. In such a way one usually obtains a sensible
improvement in the variance.

Exercise 5: In order to compute the integral f(;r/z cosz dz use the stratified sampling
technique with R; = [0,7/4] and Ry = [n/4,7/2]. If the total number of iterations is
fixed equal to N, determine the optimal number of iterations n; and n, which give the
best possible variance with this choice of R;. Compute N in order to have a 1% accuracy.
Compare with the results of the exercises 1 and 3.

A second method which is used to reduce the error in a Monte Carlo is the so-called
importance sampling technique. The idea is very simple. Since large variations in the value
of the function f lead to a large uncertainty in the final estimate, the idea is to perform a
change of integration variables in such a way that in the new variables the function to be
integrated is more constant. In practice this means rewriting

I= / Hz)dz = / b fg[((3 g(z)dw (3.40)

with g(z) > 0, [P g(z)dz = 1. The algorithm works as follows:

1. Initialize n « 1;
2. Choose a random deviate X with probability density g(z);
3. Set A, — f(X)/g(X);

4. If n > N where N is the required number of iterations, stop; otherwise set n «— (n + 1)
and go to 2.

Then
1 N
I = — h. A1
N(z) (3.41)

The function g(z) must be chosen such that the ratio f(z)/g(z) be as nearly constant as
possible in order to obtain a small variance. The importance sampling technique is a very
useful one, especially when f(z) has singular points. However it a has a serious drawback:
it requires the generation of random numbers with probability density g(z) and the class
of functions for which this can be done easily is really small as we have seen in the previous
Section. To overcome this difficulty a new Monte Carlo method is needed and this will be
the subject of the next Section.

Exercise 6: In order to compute fg/z cosz dz use the important sampling technique
with g(z) proportional to a + bz?. Determine the optimal a and b, an algorithm to generate
g(z) and the number of iterations needed to get a 1% accuracy.

Exercise 7: Suppose you want to perform the following integral:

I= /01 dz /Ozdyg(m,y) (3.42)

126 A. Pelissetto

Consider the following methods:

Method A: set g; < g(U,UV) where U and V are uniform random numbers belonging to
[0,1] and I = (1/N)ZN, g,

Method B: choose U and V uniformly in [0,1]; if U < V reject them and try again; stop
when U > V. Then set g; < g(U,V)and I = (1/N)T¥, g;.

Method C: choose U and V uniformly in [0,1]; if U < V interchange them. Then set
9= g(U,V)and I = (1/N) XY, g:.

Method D: choose U and V wuniformly in [0,1]; then set ¢, «— Ug(U,UV) and I =
(1/N) Ef\; gi-

Which of these methods is correct? Which is the most efficient one when g(z,y) = z? + 32
and when g(z,y) = (1 —z)(1 —y)?

To conclude this Section we want to stress that all the previous results can also be
applied to multidimensional sums, i.e. to

I= Y f() (3.43)

T 5-uny T4
The hit-or-miss method can be applied using a function f(ml,...,a:d) = f(trunc(z,),
...,trunc(zy4)) where trunc(z) is the largest integer such that z > trunc(z). The crude
Monte Carlo method corresponds instead in choosing successive d-tuples (nq,...,nq) uni-

formly, computing f;i = f(n,...,nq4) and then estimating I by ¥, f;. The stratified
sampling and the importance sampling technique can also be extended to this case.

4 Dynamic Monte Carlo.

In the previous Section we have discussed the so-called static Monte Carlo that generates
a sequence of statistically independent samples from the desired probability distribution.
These techniques become rapidly inefficient as the dimension of the space increases and
thus they are unfeasible for most applications in statistical mechanics and quantum field
theory. In these cases one uses the so-called dynamic Monte Carlo.

In lattice quantum field theories and statistical mechanics one wants to compute quan-
tities of the form

() = % / Mdg; O e PE®) (4.44)

where ¢; are the basic fields of the theory, : running over the lattice sites, O is a generic
observable and Z the partition function

7 = / ,d¢; e PH® (4.45)

Introduction to the Monte Carlo method 127

The fields ¢; can be either continuous or discrete. In the latter case the integrals are
replaced by sums. For instance for the Ising model

(0) = % > O(o)exp (ﬁ (z:) O'Z'O'j) (4.46)

{o}
where 3 /,1 indicates the sum over all possible configurations of spins, each spin o; assuming

the values +1.

To compute (O) one could try to use the methods presented in the previous Section. For
instance, in the Ising case, we could generate successively random configurations {c};—1
where each o; is obtained by choosing randomly the spin at each site. Then

— Ef\i1 O({U}i)e_ﬂH({”}i)
Ef\il e_ﬂH({‘T}i)

(O) (4.47)
This method is certainly correct, but is totally inefficient. Indeed from statistical mechanics
we know that the configurations which give the relevant contribution to (4.46) have energy
E such that E,, — AE < E < E,, + AE where E,, is the average value of the energy at
the given B; AE can be taken as some multiple of the standard deviation of E,, and has
the property of going to zero as the volume of the system goes to infinity (self-averaging
property of the energy). Now in the sum (4.47) we are trying to estimate (O) at inverse
temperature 8 using configurations distributed according to the Gibbs measure at 8 = 0.
Thus if 8 is not very small the configurations we are using are not the configurations which
dominate the sum and thus the estimate is completely unreliable .

The way out is the importance sampling technique. We produce configurations dis-
tributed with probability 7({¢}) = exp(—BH)/Z and then we use 3%, O({c};)/N to
estimate (O). The problem here is that we do not know how to generate independent
configurations from the given probability m. However as we shall see there are fairly sim-
ple methods which generate correlated configurations from the given probability. These
methods are called dynamic Monte Carlo.

Let us introduce some notation: we will call the state space where the fields live S and
the probability measure 7. S can be either continuous or discrete: in the following we
will suppose S to be discrete (as in the Ising model) but all formulas extend easily to the
continuous case substituting sums with integrals, matrices with kernels T 1S a generic
probability measure: in statistical mechanics and lattice quantum field theory applications

7 will be the Gibbs measure exp(—SH)/Z.

Let us now discuss the dynamic Monte Carlo methods. In this case we give up the idea
of producing statistically independent points in S. Instead the choice of the new point
depends on the previous one. Of course this has to be done in such a way that the final
points are distributed with probability measure w. To accomplish this task the idea is to
invent a stochastic process (a Markov chain usually) having 7 as equilibrium distribution.
Let us firstly define a Markov chain:

Definition: A Markov chain with state space S 1s a sequence of S-valued random
variables Xo, X1, Xa, ... such that the successive transitions X; — X1 are statistically
independent.

128 A. Pelissetto

This means that in a Markov chain the probability that X; — X;,; depends explicitly
only on X; and not on X, with 7 < ¢. Thus the whole process is completely defined by
the one-step transition probability matrix P = {p;;}ijcs. As p;; is the probability of the
transition ¢+ — j we must have p;; > 0 for all 1,7 and }°,.gp;; = 1. Matrices satisfying
these two conditions are called stochastic matrices.

A Markov chain is said to be irreducible if from each state it is possible to get to each
other state: that is, if, for each pair 2,7 € S, there exists an n > 0 such that the probability
Prob(X;in = j|X: = 1) = (P"),; is strictly positive. An irreducible chain is said to have
period T if T is the g.c.d. of {n : P™(3,7) > 0} for every state z. A chain with period 1 is
said to be aperiodic.

Exercise 1: Consider Markov chains with transition probability matrices:

0 1
P = (1 0). (4.48)

P, = (1{2 1(/)2) . (4.49)

0 0 1
=] 0 1 0 |, (4.50)
1/4 0 3/4

Are they irreducible? If they are, compute the period.

