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� Uniform Random Number Generators�

An important ingredient in any Monte Carlo calculation is the random number generator�
This is a small subroutine of the program which produces a sequence of numbers which are
not at all random in the statistical sense but may have some properties which are similar
to the properties of a truly random sequence�

A truly random number sequence can only be generated by a random physical process�
for example radioactive decay� thermal noise in electronic devices� cosmic ray arrival time
etc� However these methods are extremely unpractical and at present the longest sequence
has been produced by Frigerio and Clark �N� A� Frigerio and N� Clark� Trans� Am� Nucl�
Soc� �� ������ �	
�� They used a radioactive ��particle source and a high resolution
counter turned on for periods of �� ms� The average number of decays in this time interval
is �
�
��� When the count was odd they recorded a zero�bit� while when even a one�bit� To
this sequence they applied subsequently a correction to eliminate the bias due to the fact
that an even number of decays has a di�erent probability with respect to an odd number�
obtaining eventually ���� ��� 
��bit truly random numbers�

Exercise �� By using the Poisson distribution compute the probability of a zero�bit
and of a one�bit in the Frigerio and Clark experiment�

Exercise �� Consider a random sequence of zeroes and ones� such that the probability
of � is p and that of � �� p� with p unknown� Prove that the following method gives a new
sequence where zeroes and ones have the same probability� Consider sequentially pairs of
bits in the sequence� if the bits are equal reject them� otherwise accept the second one�
Prove that the e�ciency �percentage of accepted bits� of the method is p�� � p� �

This method is however not very e�cient since it requires large tables which are di�cult
to store and long to prepare� Thus at the end of the 
�s� with the introduction of computers�
research began on the generation of random numbers using arithmetic operations� The idea
was to produce integers X�� X�� X�� � � � such that � � Xn � �w where w is the word size of
the computer using some rule of the form

Xn�� � f�Xn� �����

and then random numbers Un with � � Un � � by

Un � Xn�m � �����

There is a fairly obvious objection to this method� how can this sequence be random�
since each number is completely determined by its predecessor� As J� Von Neumann said�
�anyone who considers arithmetical methods to produce random numbers is in a state of
sin�� The answer is indeed that the sequence is not random at all� but it may appear to be
random for the problem at hand if f is carefully chosen� We want to stress that the choice
of f is very important and that this choice is problem�dependent� A generator which is
random enough for a particular problem may be really bad for another one�
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Example�

Suppose we want to generate a sequence of integers X�� X�� X� � � � in the range � � Xn �
m using a rule Xn�� � f�Xn� where � � f�x� � m for � � x � m� Let us now choose the
function f randomly� i�e� giving each of the mm possible functions f�x� equal probability�
Let us now compute the probability that for whatever choice of X� there will be no n such
that Xn�� � Xn� Indeed in this case we would have Xk � Xn for every k � n and thus
the sequence would be eventually constant and thus generically the function f will not be
acceptable for our purposes �we say generically because it may happen that the function f
is nonetheless a good generator for a su�ciently large number of starting values�� What we
have to compute is the probability that f�x� �� x for all x� Now� given x� the probability
that f�x� �� x is ��� ��m�� Thus the required probability is simply ��� ��m�m which goes
to ��e for m � �� Thus �
� of the functions f produce for at least one X� a sequence
which becomes eventually constant� Generically these functions will be poor generators of
random numbers� Of course we want to exclude also functions which produce sequences
with Xn�� � Xn and so on� The lesson from this example is that only few f�x� have any
chance of producing decent random numbers� thus simple generators for which rigorous
results are available are to be preferred to more �random� �that is more complicated� ones
for which no theory exists as there is a high probability that these last methods generate
series which are less random than those obtained through simpler� but better understood�
algorithms�

Exercise �� Consider a random number generator de�ned as in the previous example�
Show that the series contains cycles� i�e� that� for a given X�� there exist numbers �� �
such that X�� X�� � � � � X�� � � �X����� are distinct and Xn�� � Xn for n � �� � is called
the period of the sequence�

Prove that the following is a correct algorithm to determine � and ��

�a� Determine the �rst n such that Xn � X�n�

�b� Determine the �rst number i such that Xi � Xn�i and j such that Xn � Xn�j � Then
� � i� � � j�

�The main advantage of this algorithm consists in the absence of any memory require�
ment��

Finally show that the sequence Y�� Y� � � �with Yn�� � f�Yn� and Y� � Xk� � � k � ����
has the same period as the original sequence for all k and that the lowest h for which
Yh � Yh�� is max��� �� k��

Apply these results to the middle�square method proposed by J� Von Neumann for
four�digit decimal numbers� Here m � ��� and

f�x� � mod�trunc�x������� ���� ���
�

where trunc�x� is the largest integer such that x � trunc�x�� Compute � and � for every
X��

At present the most widespread random number generators use the so�called linear
congruential method� i�e� the rule

Xn�� � mod�aXn � c�m� ���
�
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Usually m is called the modulus� a �� � a � m� the multiplier and c �� � c � m� the
increment� The modulus can in principle be arbitrary� However there is a very convenient
choice which is m � �w where w is the number of bits of a word of the computer� Indeed
in this case the �mod m� operation does not require any division� Given m one must then
choose a and c� An obvious property which can be required is that the generated sequence
have the longest possible period� which is obviously m� Two necessary conditions can be
determined very easily� a and c must be relatively prime to m�

Indeed if a is not relatively prime to m� then a � pb� m � pq� c � pk � h� with p �� ��
� � b � q� � � k � q� � � h � p� Then we can write

Xn�� � pmod�bXn � k � q� � h �����

implying that only numbers of the form p� � h� � � � � q� are produced so that the
sequence does not have maximal period�

To obtain the condition on c� let us notice that if the period is m all possible values will
appear in the cycle and thus it is not restrictive to consider X� � �� Then in this case

Xn � mod
��

an � �

a� �

�
c �m

�
�����

If c is not relatively prime to m and p � gcd�m� c�� Xn will be a multiple of p and the
period will be at most m�p�

These two conditions are not however su�cient conditions� The maximal period con�
gruential generators are completely known and are classi�ed by the following theorem �Hull
and Dubell� SIAM Review 
 ������ �
���

Theorem �� A linear congruential generator with modulus m� multiplier a � � and
increment c has period m if and only if�

�i� c is relatively prime to m�

�ii� a� � is a multiple of p for every prime p dividing m�

�iii� a� � is a multiple of �� if m is a multiple of ��

In practical implementations where m � �w this theorem requires c to be odd �and one
usually considers c � � or a small odd number� and a � 
n� �� for some integer n�

The previous theorem gives the conditions which ensure maximal period� Of course
this property alone is not enough to guarantee the goodness of the generator� A second
important quantity which must be investigated is the potency of the multiplier� It is de�ned
as the least integer s such that

mod��a� ��s �m� � � �����

Such an integer exists if �a� �� satis�es the condition �ii� of the previous theorem and m
is not prime� It is easy to see that when the potency is low the sequence fXng is not very
random� Let us notice �rst of all that s � � implies a � �� This is a very poor generator as

Xn�� �Xn � c� km� ���	�
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k � ����� meaning that successive couples �X�� X��� �X�� X����� lie on two lines contained
in the square ���m�����m��

Let us now suppose s � �� Consider the sequence starting from X� � �� Then

Xn � mod
��

an � �

a� �

�
c�m

�
� mod

�
nc�

�

�
n�n� ��c�a� �� �m

�
�����

It follows
mod�Xn�� � Xn �m� � mod�c� nc�a� �� �m� ������

This relation implies that successive couples �X�� X��� �X�� X��� � � � lie on parallel lines
contained in the square ���m�����m�� This is not completely unexpected� Indeed truly
random numbers would obviously belong to the lines

Xn�� � Xn � q ������

with � �m � q � m� �� However in this case the possible values of q are much less than
�m� �� Indeed it is easy to see that this number is �m�g�c�d� �m� a� �� � ��

Even worse is the situation for triples �X�� X�� X��� �X�� X�� X��� � � � as

mod�Xn�� � �Xn�� �Xn �m� � mod�c�a� �� �m� ������

implying that they will lie on the four planes

Xn�� � �Xn�� �Xn � mod�c�a� �� �m� � km ����
�

with k � ������ �� ��
The fact that successive d�tuples from a congruential generator lie on a certain �nite

number of parallel hyperplanes in d�dimensional space was �rstly proved by Marsaglia who
also proved that the maximum number of such hyperplanes is �d� m���d� This means that if
m � ���� the triples lie on at most ���
 planes� the 
�tuples� the ��tuples and the ���tuples
on at most ���� ��� and 
� hyperplanes respectively�

The potency of a generator is strictly connected with this e�ect� the higher the potency�
the higher is the number of hyperplanes on which successive d�tuples lie� As a rule�of�thumb
generators with potency less than � must be rejected as not su�ciently random� When
m � �w it is easy to give a condition on a ensuring high potency� Notice that because of
Theorem � we can have either amod	 � � or amod	 � �� i�e� either �a� ��mod 	 � 
 or
�a� ��mod 	 � �� In the �rst case the potency is w�� if w is even � �w � ���� if w is odd�
while in the second case we have s � �w� ���
� Thus in order to obtain maximal potency
the multiplier a must have the form a � 	n� ��

Exercise �� Consider a linear congruential generator with m � �w� a � �k � ��
� � k � w� c � �� Prove that it has maximal period� If w � 
� compute the potency for all
possible values of k� showing that a potency greater than four is achieved only if k � �� i�e�
for small multipliers� However small values of a must be avoided as they give rise to high
serial correlations and thus this family of a�s does not give rise to acceptable generators�
�Notice that this choice of a is particularly appealing as Xn�� can be computed without
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any multiplication �why�� and for this reason generators of this type were of widespread
use in the ��s��

Let us �nally discuss some other properties of the sequences obtained from a linear
congruential generator� First of all let us notice that if m � �w the sequence cannot be
used as a generator of random bits as the right�hand digits of Xn are much less random
than the left�hand digits� Indeed for every divisor d of m� if Yn � mod�Xn � d�� then

Yn�� � mod �adYn � cd� d� ����
�

where ad � mod�a� d� and cd � mod�c� d� �

Taking d � �k we obtain that the lowest k�bits of Xn form a sequence whose period is
�k or less� In particular the last bit is constant or alternating�

Exercise �� Consider the following generators�

RAN supplied by Digital on its computers with m � ���� a � ����� and c � ��

RAND the standard Unix generator with m � ��� � �� a � ���
����
�� c � ��

��

DRAND
	 provided by IBM on its RISC machines with m � ���� a ��DEECE��D�� and
c � B���

For each generator compute the period and the potency�

Hint� note that ��� � � is a prime number �Marsenne prime��

Let us now pass to discuss other possible random number generators� Another popular
form is simply