To completely define a Markov chain we must also define the probability distribution
of Xo. Usually we consider two cases:

1. the Markov chain starts from a state ¢, i.e. Prob(Xo =7) = &;;

2. the Markov chain is in “equilibrium”. In this case Prob(X, = 7) = 7(j) where 7(7)
is the equilibrium distribution we will discuss later in this Section.

The transition probability matrix P and the probability distribution of X, (let us call it
a(7)) completely define the probability distribution of the random variables X; and of the
functions thereof. Moreover they induce a probability measure on the set of n-step chains
through

PI‘Ob(XO = ’1:07 X1 == ’1:17 ceey Xn == ’Ln) == Oé(’I:O) Pigi1Pirig -+ - Pip_1in (451)

Using this probability measure one can compute mean values of functions of the {X,}.
We will indicate with (...), the mean value when the Markov chain is started with initial
distribution @, omitting the subscript when the chain is in equilibrium (a = 7).

Let us now study the asymptotic properties of Markov chains. The standard theory tells
us the following about the long-term behaviour of an aperiodic irreducible chain. Firstly
the limit

n— 00

Introduction to the Monte Carlo method 129

exists for every ¢ and j in S and is independent of ¢; call it 7(7). Next, if S is finite, then

S =1 (4.53)

JjES

and
> 7 = 7(5) (4.54)
1€S
for all 7 € S. Moreover 7 is the only non-negative solution to (4.53) and (4.54). In the
general case there are two possibilities: 7(j) = 0 for all 7 and in this case no solution
to (4.53) and to (4.54) exists, or 7(7) is the unique nonnegative solution to the previous
equations. If 7 exists the chain is called positive recurrent or ergodic and 7 is called the
equilibrium or stationary distribution.

All these results extend to periodic irreducible chains. In this case the limit (4.52) does
not exist, however one can prove that the same results hold true taking the mean limit of

pr.

Exercise 2: For each of the matrices defined in Exercise 1, compute P™, its limit (or
mean-limit) for n — oo and all the nonnegative solutions to the equations (4.53) and (4.54).

The probability 7 represents the fraction of time that the chain spends in each state in
the long run irrespective of the initial state (law of large numbers). To state it precisely,

let ug-k) be a function with value 1 if the k-th step of the chain is 7 and zero otherwise. If

n 1 &
£ = =5 (4.55)
k=1

3

we have

Theorem 1: (Law of Large Numbers) If P is ergodic

Jim (fi)e = 7(5) (4.56)
and
lim Probg[|f™ — n(j)| > ¢ = 0 (4.57)

n— 00

for every € > 0, independently of the starting distribution o.

Exercise 3: For an aperiodic positive recurrent chain define II,;; = 7(j) and assume
that the matrix Z = (I — P + II)™! exists. Prove

lim (n (£ = 7(j)))a = > a(i)(Z — 1), (4.58)

n—oo .
€S

If « = 7 show that the limit is zero. This result shows that if a # =, fJ(-") is a biased
estimate of 7(7), the bias being of order 1/n.

Hint: Notice that Z = I + Y82, (P* — I1) and (ul™), = =, a(3)(P*)y;.

130 A. Pelissetto

Thus, if the chain is positive recurrent and we observe it for a sufficiently long time
then the data will be well distributed according to m and thus to estimate m-averages of an
observable f we can consider Markov time averages. The rigorous result (ergodic theorem)
tells us that for a real-valued function f defined on the state space S and a positive recurrent
chain with stationary probability © we have

1
lim —
n—oo n

> f(X) = X £t (4.59)

€S

with probability one if the r.h.s converges absolutely. Moreover, because of the central limit
theorem, the fluctuations are of order 1/4/n.

Exercise 4: Consider a maximal period random number generator with recursion
Xni1 = f(X,). Show that it defines a Markov chain. Is it irreducible? And what is the
period? Prove that n(n) = 1/m satisfies (4.53) and (4.54). This implies that for every
function g we have

Jary

m—

9(2) (4.60)

=0

| 1
lim — —

z":g(Xt) =

=

Is this property of interest for the random number generation problem? (Answer: No)

As a final comment let us notice that static Monte Carlo can also be thought as a
Markov chain. Consider indeed the transition matrix p;; = (7). It is obvious from this
definition that X;,; does not depend on X; and that it has the correct distribution.

After this introduction to the theory of Markov chains it is clear how to generate samples
from the desired probability distribution «. It is enough to invent a transition probability
matrix P = {p;;} which satisfies the following two conditions:

(A) Irreducibility: For each pair 2,7 € S there exists n > 0 such that (P"),; > 0.

(B) Stationarity of 7. For each 7 € S

Y m(G)ps = 7(i) (4.61)

JjES

In many cases, instead of (B) one requires a stronger condition:

(C) Detailed balance: For every pair ¢,7 € S

(7)pii = T(2)pij (4.62)

It is easy to check that (C) implies (B). A Markov chain that satisfies (C) is called
reversible as the probabilities Prob(X; = ¢, X;,; = 7) and the reversed one Prob(X; =
7, Xip1 = 1) are equal in equilibrium.

Introduction to the Monte Carlo method 131

Conditions (A) and (B) are necessary for a correct Monte Carlo. However there are
many choices of P which satisfy both (A) and (B) and their efficiency will be in general very
different. The key difficulty in dynamic Monte Carlo is that successive states Xy, X3, ... of
the Markov chain are correlated so that the variance of the estimates produced from the
simulation may be much higher than in static Monte Carlo. To make this precise, let f(z)
be a real valued function defined on the state space S. We have already seen that time
averages of f(X;) converge to (f). We want now to study the variance of this estimate ,
ie.

Ji)rglon Var, (l z”: f(Xt)> (4.63)
Ly

where « is the starting distribution of the Markov chain. It can be shown that such a limit
does not depend on the initial distribution and thus one can compute it in equilibrium. Let
us notice that when a(j) = 7(j) all the random variables {X;} have distribution m because
of property (B). This implies that all mean values are time translation invariant, i.e.

(LX) fa(Xe)) = (A(Xets) - fa(Xinre)) (4.64)
for all ¢. Then

Var, (% kifom) - LS uenase - o (4.65)
= = i Cys(t —s) (4.66)

o) (1- 1) (L67)

Here Cy(t) is the autocorrelation function defined by

Cislt) = (FX)F(Xers)) — (F)? (4.68)
= G PY - 7)) £() (4.69)

Cy4(t) is a (usually exponentially) decreasing function and thus for large n we can approx-
imate the variance by

LY oy (4.70)

™ =" (n-1)

Let us then define the integrated autocorrelation time

1 & Cp(t) 1 = Cs(t)
Tintf = = = = 4+ (4.71)
Mo = Cy(0) T 2 tz:; Cy4(0)
Then we obtain for the variance
1
— (27int,1)C4(0) (4.72)

Thus the variance is a factor 27,5, larger than it would be if the {f(X;)} were statistically
independent. Stated differently, the number of effectively independent samples in a run of
length n is roughly n /27, ¢

132 A. Pelissetto

Exercise 5: Let S be finite, P an aperiodic chain and f, g functions defined on S.
Consider

Cov™(f;9) = Cov, (% g: f(Xk) ;5 %g: 9(Xx)) (4.73)

Prove that
lim n Cov(") (f;9) Zf Ci;9(J (4.74)

where the limiting covariance operator C is given by
Cij = Zyn(i)+ Zym(3) —n(2)bi; — n(3)n() (4.75)

and Z is defined in Exercise 3 (assume that Z exists; this is always true if S is finite). Hint:
prove firstly that

Cy = Jim [Z 7)) (1 - S) + o)+ 1) — ma(i)n() (4.76)

k=1

and then use the Cesaro theorem to prove

S (1-2) = 26+ 50— Un) + 0(1/m) (.77

k=1 n

A second important autocorrelation time is the exponential autocorrelation time. It is
defined by the decay for large times of Cf¢(t). The proper definition is

t
Texp,f — tliglo sup m (478)
where pss(t) = Cy4(t)/Cs4(0) and
Tezp = SUDP Texp,f (4.79)

fel2(x)
Thus 7.4, 1s the relaxation time of the slowest mode in the system.

An equivalent definition involves the spectrum of the transition probability matrix P
considered as an operator in /(7). One can prove the following facts:

(a) the spectrum of P lies in the closed unit disk (this follows immediately from the fact
that > pi; = 1);

(b) 1 is a simple eigenvalue of P and (1,...,1) is the corresponding eigenvalue;

(c) if the chain is aperiodic, then 1 is the only eigenvalue of P on the unit disk.

Within this formalism 7., is defined through the spectral radius R of P acting on the
orthogonal complement of the constant functions in [*(7). Then

R = exp(—1/Texp) (4.80)

If S is finite, R is simply the second largest (in absolute value) eigenvalue of P.

Introduction to the Monte Carlo method 133

The interest in 7.,y lies in the fact that it governs the convergence to equilibrium of
the Markov chain. Let a be an arbitrary probability distribution defined on S and let
us consider the Markov chain with initial probability «. Then at time ¢ the probability

distribution of {X;} is
(aP")(5) = Y eli)(P); (4.81)
1€S
Now, if f € I?(7), let us consider

FEDa— (D] = [Sa@PLSG) - L)) (4.8
= 2_(a(i) — m(i))(P; — (7)) f(5) (4.83)
= 2_(ald) = w(@)(P -)£ (4) (4.84)

where II;; = 7(j) and we have repeatedly used the stationarity property of P. Now the
spectral radius of P —1II is R by definition as II is the projector over the constant functions
and thus the spectral radius of (P — II)* is of the order of R* with exact equality if P is
self-adjoint. Then

[{(F(Xe))a = ()] < exp(=t/Teap) [(f(Xo))a = (f)] (4.85)

To conclude this Section we want to prove an important relation satisfied by the integrated
autocorrelation time when the chain is reversible. In this case, using (C), we immediately
see that P is self-adjoint in [?(7) and thus its spectrum is real. Then, by the spectral
theorem, we can write

Cistt) = [N dpgs() (4.86)

where dps()) is a nonnegative measure with support in [— exp(—1/7exp f), €xXP(—1/Texp £)]-
Then N

Lo 55dnss () | 11+ pps(1)
2 [Lidpgs(X) T 21— pps(1)

by Jensen’s inequality. This is a very useful relation in proving lower bounds on the

Tint,f =

(4.87)

autocorrelation times.

In summary, the autocorrelation times 7.y, and 7, ¢ play different roles in Monte Carlo
simulations. The first one places an upper bound on the number of iterations ng;,. which
should be discarded at the beginning of the run, before the system has attained equilib-
rium; for example, ngsc & 207es, 1s usually more than adequate. On the other hand 7, ¢
determines the statistical errors in the Monte Carlo measurement of (f) once equilibrium
has been attained.

Most commonly it is assumed that 7.;, and 7, s are of the same order of magnitude,
at least for reasonable observables f. But this is not true in general. In fact, in statistical
mechanical problems near a critical point, one usually expects the autocorrelation function
ps#(t) to obey a dynamic scaling law of the form

prs(t:8) ~ [E7 F ((8 - BIt") (4.88)

134 A. Pelissetto

valid in the region
it| >> 1, |8 — B << 1, |8 — B||t|® bounded (4.89)

Here a,b are dynamic critical exponents and F' is suitable scaling function; § is some
“temperature-like” parameter and (3, is the critical point. Now suppose that F' is continuous
and strictly positive, with F(z) decaying exponentially for large . Then it is not hard to
see that

Teapt ~ |B— B/ (4.90)
Timtf ~ |B—Be| 7 (4.91)
prs(t; 8=0) ~ [t (4.92)

so that Tegp 5 and 7, 5 have different critical exponents unless a = 0. Actually this should
not be surprising: replacing “time” by “space” we see that 7., s i1s the analogue of a
correlation length while 7;,; s is the analogue of a susceptibility; and in general this two
quantities have different critical exponents. Thus it is crucial to distinguish between these
two types of autocorrelation time.

5 Statistical Analysis of Dynamic Monte Carlo Data.

In the previous Section we have discussed the theory behind Monte Carlo simulations and
in particular we have defined the autocorrelation times associated with a Markov chain. In
this Section we want to discuss how to use them in the analysis of the data coming from a
simulation.

There are two fundamental and quite distinct issues in dynamic Monte Carlo simula-
tions:

e Initialization bias. If the Markov chain is started with distribution @ # 7 then
there is an “initial transient” in which the data do not reflect the desired equilibrium
distribution w. This results in a systematic error which however goes to zero as the
sample size goes to infinity.

e Autocorrelation in equilibrium. The Markov chain, once it reaches equilibrium, pro-
vides correlated samples from 7. This correlation causes the statistical error (vari-
ance) to be a factor 27, ; larger than in independent sampling.

Let us firstly discuss the problem of initialization. At the beginning of the run we usually
choose an easy-to-prepare configuration. There are various possibilities. For instance in
the Ising model we can either start from a cold (or ordered) configuration or from a hot
(or random) configuration. In the first case all the spins are aligned, while in the second
case the spins are initialized randomly and independently, with equal probability of up
and down. Another possibility, which reduces the thermalization time, consists in using a
configuration thermalized at a nearby value of § (of course if we have it). The main feature
of all these methods is that the initial configuration is out of equilibrium. We know from

Introduction to the Monte Carlo method 135

the results of the previous Section that the system approaches equilibrium as ¢t — oo as
(P)7: — m(j) but what we are really interested in is the rate of convergence, that is the
number of iteration necessary for the system to thermalize.

Using the exponential autocorrelation time 7., we can set an upper bound on this
amount of time. For example 207.,, iterations will be enough for all practical purposes.
There are however two difficulties in applying this method: first of all we do not know how
to evaluate 7., and in very few (non trivial) cases we have a theoretical knowledge of it.
Secondly this method may be overly conservative. For instance there are perfectly good
algorithms for which 7.,, = co (the correlation function decays here as a power law). Does
this mean that equilibrium can never be reached? Of course not: 7., = 0o means that
there many “bad” starting configurations which require an enormous time to equilibrate,
but this does not exclude that we can find “good” configurations which equilibrate quite
fast.

In practice to determine empirically when equilibrium has been achieved one plots
selected observables as a function of time and notes when the initial transient appears to
end. The danger in all these methods is the possibility of metastability. That is, it could
appear that equilibrium has been achieved, when in fact the system has only settled down
to a long-lived metastable region of configuration space that may be far from equilibrium.
A good method to check if metastability is present is to try different initial configurations
and see if the results of the different runs are consistent.

Once equilibrium has been attained one can try to make a rough empirical estimate
of Tezp by measuring the autocorrelation function Cs(t) for a suitably large set of observ-
ables f; but there is always the danger that our chosen set of observables has failed to
include one that has strong enough overlap with the slowest mode, again leading to a gross
underestimate of Tezp.

As a final comment, let us notice that discarding the initial transient is asymptotically
not necessary. As we have seen in the previous Section the sample mean and its variance
converge, when the sample size goes to infinity, to a limit independent from the initial
distribution. Indeed the bias due to the initial transient (see e.g. exercise 3 in the previous
Section) scales as 1/n while the statistical fluctuations are of order 1/4/n. In practice, how-
ever, the coefficient of 1/n may be fairly large if the starting configuration is very far from
equilibrium so that throwing away tha data from the initial transient remains necessary.
Remark that the shorter the run the more careful one has to be about equilibration.

Let us now discuss the second issue. As we have seen in the previous Section the sample
mean of f, i.e.