Xn�� � mod�aXn�m� ������

These generators are linear congruential generators with c � �� This makes these generators
faster but reduces the period �as c � � is not relatively prime to m it cannot have maximal
period according to Theorem ��� However with a proper choice of a one can still obtain
su�ciently long periods� In the interesting case m � �w� w � 
� if amod	 � 
� � and X�

is odd� the period is �w�� which is su�ciently large for many applications� An example of
this class of generators is RANF� the standard generator on CRAY computers� which has
m � ���� a ��	��A�E�B����� and period ����

Exercise �� Consider the random number generator RANDU supplied by IBM on its
�rst�generation computers� it is de�ned by

Xn�� � mod����
�Xn � �
��� ������

Compute the period when X� is odd and prove the relation

�Xn � �Xn�� � Xn�� � � mod��� ������

Show that triples �Xn� Xn��� Xn��� lie on at most �� planes� Can this generator be a good
source of random numbers�
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Exercise �� Prove the formula

Xn�k � akXn �
ak � �

a� �
c modm ����	�

Use this result to invent a parallel random number generator�

A second important family of random number generators is based on the so�called
primitive polynomials� We do not want to enter in the discussion of this subject which
involves the theory of �nite �elds� What interests us is that it is possible to �nd integers
k and l with k � l such that the generator

Xn � Xn�k �Xn�l mod�w ������

where n � l and and X�� � � � � Xl�� not all even� has period at least �l � �� In general
it is possible to prove that the period of the sequence Xn mod � is exactly �l � � while
the full sequence has period �f ��l � �� where � � f � w� Because of the �rst property
these generators are very e�cient in generating random bits� However at present is not
completely clear if � beside the long period� these sequences have also the other desirable
properties of random numbers� A particular bad example is the Fibonacci sequence� with
k � � and l � � with period 
 � �w�� �see exercise 	�� However generators with higher
values of k and l �l �� ���� do not show these problems and they have proved very good
under the spectral test�

Exercise 	� Consider the random number generator

Xn � Xn�� �Xn�� modm ������

X� and X� not both even� Prove that the relation Xn�� � Xn�� � Xn never holds�

Strictly related to this class of generators are the so�called lagged Fibonacci generators
which have the form

Xn � Xn�k �BIN�Xn�l ������

where �BIN� stands for every binary operation� An example of these generators is the
KirkPatrick�Stoll generator

Xn � Xn���� �XOR�Xn���� ������

with period ���� � � which� however� has been recently shown to perform badly in Monte
Carlo simulations of the Ising model� Empirical tests show that these generators perform
poorly if l �� ��� especially if the binary operation is the �XOR��

To conclude this discussion on random numbers we want to discuss the important
concept of accuracy of a random number generator� The accuracy is connected with what
we have already said� the fact that successive couples� triples ��� lie in planes and do not
�ll the square ���m��� the cube ���m����� uniformly�

Let us �rstly de�ne the accuracy� given an integer t� consider the points Pn � �Xn� � � �
Xn�t� for n � � and consider an arbitrary family of parallel planes passing for all Pn and
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call d the distance between any two successive planes �this makes sense as the planes are
equidistant�� Then compute the maximum dmax of d taken over all families of such planes�
The t�dimensional accuracy �t is then de�ned by �t � m�dmax� For truly random numbers
�t � m for all t while for a generic generator �t �� m��t� A good generator has �t 	 m��t

for all t�

Let us now discuss the meaning of �t� Let us considerN t�tuples Pn � �Utn��� � � �Utn�t� �
�Xtn��� � � �Xtn�t��m belonging to the hypercube ��� ��t and a small cube C of side L belong�
ing to ��� ��t� Let us compute the number of points Pn which fall in C� For truly random
numbers we expect this number to be Lt�N � but this will be true only if Lm �� �� that
is if L �� ���t no matter how large N is� Indeed if L � ��m� since the points have the
form n�m� the cube can only be either empty or with one point inside� Thus the accuracy
de�nes the �spatial� resolution of the random sequence� Analogously� if the sequence is
produced by a random number generator we must keep L �� ���t otherwise we see the
�granularity� of the generator� Low accuracy means deviations from random behaviour on
quite large scales and thus these generators must be avoided�

Exercise 
� Suppose you want to get with uniform probability couples of integer
numbers �xn� yn� with � � x � k and � � y � k and suppose you use a random number
generator with modulus m and two�dimensional accuracy �� in the following way� xn �
trunc�kX�n�m� and yn � trunc�kX�n���m�� What are the values of k for which deviations
from equidistribution will certainly appear� And in the case of triples � The Digital 
��
bit standard random number generator �see Exercise �� has ��� � 
�

���	�� and ��� �
�����

� Show that it can be safely used to generate couples only for k � ��� and triples
for k � ����

Exercise ��� Prove that for a random number generator of potency � we have ��� � �
while RANDU satis�es ��� � ��	� �Hint� use the relations proved in the text and in Exercise
���

Exercise ��� A method to improve the accuracy of a generator is the shu�ing method
of Bays and Durham� Consider a random number generator which produces a sequence
X�� X�� � � �� Fix then a number k and initialize an auxiliary vector V ���� � � � � V �k � �� with
V �j�
 Xj � Set y
 k� j 
 �� The algorithm is the following�

�� Compute r � trunc�kXy�m� and set Yj 
 V �r��

�� Set V �r�
 Xy��� y
 y � �� j 
 j � ��

The sequence Y�� Y�� � � � is the output of the routine�

Consider as an explicit exampleXn�� � mod���Xn��� ��	�� X� � �� k � 
� Determine
� and � �see Exercise 
 for the de�nition� for the output sequence and the number of
distinct couples �x� y� such that x � Yj � y � Yj��� Repeat the same exercise for the original
sequence Xn�
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� Numerical Distributions�

We have seen in the previous Section how to generate uniform random numbers� However in
many applications one needs random numbers with other types of distribution� In general
we want to produce numbers x � �a� b� with probability density f�x�� i�e� such that

Prob �x� � X � x�� �
Z x�

x�
f�x�dx ����
�

There are various methods to obtain the correct distribution� The simplest one works as
follows� de�ne the distribution function F �x� which is the probability that the random
variable X does not exceed x�

F �x� � Prob �X � x� �
Z x

a
f�x�dx ����
�

F �x� is an increasing function with F �a� � �� F �b� � �� If F �x� is continuous and strictly
increasing there exists an inverse function F���x�� Then to generate a random number X
with distribution F �x� one simply generates a uniform random number U between � and
� and computes X � F���U�� To prove that this is correct notice that

Prob �X � x� � Prob �F���U� � x� � Prob �U � F �x�� � F �x� ������

Exercise �� Use this method to generate random numbers with density function�

�� f�x� � pxp�� in the interval ��� ���

�� f�x� � �e��x for x � ��


� f�x� � �xe�x
�

for x � ��

Exercise �� Develop an algorithm which computes two independent normally dis�
tributed variables X� and X��

Hint� notice that the couple �X�� X�� have density f�x�� x�� � e�	x
�
�
�x�

�

����	 which is easy

to generate in polar coordinates�

This method can be applied in a limited number of cases since it requires the explicit
computation of F���x�� A more general technique is Von Neumann�s rejection method�
Suppose you want to generate a random variable with probability density f�x� such that
F���x� does not have a simple closed form� Choose then a second probability density g�x�
simple enough to allow a quick generation of random numbers distributed according to
it and such that f�x� � cg�x� for all x� Here c is a constant which in principle can be
arbitrarily chosen as long as the bound is satis�ed �thus in all cases c � ��� However� in
order to obtain an e�cient algorithm c must be as small as possible� Then the algorithm
works as follows�

�� Generate X according to the density g�x� and a uniform random number U between �
and ��
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�� If U � f�X��cg�X� go back to step � and repeat with a new X and U � otherwise output
X�

The probability of rejection is clearly

Z �
�� f�x�

cg�x�

�
g�x�dx � �� �

c
������

This means that step � will be executed c times on average �with standard deviationq
c�c� ��� prove it�� and thus a good generator requires c not to be very far from ��

The idea of the method is very simple� If X is a random variable with distribution
g�x� and U is uniform between � and �� then the couple �x� y� with x � X� y � cUg�X�
is uniformly distributed in the plane region R � f�x� y� � a � x � b� � � y � cg�x�g�
Then� in order to obtain X distributed with density f�x� we accept the points such that
y � f�x� and reject the others� The accepted points are uniformly distributed in the region
R� � f�x� y� � a � x � b� � � y � f�x�g and thus X is distributed with probability density
f�x��

Exercise �� Use the rejection method to generate �

�� f�x� �
q
��	 e�x

�

for x � ��

�� f�x� � xa��e�x���a�� a � � for x � ��

In the �rst case use a function g�x� of the form g�x� � A for � � x � p� g�x� �
�A�p�x exp�p� � x�� for x � p� In the second case choose g�x� � Axa�� for � � x � a� ��
g�x� � Bx�p for x � a� ��

Compute the acceptance in both cases and determine the optimal value of p�

Exercise �� A simple method to generate random unit vectors in d�dimensional space
is the following�

�� Generate U�� � � � � Ud uniform random numbers between �� and � and compute r� �
U�
� � U�

� � � � �� U�
d �

�� If r � � go back to step �� otherwise the required vector is �U��r� � � � � Ud�r��

Explain why this method is correct and compute the acceptance�

Exercise �� Suppose you want to produce random numbers x in ���� �� with distri�
bution

�

	
�� � x������ dx ������

Show that both these methods are correct�

Method A� generate a uniform random number U � ��� ��� then compute x � sin	��U����
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Method B� generate two uniform random numbers U and V in ��� ��� Reject them if
U� � V � � �� Otherwise compute

x �
U� � V �

U� � V �
����	�

Method B has the advantage of requiring only elementary operations�

Exercise �� Consider the following algorithm� Pick U� and U� uniformly in ��� ��� If
U� � U� stop� Otherwise select U� and stop if U� � U�� Otherwise continue this process
until you have U� � U� � � � �Un and Un � Un��� If n is odd de�ne X � U�� while if n
is even reject all Ui and start again� Show that X � ��� �� is distributed with probability
density proportional to e�X�

Hint� prove �rstly that

Prob �U� � U� � � � � Un� �
�

n�
������

and
Prob �x � U� � x� dx jU� � � � � � Un� � nxn��dx ���
��

Let us �nally discuss the so called binning �or strati�ed generation� method� This
technique is a simple extension of the rejection method� The idea is very simple� suppose
you want to generate random numbers X with probability density f�x�� a � x � b� Then
rewrite

f�x� �
nX

k��

pkfk�x� ���
��

where
pk �

Z ak��

ak
f�x� dx ���
��

and

fk�x� �
�

pk
f�x�
��ak� ak���� ���

�

Here 
���� ��� is the characteristic function of the interval ��� �� and a � a� � a� � � � � an �
an�� � b�

Thus the generation of X can be obtained by �rstly choosing k with probability pk
and then computing X � �ak� ak��� with probability density fk�x�� If the constants ak are
properly chosen the generation of X � �ak� ak��� can be done using the rejection method
with simple trial functions� in most cases a constant g�x� will be e�cient enough�

In order to apply this technique a fast way of choosing k with probability pk is needed�
An ingenious trick is the so�called method of aliases� Suppose you want to generate a
random number X such that X � x� with probability p�� X � x� with probability p�� � � ��
X � xn�� with probability pn��� Let us introduce three auxiliary arrays P �k�� Q�k� and
Y �k�� k � �� � � � � n��� InitializeQ�k�
 npk� Then de�ne P �k� and Y �k� using the following
algorithm�

�� Find k� such that � � Q�k�� � �� Set P �k��
 Q�k���
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�� If Q�k�� � � go to step 
�


� Find m� such that Q�m�� � �� Set Y �k��
 xm�
and Q�m��
 Q�m�� � P �k��� ��


� Set Q�k��
 �� If Q�k� � � for all k exit�

Then the generation algorithm works as follows� choose two random numbers U and V
uniformly distributed between � and �� Let i be the integer part of nU � Then� if V � P �i�
set X 
 xi otherwise X 
 Yi� It is easy to check that each xi is generated with the correct
probability�

� Monte Carlo Integration�

The Monte Carlo method is a very powerful technique for performing very complicated
calculations� In general a Monte Carlo method is any technique that makes use of random
numbers to solve the problem� The most part of Monte Carlo calculations are to all e�ect
equivalent to an integration problem� In this Section we will discuss the use of Monte
Carlo in low�dimensional integration problems� It must be clear from the beginning that
Monte Carlo is generically a very bad integration method� As we shall see the error on the
estimate decreases as ��

p
n where n is the number of points where the function is evaluated

independently on the dimensionality d of the integral �this is essentially the central limit
theorem�� This should be contrasted with traditional deterministic numerical methods�
for instance the trapezoidal rule converges as n���d� the Simpson�s rule as n���d and the
m�point Gauss rule as n�	�m��
�d� Thus it is clear that for d � � any of these algorithms
will be better than Monte Carlo � while for large d Monte Carlo beats any of them� Thus
Monte Carlo is the best available method when d is large enough� But there are other
disadvantages in using a deterministic method� Suppose for instance you want to apply
the Simpson rule in � dimensions� It converges as n����� faster than Monte Carlo� Let us
use �� nodes per axis �which is a very coarse mesh�� then we need at least ��� function
evaluations which is extremely time�consuming especially if the function is complicated�
This brings up two new points�

�i� the feasibility limit� which is the largest number of function evaluations we can e�ord
to make� Typically this limits the number of points to ����� ����� This fact limits the use
of higher�order rules to low dimensions and imply that the feasibility limit is reached long
before the crossover point where Monte Carlo converges faster than quadrature� so that
the theoretical convergence rates of higher�order rules in high dimensionalities is of pure
theoretical interest�

�ii� the growth rate is the smallest number of additional function evaluations needed to
improve the current estimate� A Monte Carlo result can be improved by adding a single
point� while any other deterministic rule can only be improved by going to a higher�order
rule or by subdividing the space�

There is one �nal advantage of Monte Carlo integration� Deterministic rules usually
work reasonably well for multidimensional regions of simple shape while they are of di�cult
application when the region of integration is irregular� Monte Carlo on the contrary can
be applied to any situation independently from the shape of the boundary�
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Let us now discuss how to perform integration with Monte Carlo� The least e�cient
method is the so�called hit�or�miss method� Suppose you want to integrate

I �
Z b

a
f�x� dx �
�

�

Let m � minx��a�b
 f�x� and M � maxx��a�b
 f�x�� Then use the following algorithm�

�� Set n
 ��

�� Choose two uniform deviates U�n and U�n�� between � and ��


� Set x
 �a� �b� a�U�n� and y 
 �M �m�U�n���


� If f�x� � y �m set pn 
 �� otherwise pn 
 ��

�� If n � N � where N is the required number of iterations� stop� otherwise set n
 �n���
and go to ��

Then

I �

�
�

N

NX
n��

pn

�
�b� a��M �m� �m�b� a� �
�
��

�with a slight abuse of notation we have used I both for the exact integral and its estimate�
since no confusion can arise�� The idea behind this algorithm is very simple� Suppose for
a moment f�x� � � for a � x � b and consider the smallest rectangle R which contains
the region G � f�x� y� � a � x � b� � � y � f�x�g� Then pick up points in R with uniform
probability� The percentage of points which belong also to G is equal to the ratio between
the area of G and the area of R� Thus the required integral is equal to the percentage of
hits times the area of R� If the function can be negative some care must be exercised and
in this case the same method can be applied to  f�x� � f�x� �minf�x��

Exercise �� Compute the variance of I� For the explicit case f�x� � cos x� a � ��
b � 	�� compute N in order to get �� accuracy�

Hint� the number of hits follows a binomial distribution�

Exercise �� Consider the following method to compute 	 �this method is due to Bu�on�
������ Lay out on the !oor a pattern of parallel lines separated by a distance d� Repeatedly
throw randomly a needle of length d onto this striped pattern� Each time the needle lands
in such a way as to cross the boundary between two stripes� count a hit� otherwise count a
miss� Prove that 	 can be estimated as twice the number of trials divided by the number
of hits�

A second method which is slightly better than the previous one is the so�called crude
Monte Carlo� To compute I we use the following algorithm�

�� Initialize n
 ��

�� Choose a uniform random number Un between � and ��


� Set x
 a� �b� a�Un and fn 
 f�x��
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� If n � N where N is the required number of iterations� stop� otherwise set n
 �n� ��
and go to ��

Then

I �
b� a

N

NX
n��

fn �
�
��

The idea is even simpler� the numbers x are uniformly distributed between a and b� i�e�
have probability measure d� � dx��b � a�� Thus

I � �b� a�
Z

d� f�x� � �b� a�hfi �
�
��

Exercise �� Compute the variance of the previous formula� For the explicit case
f�x� � cos x� a � �� b � 	�� compute N in order to get �� accuracy� Compare with
Exercise ��

The crude Monte Carlo method can easily be extended to multidimensional integrals
and can deal in a straightforward way with essentially any �nite region� The standard
technique for dealing with odd�shaped regions is to embed the domain in the smallest
hyperrectangle that surrounds it� The algorithm works as follows�

�� Initialize n
 �� p
 ��

�� Choose a uniform random point x in the hyperrectangle�


� If x belongs to the integration domain set p
 �p � ��� fp 
 f�x��


� If n � N where N is the required number of iterations� stop� otherwise set n
 �n� ��
and go to ��

Then

I �
V

N

pX
i��

fi �
�
	�

where V is the volume of the hyperrectangle�

Exercise �� Prove the previous formula and compute its variance� Note that both fi
and p are random variables�

This method of integration introduces some ine�ciency due to the rejected points� but
its main property is its full generality� It can also be easily improved by using the strati�ed
sampling technique� The idea here is to write the integral

I �
Z
R
f�x� ddx �
�
��

as a sum of integrals over smaller subdomains Ri which have the following two properties�

�� f�x� is slowly varying in each Ri�

�� Ri has a somewhat regular shape�
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Then the Monte Carlo method is applied to each Ri separately� carefully choosing the
number of iterations performed in each Ri� In such a way one usually obtains a sensible
improvement in the variance�

Exercise �� In order to compute the integral
R ���
� cos x dx use the strati�ed sampling

technique with R� � ��� 	�
� and R� � �	�
� 	���� If the total number of iterations is
�xed equal to N � determine the optimal number of iterations n� and n� which give the
best possible variance with this choice of Ri� Compute N in order to have a �� accuracy�
Compare with the results of the exercises � and 
�

A second method which is used to reduce the error in a Monte Carlo is the so�called
importance sampling technique� The idea is very simple� Since large variations in the value
of the function f lead to a large uncertainty in the �nal estimate� the idea is to perform a
change of integration variables in such a way that in the new variables the function to be
integrated is more constant� In practice this means rewriting

I �
Z b

a
f�x�dx �

Z b

a

f�x�

g�x�
g�x�dx �
�
��

with g�x� � ��
R b
a g�x�dx � �� The algorithm works as follows�

�� Initialize n
 ��

�� Choose a random deviate X with probability density g�x��


� Set hn 
 f�X��g�X��


� If n � N where N is the required number of iterations� stop� otherwise set n
 �n� ��
and go to ��

Then

I �
�

N

�
NX
i��

hi

�
�
�
��

The function g�x� must be chosen such that the ratio f�x��g�x� be as nearly constant as
possible in order to obtain a small variance� The importance sampling technique is a very
useful one� especially when f�x� has singular points� However it a has a serious drawback�
it requires the generation of random numbers with probability density g�x� and the class
of functions for which this can be done easily is really small as we have seen in the previous
Section� To overcome this di�culty a new Monte Carlo method is needed and this will be
the subject of the next Section�

Exercise �� In order to compute
R ���
� cos x dx use the important sampling technique

with g�x� proportional to a�bx�� Determine the optimal a and b� an algorithm to generate
g�x� and the number of iterations needed to get a �� accuracy�

Exercise �� Suppose you want to perform the following integral�

I �
Z �

�
dx

Z x

�
dy g�x� y� �
�
��
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Consider the following methods�

Method A� set gi 
 g�U�UV � where U and V are uniform random numbers belonging to
��� �� and I � ���N�

PN
i�� gi�

Method B� choose U and V uniformly in ��� ��� if U � V reject them and try again� stop
when U � V � Then set gi 
 g�U� V � and I � ���N�

PN
i�� gi�

Method C� choose U and V uniformly in ��� ��� if U � V interchange them� Then set
gi 
 g�U� V � and I � ���N�

PN
i�� gi�

Method D� choose U and V uniformly in ��� ��� then set gi 
 Ug�U�UV � and I �
���N�

PN
i�� gi�

Which of these methods is correct� Which is the most e�cient one when g�x� y� � x� � y�

and when g�x� y� � �� � x��� � y��

To conclude this Section we want to stress that all the previous results can also be
applied to multidimensional sums� i�e� to

I �
X

n� �����nd

f�n� �
�

�

The hit�or�miss method can be applied using a function  f�x�� � � � � xd� � f�trunc�x���
� � � � trunc�xd�� where trunc�x� is the largest integer such that x � trunc�x�� The crude
Monte Carlo method corresponds instead in choosing successive d�tuples �n�� � � � � nd� uni�
formly� computing fi � f�n�� � � � � nd� and then estimating I by