F=t o (5.93)
=
gives an estimate of (f) which is unbiased if the chain is in equilibrium (that is (f) = (f)).
The next problem is to set an error on this estimate. One of the simplest procedures is the
method of the “batched means”. If the run consists of » measurements, divide it into some
relatively small number T of equal length subsequences, or “batches”. Let b = n/T be the
number of measurements in each batch and let Y; be the average of the z-th batch

1 2b
Y=o > f (5.94)

F=(E-1)b+1

136 A. Pelissetto

If b is much larger than 7.,, then the Y;’s are approximately independent and Gaussian
with mean (f) and variance C§4(0)(27;ns,7)/b. Then, for the overall average is the average
of the Y;’s we can estimate its variance using the sample variance of the ¥;’s. This is a very
quick method. However it has a serious drawback: the assumption b >> 7¢,,. In particular
it cannot be applied to those algorithms where 7.,, = oo or where 7.z, >> Tin: s since in
this case the total number of iterations can be much less than 7.,,. Moreover the results
of the procedure cannot be used as a check on the assumption.

A much better method uses the results of the previous Section. Indeed we know that
the variance of the sample mean f is C;4(0)(27;s,5). Cf(0) is simply the static variance

and is estimated by
1 & 2 2
Cs(0) = ~ 2 (fi - F) (5.95)
=1
Notice that this quantity depends uniquely on the model and not on the algorithm used to
simulate it. What instead depends on the algorithm is 7, 5. To evaluate it we must first

estimate Cf¢(¢). The natural estimator is

. n—[t| ~ _
Cys(t) = - _1 B ; (fi = F)(fixe — f) (5.96)

This is a biased estimator of C(¢) the bias being of order 1/n. The natural estimator of
prs(t) = Cys(t)/Cy4(0) is thus

C(t
past) = L) (5.97)
Cy#(0)
Then the natural estimator of 7;,,; would seem to be
. 1 =
Tt = = > Pss(t) (5.98)
2 t=(1-n)

but this is wrong. Indeed this estimator has a variance that does not go to zero as n — oo.
Roughly speaking this is because the sample autocorrelation ps4(t) for |t| >> 7 ; contains
much noise but little signal (see the following exercise).

Exercise 1: Let f; be independent Gaussian variables of mean p/n and variance o2 /n.
Compute the mean and the variance of >, f;.

The solution is to cut off the sum defining

1 M
fints = 3 > pss(t) (5.99)

Of course this cut off introduces a bias and in general this formula will underestimate the
correct value. However we can choose M in such a way that the bias is small. This can
be achieved using the authomatic windowing procedure by Madras and Sokal: choose M
self-consistently as the smallest integer such that M > cfine s(M). If pss(t) were a pure
exponential one could take for instance ¢ = 4, in this case making an error of the e™* = 2%.
However in many cases p;s(¢) has a slower preasymptotic decay and thus in these cases ¢

Introduction to the Monte Carlo method 137

must be larger, for instance ¢ = 4 — 6 in order to have an error of the same magnitude. In
general the determination of ¢ requires the study of the behaviour of the autocorrelation
function Cys(t). Indeed ¢ must not be too small, otherwise the bias would be too large,
but neither too large otherwise we would include some noise. What small and large mean,
depends on the number of iterations and in general, increasing the number of iterations one
must at the same time increase the value of ¢ in order to keep the systematic error smaller
than the statistical one. Let us finally quote the variance of 7, ¢ :

202M + 1
Var(fine,f) = 22M +1))Titf (5.100)
n b
valid in the regime 7§ << m.

As a final remark, notice that this procedure works well only if n >> 7;,, ;. Empirically
one usually finds that the results are reliable if n 2 10007, ;.

From what we have said it is clear that the performance of the algorithm is completely
characterized by 7;,: f measured in CPU-time units. The higher 7;,; 5 the less efficient is the
algorithm. Now what is the behaviour of 7, s? Generically, away from phase transitions
(i.e. in the regions where the correlation length is small) 7, remains reasonably small.
However near a critical point the autocorrelation time diverges as

T ~ &(B) (5.101)

where £(8) is the correlation length of the infinite volume system at temperature 1/5 and 2
is a dynamical critical exponent. This phenomenon is called dynamic critical slowing down
and 1t is the most severe limitation to Monte Carlo studies. We will see in the next Section
that for local Monte Carlo one usually have z X 2 (overrelaxation is an exception with
z 2 1) while using non-local methods (cluster algorithms, Fourier acceleration, multigrid
...) one can achieve sensible improvements (in many cases z = 0).

Now, how can we determine 27 First of all, as we have already remarked, z depends on
the type of autocorrelation time we are considering and thus we must distinguish between
Zezp and Znt s and in many algorithms different quantities f have different exponents (
for instance in Wolft’s algorithms for RP™ o-models the exponent of the susceptibility is
~ 1 while the exponent of the energy is ~ 0). Secondly, notice that (5.101) is true only
when L — oo. In practice experience with two-dimensional models shows that corrections
to scaling are usually very strong. For instance, using Wolff’s algorithm for the O(4) o-
model one finds for L = 32, 8 = 1.70 £ = 3.54 and Tins, = 4.53(16) while for L = 32,
B =220 ¢ = 11.59 and Tin, = 10.61(70). Using (5.101) and these two values we would
get Zine, ~ 0.8 but this is wrong. Indeed for this model one has 2;,;, < 0.1. The wrong
result is due to the fact that we have neglected the finite-size corrections. The correct way
of performing the analysis uses a finite-size scaling Ansatz of the form

Tint,f (8, L) ~ &(B, L)*7 g4(¢(8, L)/ L) (5.102)

where gy is an unknown scaling function with g4(0) supposed to be finite and non-zero.
To determine z;ns 5 one plots T 7(B, L)/€(B, L)*m¢ as a function of &(B, L)/ L fixing 2z, s
so that all the points lie on a unique curve within error bars. In order to have a reliable
estimate many different values of L must be used and sufficiently accurate estimates of
Tint,f are required.

138 A. Pelissetto

Let us now pass to a second subject: so far we have discussed how to compute from the
Monte Carlo data the mean values of the observables we are interested in and their error
bars. Now let us discuss how to use them in some practical problem.

In many cases we want to compute invariant ratios, i.e. quantities of the form

(A)F

"= 1By

(5.103)

where A and B are two different observables and p and ¢ some exponents. Of course we
estimate this quantity from the sample means A and B:

AP
R = Be (5.104)
But then, what is the error bar on R.,? The main problem in its estimation is that A and
B come from the same run; consequently they are correlated and this must be kept into

account in setting the error bars. Let us compute the variance of R.,. By definition

Var (Ru) = () = (B’ (5.105)
Then introduce
_ A-(4)
AA = _ () (5.106)
_ B-(B)
AB = (B) (5.107)

Expanding in AA and AB (valid in the large sample limit) we get

(A4)*
(B)%

Var (Rey) = (P*(AA?) + ¢*(AB?) — 2pg(AAAB)) + o(1/n) (5.108)

Notice that (AA?) = 0% /(A)? and (AB?) = 0% /(B)? while the last term keeps into account
the correlation between the estimates of A and B. Using the fact that (Schwartz inequality)

(AAAB)| < (AA%)Y2(AB?)/? (5.109)

we obtain an upper bound in terms of the variances of A and B alone

(A)2p ga oB 2
Var (Rest) < (B)% <p<A> —|—q> (5.110)

This upper bound is usually very far from being sharp since A and B are strongly correlated
(in some cases (5.110) is ten times larger than the correct formula (5.108)). For this reason
it is always convenient to use (5.108). However in this case we must compute the covariance

(AAAB). This can be avoided using a little trick, i.e. rewriting (5.108) as

Var (Res) = égiz Var (pAA — ¢AB) (5.111)

Introduction to the Monte Carlo method 139

and this last variance can be computed applying the time-series methods we have presented
before to the time series

A, — A B, — B

A 173
In this way one usually gets smaller (but correct!) error bars. We want to emphasize that
these results are not connected with dynamic Monte Carlo, in the sense that the important

(5.112)

thing here is the static correlation of A and B (usually pAA — gAB has an autocorrelation
time which is of the order of the largest of 7;,; 4 and 7,,,;) and thus it is important to keep
it into account also in the case of independent sampling.