PN
i�� fi� The strati�ed

sampling and the importance sampling technique can also be extended to this case�

� Dynamic Monte Carlo�

In the previous Section we have discussed the so�called static Monte Carlo that generates
a sequence of statistically independent samples from the desired probability distribution�
These techniques become rapidly ine�cient as the dimension of the space increases and
thus they are unfeasible for most applications in statistical mechanics and quantum �eld
theory� In these cases one uses the so�called dynamic Monte Carlo�

In lattice quantum �eld theories and statistical mechanics one wants to compute quan�
tities of the form

hOi �
�

Z

Z
"id�i O e��H	�
 �
�

�

where �i are the basic �elds of the theory� i running over the lattice sites� O is a generic
observable and Z the partition function

Z �
Z

"id�i e
��H	�
 �
�
��
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The �elds �i can be either continuous or discrete� In the latter case the integrals are
replaced by sums� For instance for the Ising model

hOi �
�

Z

X
f�g

O�
� exp

�
��X

hiji


i
j

�
A �
�
��

where
P

f�g indicates the sum over all possible con�gurations of spins� each spin 
i assuming
the values ���

To compute hOi one could try to use the methods presented in the previous Section� For
instance� in the Ising case� we could generate successively random con�gurations f
gi�����N

where each 
i is obtained by choosing randomly the spin at each site� Then

hOi �

PN
i��O�f
gi�e��H	f�gi
PN

i�� e
��H	f�gi


�
�
��

This method is certainly correct� but is totally ine�cient� Indeed from statistical mechanics
we know that the con�gurations which give the relevant contribution to �
�
�� have energy
E such that Em � #E � E � Em � #E where Em is the average value of the energy at
the given �� #E can be taken as some multiple of the standard deviation of Em and has
the property of going to zero as the volume of the system goes to in�nity �self�averaging
property of the energy�� Now in the sum �
�
�� we are trying to estimate hOi at inverse
temperature � using con�gurations distributed according to the Gibbs measure at � � ��
Thus if � is not very small the con�gurations we are using are not the con�gurations which
dominate the sum and thus the estimate is completely unreliable �

The way out is the importance sampling technique� We produce con�gurations dis�
tributed with probability 	�f
g� � exp���H��Z and then we use

PN
i��O�f
gi��N to

estimate hOi� The problem here is that we do not know how to generate independent
con�gurations from the given probability 	� However as we shall see there are fairly sim�
ple methods which generate correlated con�gurations from the given probability� These
methods are called dynamic Monte Carlo�

Let us introduce some notation� we will call the state space where the �elds live S and
the probability measure 	� S can be either continuous or discrete� in the following we
will suppose S to be discrete �as in the Ising model� but all formulas extend easily to the
continuous case substituting sums with integrals� matrices with kernels �����	 is a generic
probability measure� in statistical mechanics and lattice quantum �eld theory applications
	 will be the Gibbs measure exp���H��Z�

Let us now discuss the dynamic Monte Carlo methods� In this case we give up the idea
of producing statistically independent points in S� Instead the choice of the new point
depends on the previous one� Of course this has to be done in such a way that the �nal
points are distributed with probability measure 	� To accomplish this task the idea is to
invent a stochastic process �a Markov chain usually� having 	 as equilibrium distribution�
Let us �rstly de�ne a Markov chain�

De�nition� A Markov chain with state space S is a sequence of S�valued random
variables X�� X�� X�� � � � such that the successive transitions Xt � Xt�� are statistically
independent�
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This means that in a Markov chain the probability that Xt � Xt�� depends explicitly
only on Xt and not on X	 with � � t� Thus the whole process is completely de�ned by
the one�step transition probability matrix P � fpijgij�S� As pij is the probability of the
transition i � j we must have pij � � for all i� j and

P
j�S pij � �� Matrices satisfying

these two conditions are called stochastic matrices�

A Markov chain is said to be irreducible if from each state it is possible to get to each
other state� that is� if� for each pair i� j � S� there exists an n � � such that the probability
Prob�Xt�n � jjXt � i� � �P n�ij is strictly positive� An irreducible chain is said to have
period T if T is the g�c�d� of fn � P n�i� i� � �g for every state i� A chain with period � is
said to be aperiodic�

Exercise �� Consider Markov chains with transition probability matrices�

P� �

�
� � �

� �

�
A � �
�
	�

P� �

�
� �$� �$�

� �

�
A � �
�
��

P� �

�
BB�

� � �

� � �

�$
 � 
$


�
CCA � �
����

Are they irreducible� If they are� compute the period�

To completely de�ne a Markov chain we must also de�ne the probability distribution
of X�� Usually we consider two cases�

�� the Markov chain starts from a state i� i�e� Prob�X� � j� � �ij�

�� the Markov chain is in �equilibrium�� In this case Prob�X� � j� � 	�j� where 	�j�
is the equilibrium distribution we will discuss later in this Section�

The transition probability matrix P and the probability distribution of X� �let us call it
��j�� completely de�ne the probability distribution of the random variables Xt and of the
functions thereof� Moreover they induce a probability measure on the set of n�step chains
through

Prob�X� � i�� X� � i�� � � � � Xn � in� � ��i�� pi�i�pi�i� � � � pin�� in �
����

Using this probability measure one can compute mean values of functions of the fXtg�
We will indicate with h� � �i
 the mean value when the Markov chain is started with initial
distribution �� omitting the subscript when the chain is in equilibrium �� � 	��

Let us now study the asymptotic properties of Markov chains� The standard theory tells
us the following about the long�term behaviour of an aperiodic irreducible chain� Firstly
the limit

lim
n��

�P n�ij �
����
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exists for every i and j in S and is independent of i� call it 	�j�� Next� if S is �nite� then

X
j�S

	�j� � � �
��
�

and X
i�S

	�i�pij � 	�j� �
��
�

for all j � S� Moreover 	 is the only non�negative solution to �
��
� and �
��
�� In the
general case there are two possibilities� 	�j� � � for all j and in this case no solution
to �
��
� and to �
��
� exists� or 	�j� is the unique nonnegative solution to the previous
equations� If 	 exists the chain is called positive recurrent or ergodic and 	 is called the
equilibrium or stationary distribution�

All these results extend to periodic irreducible chains� In this case the limit �
���� does
not exist� however one can prove that the same results hold true taking the mean limit of
P n�

Exercise �� For each of the matrices de�ned in Exercise �� compute P n� its limit �or
mean�limit� for n�� and all the nonnegative solutions to the equations �
��
� and �
��
��

The probability 	 represents the fraction of time that the chain spends in each state in
the long run irrespective of the initial state �law of large numbers�� To state it precisely�

let u
	k

j be a function with value � if the k�th step of the chain is j and zero otherwise� If

f
	n

j �

�

n

nX
k��

u
	k

j �
����

we have

Theorem �� �Law of Large Numbers	 If P is ergodic

lim
n��

hf 	n
j i
 � 	�j� �
����

and
lim
n��

Prob
�jf 	n
j � 	�j�j � �� � � �
����

for every � � �� independently of the starting distribution ��

Exercise �� For an aperiodic positive recurrent chain de�ne "ij � 	�j� and assume
that the matrix Z � �I � P �"��� exists� Prove

lim
n��

hn
	
f
	n

j � 	�j�



i
 �

X
i�S

��i��Z � "�ij �
��	�

If � � 	 show that the limit is zero� This result shows that if � �� 	� f
	n

j is a biased

estimate of 	�j�� the bias being of order ��n�

Hint� Notice that Z � I �
P�

k���P
k � "� and hu	k
j i
 �

P
i ��i��P

k�ij �
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Thus� if the chain is positive recurrent and we observe it for a su�ciently long time
then the data will be well distributed according to 	 and thus to estimate 	�averages of an
observable f we can consider Markov time averages� The rigorous result �ergodic theorem�
tells us that for a real�valued function f de�ned on the state space S and a positive recurrent
chain with stationary probability 	 we have

lim
n��

�

n

nX
t��

f�Xt� �
X
i�S

f�i�	�i� �
����

with probability one if the r�h�s converges absolutely� Moreover� because of the central limit
theorem� the !uctuations are of order ��

p
n�

Exercise �� Consider a maximal period random number generator with recursion
Xn�� � f�Xn�� Show that it de�nes a Markov chain� Is it irreducible� And what is the
period� Prove that 	�n� � ��m satis�es �
��
� and �
��
�� This implies that for every
function g we have

lim
n��

�

n

nX
t��

g�Xt� �
�

m

m��X
i��

g�i� �
����

Is this property of interest for the random number generation problem� �Answer� No�

As a �nal comment let us notice that static Monte Carlo can also be thought as a
Markov chain� Consider indeed the transition matrix pij � 	�j�� It is obvious from this
de�nition that Xt�� does not depend on Xt and that it has the correct distribution�

After this introduction to the theory of Markov chains it is clear how to generate samples
from the desired probability distribution 	� It is enough to invent a transition probability
matrix P � fpijg which satis�es the following two conditions�

�A� Irreducibility� For each pair i� j � S there exists n � � such that �P n�ij � ��

�B� Stationarity of 	� For each i � S

X
j�S

	�j�pji � 	�i� �
����

In many cases� instead of �B� one requires a stronger condition�

�C� Detailed balance� For every pair i� j � S

	�j�pji � 	�i�pij �
����

It is easy to check that �C� implies �B�� A Markov chain that satis�es �C� is called
reversible as the probabilities Prob�Xt � i�Xt�� � j� and the reversed one Prob�Xt �
j�Xt�� � i� are equal in equilibrium�
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Conditions �A� and �B� are necessary for a correct Monte Carlo� However there are
many choices of P which satisfy both �A� and �B� and their e�ciency will be in general very
di�erent� The key di�culty in dynamic Monte Carlo is that successive states X�� X�� � � � of
the Markov chain are correlated so that the variance of the estimates produced from the
simulation may be much higher than in static Monte Carlo� To make this precise� let f�x�
be a real valued function de�ned on the state space S� We have already seen that time
averages of f�Xt� converge to hfi� We want now to study the variance of this estimate �
i�e�

lim
n��

n Var


�
�

n

nX
k��

f�Xt�

�
�
��
�

where � is the starting distribution of the Markov chain� It can be shown that such a limit
does not depend on the initial distribution and thus one can compute it in equilibrium� Let
us notice that when ��j� � 	�j� all the random variables fXtg have distribution 	 because
of property �B�� This implies that all mean values are time translation invariant� i�e�

hf��Xt�� � � � fn�Xtn�i � hf��Xt��t� � � � fn�Xtn�t�i �
��
�

for all t� Then

Var�

�
�

n

nX
k��

f�Xt�

�
�

�

n�

nX
ts��

hf�Xt�f�Xs�i � hfi� �
����

�
�

n�

nX
ts��

Cff�t� s� �
����

�
�

n

n��X
t��	n��


Cff�t�

�
�� jtj

n

�
�
����

Here Cff�t� is the autocorrelation function de�ned by

Cff�t� � hf�Xs�f�Xs�t�i � hfi� �
��	�

�
X
ij

f�i��	�i��P t�ij � 	�i�	�j�� f�j� �
����

Cff�t� is a �usually exponentially� decreasing function and thus for large n we can approx�
imate the variance by