These formulas can easily be extended to generic functions of (A) and (B) and to
functions of more than two observables.

Exercise 2: In lattice gauge theories one usually defines the Creutz ratio

W (I, YW(I—1,J —1)

RILT) = d, 7w =1,9)

(5.113)

where W(1, J) denotes the expectation of a rectangular Wilson loop of lattice dimensions
I and J. Compute the variance of R(1,J) in the large sample limit expressing the result in
terms of variances of suitably defined observables for which the usual time-series analysis
can be applied.

Let us now present two applications of the previous results. The first one is concerned
with the so-called hystogram method introduced by Falcioni et al. and Ferrenberg and
Swendsen. Suppose you have made a simulation of the system at a given value of 8. Can
this run be used to get some information on the mean values of the various observables we
have measured at a different temperature G,7 The answer is yes, and it is based on the
following observation: if O is any observable we have

1

(O)g, = Z(6o) {2;(9(0) exp(—pPoH (o)) (5.114)
5103 Oo) exa((B — Bo)H(#)) exp(—BH()) _—

Y 1oy exp((8 — Bo)H (o)) exp(—BH(0)) '
(exp((8 — Bo) H)O)g (5.116)

(exp((B — Bo)H))s

where (. ..)g is the estimate at inverse temperature 5. Thus an estimate of (O)g, is obtained
as a ratio of the sample means of exp((8 — Bo)H)O and exp((8 — Bo)H) and the error bar
is computed using (5.108).

One can also compute (O)g, using runs at different, but nearby, values §;. In this case
the estimates are independent and thus it is very simple to write down the final estimate
and its error bar. If O; is the estimate of (O) obtained using the runs at temperature 1/0;
and o? its variance we get the final estimate

Oest = 29; (Z —2>_1 (5.117)

1 2

140 A. Pelissetto

with variance)
I\~
o? = (Z —2> (5.118)

The hystogram method is very useful in many cases. However we must stress two important
points. First of all (O)g, can be computed from a run at inverse temperature S only if 5 lies
in a small interval around B and the width of this interval is of the order of the fluctuations
of the energy and as such decreases as 1/\/7 (except at phase transition points where
fluctuations go as 1/Cg/V where Cg ~ Veld ig the specific heat). Outside this interval
the estimates become completely unreliable and formula (5.108) cannot be applied since
higher order corrections are still important. Secondly the points obtained in this way are
correlated and this must be kept in mind in any subsequent analysis (see exercise 4).

Exercise 3: Let E,, be the mean value of the energy at inverse temperature G of an
Ising model and n(E) the number of spin configurations with energy E. Show how one can
compute the ratio n(E)/n(E,,) from a run at inverse temperature 8. (The results will be
reliable only for E not very different from E,,, explain why!).

A second important case concerns the evaluation of conditional expectations. Let O!
and O? be two observables and suppose you want to compute the mean value of O! subject
to the condition that O? assumes a certain value (or satisfies a certain relation). For
instance this what you need when preparing a hystogram, a plot of O! as a function of O2.

Let us introduce the function x defined on the state space S which assumes the value
1 if the condition on O? is satisfied and 0 otherwise. Then the conditional expectation can
be computed using the formula

_ % > Oixi

5.119
NS (5.119)

(Ol) Conditional on ©2

and its variance from (5.108).

It is easy to see that this formula corresponds to the very simple idea of estimating
{O"Y Conditional on 02 using the censored time-series X, ... X, defined by

X; = X, (5.120)

where Ty < Ty < ... < T, are the times for which the condition on O? is satisfied. Indeed
it is easy to see that the previous formula corresponds to

!

1 n
<01>Conditiona1 on 02 — ; Z O%} (5.121)

=1

Notice that in this formula both the T} and the censored sample size n’ are random variables
and thus we cannot apply the usual time-series analysis to this sequence.

Let us conclude this Section by discussing another problem of practical importance,
the determination of the exponential correlation length. Let us firstly review its definition.
Given a model, let O be a generic observable. Then compute the two-point function

(0(0) O(z)) — (0)? (5.122)

Introduction to the Monte Carlo method 141

Near a critical point, for large |z|, this quantity has a behaviour of the form
(0(0) O(z)) — (0)* ~ exp(—|zl|/éo) (5.123)

where £ is the exponential correlation length associated to O. In general different operators
have different correlation lengths but at the critical point all these quantities scale with the
same exponent usually called v. In Monte Carlo computations, in order to have a better
signal and thus a better estimate of {» one usually uses space-averages of O, i.e. computes

Go(t) = > ((0(&,0) O(F,1)) —(0)?) (5.124)

&9
which is expected to behave for large ¢ as

Go(t) ~ exp(=[t|/¢o) (5.125)

On a finite lattice with extension L in the time direction and periodic boundary conditions
one must keep into account the periodicity and the correct formula is (0 <t < L):

Go(t) ~ (exp(—t/éo) + exp((L —t)/o)) (5.126)
~ ch((L/2 - t)/¢o) (5.127)

Let us now pass to describe how to compute {» from Monte Carlo data. For simplicity we
will compute £ from the Ansatz

Colt) = acxp(~t/to) (5.128)

which we assume valid for 0 << tpn < t < tmer << L/2 but the whole discussion can be
easily extended to the general formula (5.127). Taking logarithms we get

10gG0(t) = 10ga_t/€0 = A—t/é-o (5129)

Now, how do we evaluate A and £é»? The first idea is to use the standard x? method. Let
G(t) be the sample two-point function, i.e. *

Gt) = %i(}g)(t) (5.130)

and V(t) be its variance computed for each ¢ by analyzing the time series of Gg)(t); then
define

¢ 2 /Ao
maz R t G(t)
2
X = log G(t) — A — —) () (5.131)
Py () \ V)
A and o are computed as the values which minimize x? and the errors on A and o are
obtained from the standards results on the linear regressions. But, is this method correct?
Unfortunately it is not, since we have overlooked a very important fact: the values of G(t)
for different ¢ are (strongly) correlated due to the fact that we have made the measurements

!Notice that in this discussion we may indicate with time two different quantities: there is the simulation
time which we indicate with 7 and goes from 1 to n where n is the total number of iterations and the lattice
time ¢ which goes from 1 to L.

142 A. Pelissetto

on the same configurations. This means that the error bars that we have computed using
the standard formulas on linear regressions grossly underestimate the true error bars.

The correct procedure consists in computing firstly the covariance matrix
v — Cov [13690y Ly ol 5.132
(t1,t2) = Cov nZ o (t1); nZ o (2) (5.132)

This computation can be done in many different ways. The simplest one consists in noting
that (A and B generic quantities)

Cov(4;B) = (AB)— (A)(B) (5.133)
= 2 (14 +(BY) — (A~ BY) —2(4)(B) (5.134)
= 5 (Var(A) + Var(B) - Var(4 - B)) (5.135)

From this formula one sees that the problem of computing Cov(A4; B) has been reduced to
the (by now very well known) problem of computing three variances, i.e. to the computation
of Ca_p a_B(0), Caa(0), Ca(0), Tint,o—B; Tint,a and Ty g as we have discussed at length.
Then, once you have V, compute its inverse, i.e. the matrix V~1(¢;,¢,) such that

tmam
Z V_l(t]-)t)v(t)tz) = 5t1,t2 (5136)
t=tmin
and define))
E(tl,tg) — V_l(tl,tg)Go(tl)Go(tg) (5137)

Then the x? is defined by

tmaz

= 5 <log Gty) — A — t—1> <log Glty) — A — t—2> S(t, 42) (5.138)

t1,ta=tmin fo fo

and the mean values A and é» and their error bars are computed using the standards
methods for linear regressions.

This discussion applies to many other similar cases which can be dealt with along the
same lines. Another example is presented in the following exercise.

Exercise 4: Consider the Ising model on a two-dimensional square lattice. Suppose
you have three runs at 8 = 0.39, 0.41, 0.43 and that you have measured the susceptibility
x and the energy E. Then imagine that, using the hystogram method, you have computed
the susceptibility also for 8 = 0.38, 0.40, 0.42. How do you perform a fit of the form
X ~ (B — B)" in order to estimate v and 5.7

6 Metropolis and Heat-Bath Algorithms

In Section 4 we discussed the requirements which must be satisfied by a Markov chain in
order to produce a correct Monte Carlo. Let us now start discussing some explicit ways

Introduction to the Monte Carlo method 143

of building transition matrices satisfying the conditions (A) and (B) (formulas (4.53) and
(4.54)). A very general method was introduced by Metropolis et al. and is now called
Metropolis algorithm. Let P(°) be an arbitrary irreducible transition matrix on S. We call
P the proposal matrix and we use it to generate proposed transitions s — j which are
then accepted with probabilities a,; and rejected with probability 1 — a;;. If a proposed
move is rejected, then we make a “null transition”, 2 — 2. Therefore the full transition
matrix P is given by

pi = P + Zp 1 — a; (6.140)
J#

where of course a;; < 1 for all 2,7. It is easy to see that P satisfies detailed balance for 7

if and only if
(0)

% _ ”Jpgé) (6.141)
Jt TiDsj
for all pairs ¢ # 7. But this is easily arranged: just set
7r.7p(1,)
Q5 = F (JO) (6142)
TiPsj
where F': [0, 00] — [0, 1] is any function satisfying
F(z)
= 14
F(1/7) (6.143)
for all z. The choice of Metropolis et al. is
F(z) = min(z,1) (6.144)
which is the maximal function satisfying (6.143). Another choice is
z
F(z)= 14
()= = (6.145)

Of course it is still necessary to check that P is irreducible; but this is usually done on a
case-by-case basis.

(0) _

In the most part of the applications, the proposal matrix P(®) is symmetric, i.e. o

)

p;;” and in this case the transition probabilities have the simpler expression:

a; = F (W(i)> (6.146)

In statistical mechanics and lattice quantum theories, 7 is the Gibbs measure and thus the
transition probabilities become

a; = F (ePEE) (6.147)

where E; is the energy of the state :. Then, using the F' given in (6.144), we obtain the
following algorithm:

144 A. Pelissetto

1. If 2 € S is the current configuration choose 7 with probability pg-));
2. Compute E; and E;, the energies of the old and of the proposed configuration;
3. If E; — E; <0 accept the proposal, i.e. j is the new current configuration;

4. If E; — E; > 0 accept the proposal with probability e P(Ei—Bi). that is, choose a
random number U uniformly distributed between 0 and 1; then if U < e #(Fi—F:)
accept the proposal so that j is the new current configuration, otherwise make a null
transition, that is keep 2 as current configuration.

Exercise 1 : Write the algorithm in the case F(z) = z/(1 + 2).

Let us see some simple applications of this procedure. Let us firstly consider the Ising
model: this is the simplest spin model, the fields o; assuming the values +1. The Hamil-

H({s}) = —%aiaj (6.148)

tonian 1s

where the sum runs over all nearest-neighbour pairs. Let us now define the algorithm. Fix
some site 2. The proposal is to flip o;, hence

pgo)({a} —{0'}) = 1lifo';=—0;and o'; =0 forall j £1 (6.149)
pgo)({a} — {0'}) = 0 otherwise (6.150)

Here H(O) i1s symmetric so that we can immediately apply the algorithm with

E({d'}) - E({a}) = 201-2%- (6.151)

where the sum extends to all nearest neighbours j of z.

This defines a transition matrix P; in which only the spin at site ¢ is touched. The full
algorithm involves sweeping through the entire lattice. There are various ways of doing
this. One can for instance visit the lattice sites randomly, i.e. choose subsequent random
points z. In this case the complete transition matrix is

1
P = VZPZ- (6.152)

Another possibility is sequential updating. In this case one orders the lattice sites and
sequentially update the spin at each site. The full transition matrix is in this case
P = PP, . . . PB, (6.153)

Notice that in this case P does not satisfy detailed balance for 7 but it satisfies stationarity
for # which is what really matters.

An important type of sequential updating is the so-called checkerboard update used
on vector and parallel machines. Suppose you are working on a d-dimensional hypercubic
lattice and define the parity function

p(na, g, ... ng) = (—1)2™ (6.154)

Introduction to the Monte Carlo method 145

where (n1,n2, ...,nq4) are the lattice coordinates. Then notice that, if 7 and j have the same
parity, P; and P; commute so that the order in which we apply P; and P; is irrelevant. In
particular, if our computer is a parallel machine we can perform the updates at points 2
and 7 simultaneously. In this way a single sweep over the whole lattice is performed in two
steps (in the first step we update all points ¢ with p(z) = 1, in the second one those with

p(s) = —1).

Exercise 2: Consider an Ising model on a triangular lattice. Show that on a parallel
machine a single sweep can be performed in three steps.

Exercise 3: On a square lattice consider an Ising model which has a nearest-neighbour
and diagonal interactions. Show that a single sweep can be performed in at most 4 steps
on a parallel machine.

Exercise 4: On a square lattice consider an Ising model which has a hamiltonian
Y 0i (J10iss + J20it2s) (6.155)
r B
Show that a single sweep can be performed in at most 3 steps on a parallel machine.

Let us now pass to discuss a second model: the O(N) o-model. In this case the fields
are N-dimensional unit vectors ¢; and the Hamiltonian is given by

H{7}) = - > G - & (6.156)

where the summation extends to all nearest neighbour pairs (i7). The algorithm we have in
mind here is a simple generalization of what we have presented for the Ising model. Firstly
choose a site . Then propose a new configuration {¢'} in the following way:

d; = d; forallj#i (6.157)
= 0g;cosf+ rsinf (6.158)

=2

K]

where 7 is a uniformly distributed unit vector perpendicular to ¢; and 6 is a random angle
with probability density f(cosf), 0 < 6 < 7. Let us now show that for every probability
density f(cos @) the proposal matrix is symmetric and thus we can apply the standard
Metropolis procedure. To prove this, notice that the probability distribution of 7" and 8 is
proportional to

dg dV7 §(7- &;) 6(r® — 1)f(cos) (6.159)

From this we can easily obtain the probability distribution of ’. Eliminating 7 and 6 in
favour of o} we get

2

Ve 8(o"; — 1) (1 (& - 52)2)1_N/2 f(8; -3l (6.160)

which proves that P(®) is symmetric.

146 A. Pelissetto

Exercise 5: Let S be the space of U(N) matrices with probability measure the Haar
measure. Consider the transitions U — U’ where U’ = UV with V is chosen with prob-
ability measure f(V)dV. Show that the associated transition matrix is symmetric if and

only if f(V) = f(VT).

At this point we must specify f(cos). All possible choices are correct; however not all
of them will be equally efficient. It is clear that the probability of acceptance will decrease
with increasing § and thus if 8 is very large the move will be rejected with high probability
and this makes the algorithm inefficient. On the other hand, if 8 is very small the new
configuration will be accepted with high probability. However in this case the new spin will
be only slightly different from the previous one and thus the evolution of the system will
be slow and the algorithm will again be inefficient. Thus f(cos #) must be a compromise
between high acceptances and large proposed modifications of the configuration. In practice
this is achieved by choosing 6 uniformly between 0 and some cutoff € and then tuning € in
order to have a mean acceptance ratio of the order 50%. Let us notice that the value of €
will be temperature dependent and will decrease as § goes to infinity.

An important technique which is used with the Metropolis update is the so-called mul-
tihit technique. The idea is to perform many subsequent updates (hits) at point ¢ before
moving to another point. In this case the total transition probability is simply

1
P= v ZR-" (6.161)

for a random update and

for a sequential update.

To understand the convenience of this technique let us notice that in the o-model we

E({d'}) - E({d}) = (di—3d)->_7; (6.163)

have

where the sum extends over all nearest neighbours 7 of 2. Thus the difference of energy
is simply given by the difference of the spins times a vector which needs to be computed
only before the first hit. In general the technique is convenient in all those cases where the
energy difference has the form

E({¢'}) - E({4}) = (¢'; — ¢)A (6.164)

where the two configurations differ only at site z and the quantity A does not depend on
the fields at point 2. In these cases A needs to be computed only before the first hit, and
this is convenient if A requires a lot of computation (this is the case for instance of SU(3)
gauge theories).

Let us now discuss a second important class of algorithms which use the so-called heat-
bath method. This method is based on the following idea: given a model an a lattice, let
us indicate the fields with ¢;, ¢« running over the lattice sites. Fix a point 2 and consider
the conditional probability of ¢;, keeping all the other fields fixed. Then choose ¢’ inde-
pendently of the old value ¢; from the conditional distribution while all the other fields

Introduction to the Monte Carlo method 147

remain unchanged. Then sweep over the lattice points z as in the Metropolis case, either
randomly or sequentially.

Let us see how it works in a specific example, the Ising model. The first thing we have
to do is computing the conditional distribution. We have in this case

const ({o};) exp (ﬁaiz:aj) (6.165)

where the sum extends to all nearest neighbours j of 2. The new spin ¢’ is then chosen
with this probability. Thus the update at site 2 works as follows:

1. Set A B30

2. Set py «— 1/(1 + e=24);

3. Choose a uniform random number U between 0 and 1;

4. If p, > U set 0/ — 1, else o/ — —1.

Exercise 6: Show that for the Ising model the heat-bath update is equivalent to a
Metropolis update with F(z) = z/(1 + 2).

In a similar way one can deal with the o-model. In this case the conditional probability
measure is proportional to

exp (5&1- - Zaj) dVa; 6(6% — 1) (6.166)
3

Thus in order to apply the heat-bath method to the o-model we must generate random
variable with probability given by (6.166). This can be done although it is not completely
trivial, except when N = 3.

Exercise 7: Develop the heat-bath algorithm for the O(3) o-model.

Hint: introduce polar coordinates choosing the z-axis parallel to the vector 3; 7;.

Let us finally notice that the multihit Metropolis update is equivalent to a heat-bath
update in the limit in which the number of hits goes to infinity. Indeed, by construction, P;
restricted to the site : leaves invariant the conditional probability distribution of o;, given
all the other spins {o,};2. Let us indicate this distribution with P*(c;). Then by the
standard results of the theory of Markov chains we have presented in Section 4 we have

lim P* = P™(0;) (6.167)

and the r.h.s. is by definition the heat-bath transition probability.

Let us now discuss the performance of Metropolis and heat-bath algorithms. Their
main feature is that each update is local. In a single step of the algorithm, “information”

148 A. Pelissetto

is transmitted from a given site only to its nearest neighbours. Crudely one might guess
that this information executes a random walk around the lattice. In order for the system
to evolve to an “essentially new” configuration, the information has to travel a distance of
the order ¢, the static correlation length. One would guess, therefore, that 7 ~ £2 near
criticality. These results can be proven for the free Gaussian model (see next Section) and
in general extensive simulations have shown that it is approximately true for every model
and any local update (with the exception of overrelaxation).

Exercise 8: Consider a one-dimensional random walk, i.e. a Markov chain defined on
the integers with p; = 0, piix1 = 1/2, p;; = 0if [— j| > 1 and Prob(X, = j) = 8;0. Show
that the mean square distance from the origin of the walker at time ¢ is ¢, i.e. (X2)o = ¢.

Hint: write X; = Ef;é(XiH — X;)+ Xo and then prove ((X;11 — X;) (X141 — X))o = &

To conclude this Section let us discuss the embedding technique which was introduced
by Cabibbo and Marinari who developed a pseudo-heat-bath algorithm for SU(3) gauge
theories and which has recently been extended to more general algorithms.

The idea is to consider a group of transformations {g, } which acts on the configurations

{¢z}, i.e.
¢z — {9262} (6.168)

and leaves the integration measure invariant.

Then we consider {g,} as fields and update them using the induced hamiltonian

H'({9.}) = H({g=¢:}) (6.169)
A valid algorithm is the following:

1. Keeping the fields {¢,} fixed, compute the induced hamiltonian.
2. Initialize g, = Id,.

3. Update g, with a transition probability p(¢; g1 — g2) satisfying p(¢; 19 — ga9) =
p(g9d; g1 — g2) for all g and which is stationary with respect to the Boltzmann weight

exp(—BH'(g)).
4. Set ¢, = guo-

It is easy to check that this algorithm has the correct equilibrium distribution. Indeed the
total transition probability is given by

P — ¢2) = [dg pl(s;1d — 9)8(4s — 91) (6.170)

Then
/d¢1e—ﬂH(¢l) P(¢1 — ¢3) = (6.171)
= /d¢1dgldgze‘ﬂH(gl¢l) p(p1; 91 — 92)8(d2 — g2¢1) (6.172)

= [didgae @) 5(g, — gapy) = e PH) (6.173)

Introduction to the Monte Carlo method 149

Of course one has to check also for ergodicity. If the algorithm turns out non ergodic the
simplest remedy consists in mixing it with conventional update steps.

To clarify how the method works let us consider a simple example. Let & be an N-
dimensional unit spin and suppose we want to generate & according to the probability
density

exp (A-5) d&§(3* - 1) (6.174)
We want to use the embedding method and we consider the transformations
ol = Y VEP(g)o; (6.175)
3
where o # B run from 1 to N,
VEA(9) = exp (4T (6.176)

with Ti(f‘ﬂ) = (5?‘55 — 5;“5?) and @ is a parameter. The transformations V(*8)(§) are a
one-parameter group of rotations which leave invariant the measure d& §(¢* — 1). Let us
now compute the induced Hamiltonian. As

VEP)(9) = cos 66,5 + sin§ TSP (6.177)

we have

A& = cosbA-& + sinb Z AiTi(jaﬂ)Uj (6.178)

iJ

Thus a valid algorithm in this case is given by:
1. Choose randomly a # (between 1 and N.
2. Compute the induced hamiltonian coeflicients h; = A& and hy = 325 AiTi(f‘ﬂ)aj.
3. Initialize 8 = 0.

4. Update 6 with an algorithm which is stationary with respect to the probability measure
df exp (hy cos @ + hysinf) (6.179)
and whose transition probability satisfies
p(0;0:+0 —0,+6) = p(V(aﬂ)(H)c_f; 6, — 6,) (6.180)
for all §. (Prove that a heat-bath update satisfies the last condition).

5. Set &' = V(eA)g.

Using the embedding method the original problem of generating unit spins with the
given probability distribution is reduced to the problem of generating an angle 8 with
distribution (6.179). In this specific example this reduction does not help much. However
this method has been used with success in unigrid simulations of O(N) o-models.

150 A. Pelissetto

Exercise 9: Let ¢ be an N-dimensional unit spin and suppose we want to generate &
according to the probability density (6.174). Now, given a random unit vector 7, consider
the transformations

F =+ (e—1)&) (6.181)

where € = +1 is an Ising spin. Write down a valid algorithm to update o based on this
class of transformations.

Exercise 10: (Cabibbo-Marinari algorithm) Consider matrices U € SU(N) and the
probability measure

exp(—BRe Tr (AU)) dU (6.182)

where dU is the Haar measure and A is a given matrix. Consider the transformations
U — VU, where V belongs to some SU(2) subgroup of SU(N). Write down a valid
algorithm based on this group of transformations, paying attention to the ergodicity of the
algorithm.

7 Overrelaxation

In this Section we want to discuss an important local algorithm which has z = 1, the
overrelaxation algorithm. Let us firstly describe it for the Gaussian model. Here the fields
¢; are real variables and the action on a hypercubic lattice has the form

H= 33 Y (i 6+ 5m*Y 4 (7.183)

As we have done for the Metropolis and the heat-bath algorithm we firstly define a transition
probability matrix P; which updates the field at site ¢ leaving all the other ¢; unchanged
by requiring that P, satisfies detailed balance with respect to the conditional probability
of ¢;, given {¢;},+. It is easy to see that this probability, let us indicate it with P™(¢;),
has the form

P™(¢;) = const X exp (—%((}SZ — ,u)z) de; (7.184)

with .
2
= — 1
? 2D +m? (7.185)

and

p= U2Z¢j (7.186)

where the sum extends to all nearest neighbours j of z. Let us now define the proposal.
We set
#.= adi+f+AX (7.187)

where X is a Gaussian random variable with mean zero and variance one and «, 8 and ~
constants to be determined. (7.187) corresponds to the transition probability matrix

o 1 Y s — B
Plbi— #) = o= oxp (=58 -t — 67 (7.185)

Introduction to the Monte Carlo method 151

Let us compute «, 8 and v by requiring
P™(¢:) Pi(¢: — ¢') = P™(4,) Pi(¢'; — ¢i) (7.189)

We get two equations

(1-a?) (7.190)

V= L~

(1+a) (7.191)

Since 0% > 0 we see that we must have 1 — o? > 0. It is conventional to use instead of a
the overrelaxation parameter w = 1 — «, which must then satisfy 0 < w < 2. The constants
B and v are then computed in terms of w. In this way we find that the proposal

¢, = (1 —w)g; + pw + oy/w(2 — w)X (7.192)

gives rise for every w to a Monte Carlo algorithm with the correct probability distribution.
Let us notice a few limiting cases. For w = 1 we have

¢, = pt+oX (7.193)
and thus it corresponds to heat-bath, while for w = 2 we have

¢ = —¢i+2u (7.194)
which is a microcanonical non-ergodic update.

(7.192) defines P;. In order to obtain the complete transition matrix we must then
sweep over the lattice. We will study the case of a sequential update with checkerboard
ordering, but the results are true for any sequential update (but not for random updates
as we shall see!). In this case a single sweep corresponds to two steps, in the first one we
update the even sites, while in the second we update the odd ones.

Let us firstly perform a Fourier expansion. Let ¢4 be the Fourier transform of the fields,
le.

" 1 —ipz 4

bulp) = 5D €™ (LE(-1)2+™)4 (7.195)
and X, (p) the Fourier transform of the random numbers

% 1 —ipz E 4

Xa(p) = 52 &7 (LE(-1)=+™)X, (7.196)

Then the update of the even sites corresponds to

¢o(p) = (1-wdi(p)+w(p)d-(p) + Xi(p) (7.197)

#_(p) = ¢-(p) (7.198)

while the update of the odd sites corresponds to

#.(p) = ¢(p) (7.199)

¢_(p) = (1-w)d_(p)+wA(p)di(p)+ X_(p) (7.200)

152 A. Pelissetto

where ,
2D —p
AP) = 3p oz (7.201)
and
D LD
p° = 4> sin® ?” (7.202)
p=1

Then introducing)
x(p) = (5+ (2)) (7.203)

and an analogous vector for the random numbers, a full sweep reads

X = M(Aw)x+ A w)X (7.204)
where
1l —w wA
M(A,w) = (1-wwd 1—w+w?? (7.205)
and

10
A w) = (1w 1) (7.206)

The convergence of the algorithm is determined by the largest (in absolute value) eigenvalue
of M. In the heat-bath case w = 1, the eigenvalues are 0 and A(p). Then

1

S S 2
e = T olog (o) (7.207)

Since |A(p)| < A(0) < 1 the critical behaviour is dominated by the modes with low momen-

tum p. Then

D
Texp ~ ﬁ ~ 62 (7208)

which shows that in this model 2., = 2. The same is then expected to be true for z;,; 4 for
all observables A which are strongly coupled with the low-momentum modes. The typical
one is the magnetization

M =3 ¢:= $:(0)+$-(0) (7.209)

Let us now compute the eigenvalues for general w. We find

1 —w+ w22 £ /(1 - w+w2h2/2)2 — (1 - w)? (7.210)
The term under the square root can be rewritten as
w2)\2(w2)\2 —4dw +4)/4 (7.211)
Then let us choose w such that

W A(0)? — 4w +4 =0 (7.212)

Introduction to the Monte Carlo method 153

We get
w = ﬁ (1 —1- ,\(0)2) =2 (1 + %) (1 — %) (7.213)

which satisfies 0 < w < 2if 0 < m < v2D. In this case, for p # 0 the square root is always
imaginary and then it is easy to check that the absolute value of the eigenvalues is always

w — 1. This means that
VD

Texp,p — % ~ 5 (7214:)
for all modes p. It follows that, if we tune w as
2—w~1/¢ (7.215)

we obtain an algorithm which has a critical exponent z ~ 1.

We want to stress that this result is strictly connected with the fact that we have
performed a sequential update (we used the checkerboard update but this is not essential).
Had we used a random update, we would have got z.,, = 2 for all w’s. Indeed overrelaxation
works because the eigenvalues of the transition matrix can be complex and this is possible
only if the full transition matrix P does not satisfy detailed balance, since in the latter case
P is self-adjoint and thus with real spectrum.

This form of overrelaxation with a tunable parameter w cannot be easily extended to non
Gaussian models. There is however a variant, called hybrid overrelaxation, which can be
easily extended to more general models, and in particular to gauge theories. The idea here
is to mix microcanonical and heat-bath sweeps. More precisely an iteration of the algorithm
consists in one heat-bath (sequential) sweep and in N microcanonical (sequential) sweeps.
If N scales like £ it is likely that one iteration of this algorithm is equivalent to N +1 sweeps
of the tunable algorithm with w satisfying (7.215). Thus one expects the autocorrelation
time (expressed in sweeps) to scale again like ¢, i.e. z & 1. This is supported by an analytic
study of the Gaussian model and by extensive simulations of two-dimensional o-models and
lattice gauge theories.

Exercise 1: Consider the following algorithm: choose a lattice site ¢; then perform N
microcanonical updates followed by 1 heat-bath update; then sweep over the lattice. What
is the expected critical exponent 2?7

8 Bibliography

Much of the material presented in these lectures is taken from A.D.Sokal’s Lausanne lec-
tures, Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms.
There one can also find a very readable introduction to cluster algorithms, multigrid meth-
ods and algorithms for self-avoiding walks. For the material presented in the first two
Sections we refer to D. E. Knuth, The Art of Computing Programmang, Vol.2, Chapt. 3,
Addison-Wesley. An extensive discussion of static Monte Carlo methods can be found in
Y. Sobal, Le Méthode de Monte Carlo, Editions Mir. An easy introduction to the theory
of (finite) Markov chains can be found in J. Kemeny and L. Snell, Finite Markov Chains,
Springer-Verlag. For the latest developments on algorithms we refer to the Proceedings of
the various Lattice conferences.

154