�

n

n��X
t��	n��


Cff�t� �
����

Let us then de�ne the integrated autocorrelation time

�int�f �
�

�

�X
t���

Cff�t�

Cff���
�

�

�
�

�X
t��

Cff�t�

Cff���
�
����

Then we obtain for the variance

�

n
���int�f �Cff��� �
����

Thus the variance is a factor ��int�f larger than it would be if the ff�Xt�g were statistically
independent� Stated di�erently� the number of e�ectively independent samples in a run of
length n is roughly n���int�f
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Exercise �� Let S be �nite� P an aperiodic chain and f � g functions de�ned on S�
Consider

Cov	n
�f � g� � Cov�

�
�

n

nX
k��

f�Xk� �
�

n

nX
k��

g�Xk�

�
�
��
�

Prove that
lim
n��

n Cov	n
�f � g� �
X
ij

f�i�Cijg�j� �
��
�

where the limiting covariance operator C is given by

Cij � Zij	�i� � Zji	�j� � 	�i��ij � 	�i�	�j� �
����

and Z is de�ned in Exercise 
 �assume that Z exists� this is always true if S is �nite�� Hint�
prove �rstly that

Cij � lim
n��

�
n��X
k��

	�i��P k�ij

�
�� k

n

�
� �i
 j� � 	�i��ij � n	�i�	�j�

�
�
����

and then use the Cesaro theorem to prove

n��X
k��

�P k�ij

�
�� k

n

�
� Zij � �ij �

�

�
�n� ��	�j� �O���n� �
����

A second important autocorrelation time is the exponential autocorrelation time� It is
de�ned by the decay for large times of Cff�t�� The proper de�nition is

�exp�f � lim
t��

sup
t

� log j�ff�t�j �
��	�

where �ff�t� � Cff�t��Cff��� and

�exp � sup
f�l�	�


�exp�f �
����

Thus �exp is the relaxation time of the slowest mode in the system�

An equivalent de�nition involves the spectrum of the transition probability matrix P
considered as an operator in l��	�� One can prove the following facts�

�a� the spectrum of P lies in the closed unit disk �this follows immediately from the fact
that

P
j pij � ���

�b� � is a simple eigenvalue of P and ��� � � � � �� is the corresponding eigenvalue�

�c� if the chain is aperiodic� then � is the only eigenvalue of P on the unit disk�

Within this formalism �exp is de�ned through the spectral radius R of P acting on the
orthogonal complement of the constant functions in l��	�� Then

R � exp�����exp� �
�	��

If S is �nite� R is simply the second largest �in absolute value� eigenvalue of P �
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The interest in �exp lies in the fact that it governs the convergence to equilibrium of
the Markov chain� Let � be an arbitrary probability distribution de�ned on S and let
us consider the Markov chain with initial probability �� Then at time t the probability
distribution of fXtg is

��P t��j� �
X
i�S

��i��P t�ij �
�	��

Now� if f � l��	�� let us consider

jhf�Xt�i
 � hfij �








X
ij

��i�P t
ijf�j��

X
i

	�i�f�i�







 �
�	��

�








X
ij

���i� � 	�i���P t
ij � 	�j��f�j�







 �
�	
�

�








X
ij

���i� � 	�i���P � "�tijf�j�







 �
�	
�

where "ij � 	�j� and we have repeatedly used the stationarity property of P � Now the
spectral radius of P �" is R by de�nition as " is the projector over the constant functions
and thus the spectral radius of �P � "�t is of the order of Rt with exact equality if P is
self�adjoint� Then

jhf�Xt�i
 � hfij � exp��t��exp� jhf�X��i
 � hfij �
�	��

To conclude this Section we want to prove an important relation satis�ed by the integrated
autocorrelation time when the chain is reversible� In this case� using �C�� we immediately
see that P is self�adjoint in l��	� and thus its spectrum is real� Then� by the spectral
theorem� we can write

Cff�t� �
Z �

��
�jtj d�ff��� �
�	��

where d�ff��� is a nonnegative measure with support in �� exp�����exp�f�� exp�����exp�f ���
Then

�int�f �
�

�

R �
��

���
���

d�ff���R �
�� d�ff���

� �

�

� � �ff���

�� �ff���
�
�	��

by Jensen�s inequality� This is a very useful relation in proving lower bounds on the
autocorrelation times�

In summary� the autocorrelation times �exp and �int�f play di�erent roles in Monte Carlo
simulations� The �rst one places an upper bound on the number of iterations ndisc which
should be discarded at the beginning of the run� before the system has attained equilib�
rium� for example� ndisc 	 ���exp is usually more than adequate� On the other hand �int�f
determines the statistical errors in the Monte Carlo measurement of hfi once equilibrium
has been attained�

Most commonly it is assumed that �exp and �int�f are of the same order of magnitude�
at least for reasonable observables f � But this is not true in general� In fact� in statistical
mechanical problems near a critical point� one usually expects the autocorrelation function
�ff�t� to obey a dynamic scaling law of the form

�ff�t��� � jtj�a F
	
�� � �c�jtjb



�
�		�
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valid in the region

jtj �� �� j� � �cj �� �� j� � �cjjtjb bounded �
�	��

Here a� b are dynamic critical exponents and F is suitable scaling function� � is some
�temperature�like� parameter and �c is the critical point� Now suppose that F is continuous
and strictly positive� with F �x� decaying exponentially for large x� Then it is not hard to
see that

�exp�f � j� � �cj���b �
����

�int�f � j� � �cj�	��a
�b �
����

�ff�t�� � �c� � jtj�a �
����

so that �exp�f and �int�f have di�erent critical exponents unless a � �� Actually this should
not be surprising� replacing �time� by �space� we see that �exp�f is the analogue of a
correlation length while �int�f is the analogue of a susceptibility� and in general this two
quantities have di�erent critical exponents� Thus it is crucial to distinguish between these
two types of autocorrelation time�

� Statistical Analysis of DynamicMonte Carlo Data�

In the previous Section we have discussed the theory behind Monte Carlo simulations and
in particular we have de�ned the autocorrelation times associated with a Markov chain� In
this Section we want to discuss how to use them in the analysis of the data coming from a
simulation�

There are two fundamental and quite distinct issues in dynamic Monte Carlo simula�
tions�

� Initialization bias� If the Markov chain is started with distribution � �� 	 then
there is an �initial transient� in which the data do not re!ect the desired equilibrium
distribution 	� This results in a systematic error which however goes to zero as the
sample size goes to in�nity�

� Autocorrelation in equilibrium� The Markov chain� once it reaches equilibrium� pro�
vides correlated samples from 	� This correlation causes the statistical error �vari�
ance� to be a factor ��int�f larger than in independent sampling�

Let us �rstly discuss the problem of initialization� At the beginning of the run we usually
choose an easy�to�prepare con�guration� There are various possibilities� For instance in
the Ising model we can either start from a cold �or ordered� con�guration or from a hot
�or random� con�guration� In the �rst case all the spins are aligned� while in the second
case the spins are initialized randomly and independently� with equal probability of up
and down� Another possibility� which reduces the thermalization time� consists in using a
con�guration thermalized at a nearby value of � �of course if we have it�� The main feature
of all these methods is that the initial con�guration is out of equilibrium� We know from
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the results of the previous Section that the system approaches equilibrium as t � � as
�P �nij � 	�j� but what we are really interested in is the rate of convergence� that is the
number of iteration necessary for the system to thermalize�

Using the exponential autocorrelation time �exp we can set an upper bound on this
amount of time� For example ���exp iterations will be enough for all practical purposes�
There are however two di�culties in applying this method� �rst of all we do not know how
to evaluate �exp and in very few �non trivial� cases we have a theoretical knowledge of it�
Secondly this method may be overly conservative� For instance there are perfectly good
algorithms for which �exp �� � the correlation function decays here as a power law�� Does
this mean that equilibrium can never be reached� Of course not� �exp � � means that
there many �bad� starting con�gurations which require an enormous time to equilibrate�
but this does not exclude that we can �nd �good� con�gurations which equilibrate quite
fast�

In practice to determine empirically when equilibrium has been achieved one plots
selected observables as a function of time and notes when the initial transient appears to
end� The danger in all these methods is the possibility of metastability� That is� it could
appear that equilibrium has been achieved� when in fact the system has only settled down
to a long�lived metastable region of con�guration space that may be far from equilibrium�
A good method to check if metastability is present is to try di�erent initial con�gurations
and see if the results of the di�erent runs are consistent�

Once equilibrium has been attained one can try to make a rough empirical estimate
of �exp by measuring the autocorrelation function Cff�t� for a suitably large set of observ�
ables f � but there is always the danger that our chosen set of observables has failed to
include one that has strong enough overlap with the slowest mode� again leading to a gross
underestimate of �exp�

As a �nal comment� let us notice that discarding the initial transient is asymptotically
not necessary� As we have seen in the previous Section the sample mean and its variance
converge� when the sample size goes to in�nity� to a limit independent from the initial
distribution� Indeed the bias due to the initial transient �see e�g� exercise 
 in the previous
Section� scales as ��n while the statistical !uctuations are of order ��

p
n� In practice� how�

ever� the coe�cient of ��n may be fairly large if the starting con�guration is very far from
equilibrium so that throwing away tha data from the initial transient remains necessary�
Remark that the shorter the run the more careful one has to be about equilibration�

Let us now discuss the second issue� As we have seen in the previous Section the sample
mean of f � i�e�

%f �
�

n

nX
i��

fi ����
�

gives an estimate of hfi which is unbiased if the chain is in equilibrium �that is h %fi � hfi��
The next problem is to set an error on this estimate� One of the simplest procedures is the
method of the �batched means�� If the run consists of n measurements� divide it into some
relatively small number T of equal length subsequences� or �batches�� Let b � n�T be the
number of measurements in each batch and let Yi be the average of the i�th batch

Yi �
�

b

ibX
j�	i��
b��

fj ����
�
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If b is much larger than �exp then the Yi�s are approximately independent and Gaussian
with mean hfi and variance Cff������int�f ��b� Then� for the overall average is the average
of the Yi�s we can estimate its variance using the sample variance of the Yi�s� This is a very
quick method� However it has a serious drawback� the assumption b �� �exp� In particular
it cannot be applied to those algorithms where �exp � � or where �exp �� �int�f since in
this case the total number of iterations can be much less than �exp� Moreover the results
of the procedure cannot be used as a check on the assumption�

A much better method uses the results of the previous Section� Indeed we know that
the variance of the sample mean %f is Cff������int�f �� Cff��� is simply the static variance
and is estimated by

Cff��� �
�

n

nX
i��

	
fi � %f


�
������

Notice that this quantity depends uniquely on the model and not on the algorithm used to
simulate it� What instead depends on the algorithm is �int�f � To evaluate it we must �rst
estimate Cff�t�� The natural estimator is

 Cff�t� �
�

n� jtj
n�jtjX
i��

�fi � %f��fi�jtj � %f� ������

This is a biased estimator of C�t� the bias being of order ��n� The natural estimator of
�ff�t� � Cff�t��Cff��� is thus

 �ff�t� �
 Cff�t�
 Cff���

������

Then the natural estimator of �int would seem to be

 �int�f �
�

�

n��X
t�	��n


 �ff�t� ����	�

but this is wrong� Indeed this estimator has a variance that does not go to zero as n���
Roughly speaking this is because the sample autocorrelation  �ff�t� for jtj �� �int�f contains
much noise but little signal �see the following exercise��

Exercise �� Let fi be independent Gaussian variables of mean ��n and variance 
��n�
Compute the mean and the variance of

Pn
i�� fi�

The solution is to cut o� the sum de�ning

 �int�f �
�

�

MX
t��M

 �ff �t� ������

Of course this cut o� introduces a bias and in general this formula will underestimate the
correct value� However we can choose M in such a way that the bias is small� This can
be achieved using the authomatic windowing procedure by Madras and Sokal� choose M
self�consistently as the smallest integer such that M � c �int�f �M�� If �ff�t� were a pure
exponential one could take for instance c � 
� in this case making an error of the e�� � ���
However in many cases �ff�t� has a slower preasymptotic decay and thus in these cases c
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must be larger� for instance c � 
� � in order to have an error of the same magnitude� In
general the determination of c requires the study of the behaviour of the autocorrelation
function Cff�t�� Indeed c must not be too small� otherwise the bias would be too large�
but neither too large otherwise we would include some noise� What small and large mean�
depends on the number of iterations and in general� increasing the number of iterations one
must at the same time increase the value of c in order to keep the systematic error smaller
than the statistical one� Let us �nally quote the variance of  �int�f �

Var� �int�f � �
���M � ��

n
��int�f �������

valid in the regime �int�f �� n�

As a �nal remark� notice that this procedure works well only if n �� �int�f � Empirically
one usually �nds that the results are reliable if n �� �����int�f �

From what we have said it is clear that the performance of the algorithm is completely
characterized by �int�f measured in CPU�time units� The higher �int�f the less e�cient is the
algorithm� Now what is the behaviour of �int�f� Generically� away from phase transitions
�i�e� in the regions where the correlation length is small� �int�f remains reasonably small�
However near a critical point the autocorrelation time diverges as

� � �z��� �������

where ���� is the correlation length of the in�nite volume system at temperature ��� and z
is a dynamical critical exponent� This phenomenon is called dynamic critical slowing down
and it is the most severe limitation to Monte Carlo studies� We will see in the next Section
that for local Monte Carlo one usually have z �� � �overrelaxation is an exception with
z �� �� while using non�local methods �cluster algorithms� Fourier acceleration� multigrid
���� one can achieve sensible improvements �in many cases z 	 ���

Now� how can we determine z� First of all� as we have already remarked� z depends on
the type of autocorrelation time we are considering and thus we must distinguish between
zexp and zint�f and in many algorithms di�erent quantities f have di�erent exponents �
for instance in Wol��s algorithms for RP n 
�models the exponent of the susceptibility is
� � while the exponent of the energy is � ��� Secondly� notice that ������� is true only
when L��� In practice experience with two�dimensional models shows that corrections
to scaling are usually very strong� For instance� using Wol��s algorithm for the O�
� 
�
model one �nds for L � 
�� � � ���� � � 
��
 and �int�� � 
��
���� while for L � 
��
� � ���� � � ����� and �int�� � ���������� Using ������� and these two values we would
get zint�� � ��	 but this is wrong� Indeed for this model one has zint�� �� ���� The wrong
result is due to the fact that we have neglected the �nite�size corrections� The correct way
of performing the analysis uses a �nite�size scaling Ansatz of the form

�int�f ��� L� � ���� L�zint�f gf ����� L��L� �������

where gf is an unknown scaling function with gf��� supposed to be �nite and non�zero�
To determine zint�f one plots �int�f ��� L������ L�

zint�f as a function of ���� L��L �xing zint�f
so that all the points lie on a unique curve within error bars� In order to have a reliable
estimate many di�erent values of L must be used and su�ciently accurate estimates of
�int�f are required�
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Let us now pass to a second subject� so far we have discussed how to compute from the
Monte Carlo data the mean values of the observables we are interested in and their error
bars� Now let us discuss how to use them in some practical problem�

In many cases we want to compute invariant ratios� i�e� quantities of the form

R �
hAip
hBiq �����
�

where A and B are two di�erent observables and p and q some exponents� Of course we
estimate this quantity from the sample means %A and %B�

Rest �
%Ap

%Bq
�����
�

But then� what is the error bar on Rest� The main problem in its estimation is that %A and
%B come from the same run� consequently they are correlated and this must be kept into
account in setting the error bars� Let us compute the variance of Rest� By de�nition

Var �Rest� � h
%A�p

%B�q
i � hResti� �������

Then introduce

#A �
%A� hAi
hAi �������

#B �
%B � hBi
hBi �������

Expanding in #A and #B �valid in the large sample limit� we get

Var �Rest� �
hAi�p
hBi�q

	
p�h#A�i� q�h#B�i � �pqh#A#Bi



� o���n� �����	�

Notice that h#A�i � 
�A�hAi� and h#B�i � 
�B�hBi� while the last term keeps into account
the correlation between the estimates of A and B� Using the fact that �Schwartz inequality�

jh#A#Bij � h#A�i���h#B�i��� �������

we obtain an upper bound in terms of the variances of A and B alone

Var �Rest� � hAi�p
hBi�q

�
p

A
hAi � q


B
hBi

��

�������

This upper bound is usually very far from being sharp since A and B are strongly correlated
�in some cases ������� is ten times larger than the correct formula �����	��� For this reason
it is always convenient to use �����	�� However in this case we must compute the covariance
h#A#Bi� This can be avoided using a little trick� i�e� rewriting �����	� as

Var �Rest� �
hAi�p
hBi�q Var �p#A� q#B� �������
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and this last variance can be computed applying the time�series methods we have presented
before to the time series

p
Ai � %A

%A
� q

Bi � %B
%B

�������

In this way one usually gets smaller �but correct�� error bars� We want to emphasize that
these results are not connected with dynamic Monte Carlo� in the sense that the important
thing here is the static correlation of A and B �usually p#A� q#B has an autocorrelation
time which is of the order of the largest of �int�A and �int�B� and thus it is important to keep
it into account also in the case of independent sampling�

These formulas can easily be extended to generic functions of hAi and hBi and to
functions of more than two observables�

Exercise �� In lattice gauge theories one usually de�nes the Creutz ratio

R�I� J� �
W �I� J�W �I � �� J � ��

W �I� J � ��W �I � �� J�
�����
�

where W �I� J� denotes the expectation of a rectangular Wilson loop of lattice dimensions
I and J � Compute the variance of R�I� J� in the large sample limit expressing the result in
terms of variances of suitably de�ned observables for which the usual time�series analysis
can be applied�

Let us now present two applications of the previous results� The �rst one is concerned
with the so�called hystogram method introduced by Falcioni et al� and Ferrenberg and
Swendsen� Suppose you have made a simulation of the system at a given value of �� Can
this run be used to get some information on the mean values of the various observables we
have measured at a di�erent temperature ��� The answer is yes� and it is based on the
following observation� if O is any observable we have

hOi�� �
�

Z����

X
f�g

O�
� exp����H�
�� �����
�

�

P
f�gO�
� exp��� � ���H�
�� exp���H�
��P

f�g exp��� � ���H�
�� exp���H�
��
�������

�
hexp��� � ���H�Oi�
hexp��� � ���H�i� �������

where h� � �i� is the estimate at inverse temperature �� Thus an estimate of hOi�� is obtained
as a ratio of the sample means of exp��� � ���H�O and exp��� � ���H� and the error bar
is computed using �����	��

One can also compute hOi�� using runs at di�erent� but nearby� values �i� In this case
the estimates are independent and thus it is very simple to write down the �nal estimate
and its error bar� If Oi is the estimate of hOi obtained using the runs at temperature ���i
and 
�i its variance we get the �nal estimate

Oest �
X
i

Oi


�i

�X
i

�


�i

���
�������
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with variance


� �

�X
i

�


�i

���
�����	�

The hystogram method is very useful in many cases� However we must stress two important
points� First of all hOi�� can be computed from a run at inverse temperature � only if �� lies
in a small interval around � and the width of this interval is of the order of the !uctuations
of the energy and as such decreases as ��

p
V �except at phase transition points where

!uctuations go as
q
CE�V where CE � V 
�d� is the speci�c heat�� Outside this interval

the estimates become completely unreliable and formula �����	� cannot be applied since
higher order corrections are still important� Secondly the points obtained in this way are
correlated and this must be kept in mind in any subsequent analysis �see exercise 
��

Exercise �� Let Em be the mean value of the energy at inverse temperature � of an
Ising model and n�E� the number of spin con�gurations with energy E� Show how one can
compute the ratio n�E��n�Em� from a run at inverse temperature �� �The results will be
reliable only for E not very di�erent from Em� explain why���

A second important case concerns the evaluation of conditional expectations� Let O�

and O� be two observables and suppose you want to compute the mean value of O� subject
to the condition that O� assumes a certain value �or satis�es a certain relation�� For
instance this what you need when preparing a hystogram� a plot of O� as a function of O��

Let us introduce the function 
 de�ned on the state space S which assumes the value
� if the condition on O� is satis�ed and � otherwise� Then the conditional expectation can
be computed using the formula

hO�iConditional on O� �
�
n

Pn
i��O�

i
i
�
n

Pn
i�� 
i

�������

and its variance from �����	��

It is easy to see that this formula corresponds to the very simple idea of estimating
hO�iConditional on O� using the censored time�series &X�� � � � &Xn� de�ned by

&Xj � XTj �������

where T� � T� � � � � � Tn� are the times for which the condition on O� is satis�ed� Indeed
it is easy to see that the previous formula corresponds to

hO�iConditional on O� �
�

n�

n�X
i��

O�
Ti

�������

Notice that in this formula both the Tj and the censored sample size n� are random variables
and thus we cannot apply the usual time�series analysis to this sequence�

Let us conclude this Section by discussing another problem of practical importance�
the determination of the exponential correlation length� Let us �rstly review its de�nition�
Given a model� let O be a generic observable� Then compute the two�point function

hO��� O�x�i � hOi� �������
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Near a critical point� for large jxj� this quantity has a behaviour of the form

hO��� O�x�i � hOi� � exp��jxj��O� �����
�

where �O is the exponential correlation length associated toO� In general di�erent operators
have di�erent correlation lengths but at the critical point all these quantities scale with the
same exponent usually called �� In Monte Carlo computations� in order to have a better
signal and thus a better estimate of �O one usually uses space�averages of O� i�e� computes

GO�t� �
X

x�
y

	
hO��x� �� O��y� t�i � hOi�



�����
�

which is expected to behave for large t as

GO�t� � exp��jtj��O� �������

On a �nite lattice with extension L in the time direction and periodic boundary conditions
one must keep into account the periodicity and the correct formula is �� � t � L��

GO�t� � �exp��t��O� � exp��L� t���O�� �������

� ch ��L�� � t���O� �������

Let us now pass to describe how to compute �O from Monte Carlo data� For simplicity we
will compute �O from the Ansatz

GO�t� � � exp��t��O� �����	�

which we assume valid for � �� tmin � t � tmax �� L�� but the whole discussion can be
easily extended to the general formula �������� Taking logarithms we get

logGO�t� � log�� t��O � A� t��O �������

Now� how do we evaluate A and �O� The �rst idea is to use the standard 
� method� Let
 G�t� be the sample two�point function� i�e� �

 G�t� �
�

n

nX
i��

G
	i

O �t� ����
��

and V �t� be its variance computed for each t by analyzing the time series of G
	i

O �t�� then

de�ne


� �
tmaxX
t�tmin

�
log  G�t�� A� t

�O

���  G�t��

V �t�

�
����
��

A and �O are computed as the values which minimize 
� and the errors on A and �O are
obtained from the standards results on the linear regressions� But� is this method correct�
Unfortunately it is not� since we have overlooked a very important fact� the values of  G�t�
for di�erent t are �strongly� correlated due to the fact that we have made the measurements

�Notice that in this discussion we may indicate with time two di�erent quantities� there is the simulation

time which we indicate with i and goes from � to n where n is the total number of iterations and the lattice

time t which goes from � to L�
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on the same con�gurations� This means that the error bars that we have computed using
the standard formulas on linear regressions grossly underestimate the true error bars�

The correct procedure consists in computing �rstly the covariance matrix

V �t�� t�� � Cov

�
�

n

nX
i��

G
	i

O �t���

�

n

nX
i��

G
	i

O �t��

�
����
��

This computation can be done in many di�erent ways� The simplest one consists in noting
that �A and B generic quantities�

Cov�A�B� � hABi � hAihBi ����

�

�
�

�

	
hA�i� hB�i � h�A� B��i � �hAihBi



����

�

�
�

�
�Var�A� � Var�B� � Var�A� B�� ����
��

From this formula one sees that the problem of computing Cov�A�B� has been reduced to
the �by now very well known� problem of computing three variances� i�e� to the computation
of CA�B�A�B���� CAA���� CBB���� �int�A�B � �int�A and �int�B as we have discussed at length�
Then� once you have V � compute its inverse� i�e� the matrix V ���t�� t�� such that

tmaxX
t�tmin

V ���t�� t�V �t� t�� � �t��t� ����
��

and de�ne
'�t�� t�� � V ���t�� t��  GO�t��  GO�t�� ����
��

Then the 
� is de�ned by


� �
tmaxX

t��t��tmin

�
log  G�t��� A� t�

�O

��
log  G�t��� A� t�

�O

�
'�t�� t�� ����
	�

and the mean values A and �O and their error bars are computed using the standards
methods for linear regressions�

This discussion applies to many other similar cases which can be dealt with along the
same lines� Another example is presented in the following exercise�

Exercise �� Consider the Ising model on a two�dimensional square lattice� Suppose
you have three runs at � � ��
�� ��
�� ��

 and that you have measured the susceptibility

 and the energy E� Then imagine that� using the hystogram method� you have computed
the susceptibility also for � � ��
	� ��
�� ��
�� How do you perform a �t of the form

 � ��c � ��� in order to estimate � and �c�

� Metropolis and Heat�Bath Algorithms

In Section 
 we discussed the requirements which must be satis�ed by a Markov chain in
order to produce a correct Monte Carlo� Let us now start discussing some explicit ways
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of building transition matrices satisfying the conditions �A� and �B� �formulas �
��
� and
�
��
��� A very general method was introduced by Metropolis et al� and is now called
Metropolis algorithm� Let P 	�
 be an arbitrary irreducible transition matrix on S� We call
P 	�
 the proposal matrix and we use it to generate proposed transitions i � j which are
then accepted with probabilities aij and rejected with probability � � aij� If a proposed
move is rejected� then we make a �null transition�� i � i� Therefore the full transition
matrix P is given by

pij � p
	�

ij aij for i �� j ����
��

pii � p
	�

ii �

X
j ��i

p
	�

ij �� � aij� ����
��

where of course aij � � for all i� j� It is easy to see that P satis�es detailed balance for 	
if and only if

aij
aji

�
	jp

	�

ji

	ip
	�

ij

����
��

for all pairs i �� j� But this is easily arranged� just set

aij � F

�
�	jp	�
ji

	ip
	�

ij

�
A � ����
��

where F � ������ ��� �� is any function satisfying

F �z�

F ���z�
� z ����

�

for all z� The choice of Metropolis et al� is

F �z� � min�z� �� ����

�

which is the maximal function satisfying ����

�� Another choice is

F �z� �
z

� � z
����
��

Of course it is still necessary to check that P is irreducible� but this is usually done on a
case�by�case basis�

In the most part of the applications� the proposal matrix P 	�
 is symmetric� i�e� p
	�

ij �

p
	�

ji and in this case the transition probabilities have the simpler expression�

aij � F

�
	�j�

	�i�

�
����
��

In statistical mechanics and lattice quantum theories� 	 is the Gibbs measure and thus the
transition probabilities become

aij � F
	
e��	Ej�Ei




����
��

where Ei is the energy of the state i� Then� using the F given in ����

�� we obtain the
following algorithm�
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�� If i � S is the current con�guration choose j with probability p
	�

ij �

�� Compute Ei and Ej � the energies of the old and of the proposed con�guration�


� If Ej � Ei � � accept the proposal� i�e� j is the new current con�guration�


� If Ej � Ei � � accept the proposal with probability e��	Ej�Ei
� that is� choose a
random number U uniformly distributed between � and �� then if U � e��	Ej�Ei


accept the proposal so that j is the new current con�guration� otherwise make a null
transition� that is keep i as current con�guration�

Exercise � � Write the algorithm in the case F �z� � z��� � z��

Let us see some simple applications of this procedure� Let us �rstly consider the Ising
model� this is the simplest spin model� the �elds 
i assuming the values ��� The Hamil�
tonian is

H�f
g� � �X
hiji


i
j ����
	�

where the sum runs over all nearest�neighbour pairs� Let us now de�ne the algorithm� Fix
some site i� The proposal is to !ip 
i� hence

p
	�

i �f
g � f
�g� � � if 
�i � �
i and 
�j � 
j for all j �� i ����
��

p
	�

i �f
g � f
�g� � � otherwise �������

Here P
	�

i is symmetric so that we can immediately apply the algorithm with

E�f
�g�� E�f
g� � �
i
X
j


j �������

where the sum extends to all nearest neighbours j of i�

This de�nes a transition matrix Pi in which only the spin at site i is touched� The full
algorithm involves sweeping through the entire lattice� There are various ways of doing
this� One can for instance visit the lattice sites randomly� i�e� choose subsequent random
points i� In this case the complete transition matrix is

P �
�

V

X
i

Pi �������

Another possibility is sequential updating� In this case one orders the lattice sites and
sequentially update the spin at each site� The full transition matrix is in this case

P � Pi�Pi� � � �PiV �����
�

Notice that in this case P does not satisfy detailed balance for 	 but it satis�es stationarity
for 	 which is what really matters�

An important type of sequential updating is the so�called checkerboard update used
on vector and parallel machines� Suppose you are working on a d�dimensional hypercubic
lattice and de�ne the parity function

p�n�� n�� � � � � nd� � ����
P

i
ni �����
�
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where �n�� n�� � � � � nd� are the lattice coordinates� Then notice that� if i and j have the same
parity� Pi and Pj commute so that the order in which we apply Pi and Pj is irrelevant� In
particular� if our computer is a parallel machine we can perform the updates at points i
and j simultaneously� In this way a single sweep over the whole lattice is performed in two
steps �in the �rst step we update all points i with p�i� � �� in the second one those with
p�i� � ����

Exercise �� Consider an Ising model on a triangular lattice� Show that on a parallel
machine a single sweep can be performed in three steps�

Exercise �� On a square lattice consider an Ising model which has a nearest�neighbour
and diagonal interactions� Show that a single sweep can be performed in at most 
 steps
on a parallel machine�

Exercise �� On a square lattice consider an Ising model which has a hamiltonian

X
i

X
��


i �J�
i��� � J�
i����� �������

Show that a single sweep can be performed in at most 
 steps on a parallel machine�

Let us now pass to discuss a second model� the O�N� 
�model� In this case the �elds
are N �dimensional unit vectors �
i and the Hamiltonian is given by

H�f�
g� � �X
hiji

�
i � �
j �������

where the summation extends to all nearest neighbour pairs hiji� The algorithm we have in
mind here is a simple generalization of what we have presented for the Ising model� Firstly
choose a site i� Then propose a new con�guration f�
�g in the following way�

�
�j � �
j for all j �� i �������

�
�i � �
i cos � � �r sin � �����	�

where �r is a uniformly distributed unit vector perpendicular to 
i and � is a random angle
with probability density f�cos ��� � � � � 	� Let us now show that for every probability
density f�cos �� the proposal matrix is symmetric and thus we can apply the standard
Metropolis procedure� To prove this� notice that the probability distribution of �r and � is
proportional to

d� dN�r ���r � �
i� ��r� � ��f�cos �� �������

From this we can easily obtain the probability distribution of �
�� Eliminating �r and � in
favour of �
�i we get

dN�
�i ���

�
�

i � ��
	
�� ��
i � �
�i��


��N��
f��
i � �
�i� �������

which proves that P 	�
 is symmetric�
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Exercise �� Let S be the space of U�N� matrices with probability measure the Haar
measure� Consider the transitions U � U � where U � � UV with V is chosen with prob�
ability measure f�V �dV � Show that the associated transition matrix is symmetric if and
only if f�V � � f�V ���

At this point we must specify f�cos ��� All possible choices are correct� however not all
of them will be equally e�cient� It is clear that the probability of acceptance will decrease
with increasing � and thus if � is very large the move will be rejected with high probability
and this makes the algorithm ine�cient� On the other hand� if � is very small the new
con�guration will be accepted with high probability� However in this case the new spin will
be only slightly di�erent from the previous one and thus the evolution of the system will
be slow and the algorithm will again be ine�cient� Thus f�cos �� must be a compromise
between high acceptances and large proposed modi�cations of the con�guration� In practice
this is achieved by choosing � uniformly between � and some cuto� � and then tuning � in
order to have a mean acceptance ratio of the order ���� Let us notice that the value of �
will be temperature dependent and will decrease as � goes to in�nity�

An important technique which is used with the Metropolis update is the so�called mul�
tihit technique� The idea is to perform many subsequent updates �hits� at point i before
moving to another point� In this case the total transition probability is simply

P �
�

V

X
i

P n
i �������

for a random update and
P � P n

i�
P n
i�
� � � P n

iV
�������

for a sequential update�

To understand the convenience of this technique let us notice that in the 
�model we
have

E�f�
�g� � E�f�
g� � ��
i � �
�i� �
X
j

�
j �����
�

where the sum extends over all nearest neighbours j of i� Thus the di�erence of energy
is simply given by the di�erence of the spins times a vector which needs to be computed
only before the �rst hit� In general the technique is convenient in all those cases where the
energy di�erence has the form

E�f��g�� E�f�g� � ���i � �i�A �����
�

where the two con�gurations di�er only at site i and the quantity A does not depend on
the �elds at point i� In these cases A needs to be computed only before the �rst hit� and
this is convenient if A requires a lot of computation �this is the case for instance of SU�
�
gauge theories��

Let us now discuss a second important class of algorithms which use the so�called heat�
bath method� This method is based on the following idea� given a model an a lattice� let
us indicate the �elds with �i� i running over the lattice sites� Fix a point i and consider
the conditional probability of �i� keeping all the other �elds �xed� Then choose ��i inde�
pendently of the old value �i from the conditional distribution while all the other �elds
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remain unchanged� Then sweep over the lattice points i as in the Metropolis case� either
randomly or sequentially�

Let us see how it works in a speci�c example� the Ising model� The �rst thing we have
to do is computing the conditional distribution� We have in this case

const �f
gj ��i� exp
�
��
iX

j


j

�
A �������

where the sum extends to all nearest neighbours j of i� The new spin 
� is then chosen
with this probability� Thus the update at site i works as follows�

�� Set A
 �
P

j 
j�

�� Set p� 
 ���� � e��A��


� Choose a uniform random number U between � and ��


� If p� � U set 
� 
 �� else 
� 
 ���

Exercise �� Show that for the Ising model the heat�bath update is equivalent to a
Metropolis update with F �z� � z��� � z��

In a similar way one can deal with the 
�model� In this case the conditional probability
measure is proportional to

exp

�
���
i �X

j

�
j

�
A dN�
i ���


�
i � �� �������

Thus in order to apply the heat�bath method to the 
�model we must generate random
variable with probability given by �������� This can be done although it is not completely
trivial� except when N � 
�

Exercise �� Develop the heat�bath algorithm for the O�
� 
�model�

Hint� introduce polar coordinates choosing the z�axis parallel to the vector
P

j �
j�

Let us �nally notice that the multihit Metropolis update is equivalent to a heat�bath
update in the limit in which the number of hits goes to in�nity� Indeed� by construction� Pi
restricted to the site i leaves invariant the conditional probability distribution of 
i� given
all the other spins f
jgj ��i� Let us indicate this distribution with P ��
i�� Then by the
standard results of the theory of Markov chains we have presented in Section 
 we have

lim
n��

P n
i � P ��
i� �������

and the r�h�s� is by de�nition the heat�bath transition probability�

Let us now discuss the performance of Metropolis and heat�bath algorithms� Their
main feature is that each update is local� In a single step of the algorithm� �information�
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is transmitted from a given site only to its nearest neighbours� Crudely one might guess
that this information executes a random walk around the lattice� In order for the system
to evolve to an �essentially new� con�guration� the information has to travel a distance of
the order �� the static correlation length� One would guess� therefore� that � � �� near
criticality� These results can be proven for the free Gaussian model �see next Section� and
in general extensive simulations have shown that it is approximately true for every model
and any local update �with the exception of overrelaxation��

Exercise 	� Consider a one�dimensional random walk� i�e� a Markov chain de�ned on
the integers with pii � �� pi�i�� � ���� pij � � if ji� jj � � and Prob�X� � j� � �j�� Show
that the mean square distance from the origin of the walker at time t is t� i�e� hX�

t i� � t�

Hint� write Xt �
Pt��

i���Xi�� �Xi� �X� and then prove h�Xi�� � Xi��Xj�� �Xj�i� � �ij�

To conclude this Section let us discuss the embedding technique which was introduced
by Cabibbo and Marinari who developed a pseudo�heat�bath algorithm for SU�
� gauge
theories and which has recently been extended to more general algorithms�

The idea is to consider a group of transformations fgxg which acts on the con�gurations
f�xg� i�e�

�x � fgx�xg �����	�

and leaves the integration measure invariant�

Then we consider fgxg as �elds and update them using the induced hamiltonian

H ��fgxg� � H�fgx�xg� �������

A valid algorithm is the following�

�� Keeping the �elds f�xg �xed� compute the induced hamiltonian�

�� Initialize gx � Idx�


� Update gx with a transition probability p��� g� � g�� satisfying p��� g�g � g�g� �
p�g�� g� � g�� for all g and which is stationary with respect to the Boltzmann weight
exp���H ��g���


� Set ��x � gx�x�

It is easy to check that this algorithm has the correct equilibrium distribution� Indeed the
total transition probability is given by

P ��� � ��� �
Z

dg p���� Id� g����� � g��� �������

Then Z
d��e

��H	��
 P ��� � ��� � �������

�
Z

d��dg�dg�e
��H	g���
 p���� g� � g������ � g���� �������

�
Z

d��dg�e
��H	g���
 ���� � g���� � e��H	��
 �����
�
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Of course one has to check also for ergodicity� If the algorithm turns out non ergodic the
simplest remedy consists in mixing it with conventional update steps�

To clarify how the method works let us consider a simple example� Let �
 be an N �
dimensional unit spin and suppose we want to generate �
 according to the probability
density

exp
	
�A � �




d�
 ���
� � �� �����
�

We want to use the embedding method and we consider the transformations


�i �
X
j

V
	
�

ij ���
j �������

where � �� � run from � to N �

V 	
�
��� � exp
	
�T 	
�




� �������

with T
	
�

ij � ��
i �

�
j � �
j �

�
i � and � is a parameter� The transformations V 	
�
��� are a

one�parameter group of rotations which leave invariant the measure d�
 ���
� � ��� Let us
now compute the induced Hamiltonian� As

V
	
�

ij ��� � cos � �ij � sin � T

	
�

ij �������

we have
�A � �
� � cos � �A � �
 � sin �

X
ij

AiT
	
�

ij 
j �����	�

Thus a valid algorithm in this case is given by�

�� Choose randomly � �� � between � and N �

�� Compute the induced hamiltonian coe�cients h� � �A � �
 and h� �
P

ij AiT
	
�

ij 
j �


� Initialize � � ��


� Update � with an algorithm which is stationary with respect to the probability measure

d� exp �h� cos � � h� sin �� �������

and whose transition probability satis�es

p��
� �� � �� �� � �� � p�V 	
�
����
� �� � ��� ����	��

for all �� �Prove that a heat�bath update satis�es the last condition��

�� Set �
� � V 	
�
�
�

Using the embedding method the original problem of generating unit spins with the
given probability distribution is reduced to the problem of generating an angle � with
distribution �������� In this speci�c example this reduction does not help much� However
this method has been used with success in unigrid simulations of O�N� 
�models�
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Exercise 
� Let �
 be an N �dimensional unit spin and suppose we want to generate �

according to the probability density �����
�� Now� given a random unit vector �r� consider
the transformations

�
� � �
 � ��� ����
 � �r��r ����	��

where � � �� is an Ising spin� Write down a valid algorithm to update 
 based on this
class of transformations�

Exercise ��� �Cabibbo�Marinari algorithm� Consider matrices U � SU�N� and the
probability measure

exp ���Re Tr �AU�� dU ����	��

where dU is the Haar measure and A is a given matrix� Consider the transformations
U � V U � where V belongs to some SU��� subgroup of SU�N�� Write down a valid
algorithm based on this group of transformations� paying attention to the ergodicity of the
algorithm�

� Overrelaxation

In this Section we want to discuss an important local algorithm which has z � �� the
overrelaxation algorithm� Let us �rstly describe it for the Gaussian model� Here the �elds
�i are real variables and the action on a hypercubic lattice has the form

H �
�

�

X
i

X
��

��i��� � �i�
� �

�

�
m�

X
i

��i ����	
�

As we have done for the Metropolis and the heat�bath algorithm we �rstly de�ne a transition
probability matrix Pi which updates the �eld at site i leaving all the other �j unchanged
by requiring that Pi satis�es detailed balance with respect to the conditional probability
of �i� given f�jgj ��i� It is easy to see that this probability� let us indicate it with P ���i��
has the form

P ���i� � const � exp
�
� �

�
�
��i � ���

�
d�i ����	
�

with


� �
�

�D �m�
����	��

and
� � 
�

X
j

�j ����	��

where the sum extends to all nearest neighbours j of i� Let us now de�ne the proposal�
We set

��i � ��i � � � �X ����	��

where X is a Gaussian random variable with mean zero and variance one and �� � and �
constants to be determined� ����	�� corresponds to the transition probability matrix

Pi��i � ��i� �
�p
�	�

exp

�
� �

���
���i � ��i � ���

�
����		�
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Let us compute �� � and � by requiring

P ���i� Pi��i � ��i� � P ����i� Pi��
�
i � �i� ����	��

We get two equations

�


�
�

�

��
�� � ��� �������

�


�
�

�

��
�� � �� �������

Since 
� � � we see that we must have � � �� � �� It is conventional to use instead of �
the overrelaxation parameter � � ���� which must then satisfy � � � � �� The constants
� and � are then computed in terms of �� In this way we �nd that the proposal

��i � ��� ���i � �� � 

q
��� � ��X �������

gives rise for every � to a Monte Carlo algorithm with the correct probability distribution�
Let us notice a few limiting cases� For � � � we have

��i � �� 
X �����
�

and thus it corresponds to heat�bath� while for � � � we have

��i � ��i � �� �����
�

which is a microcanonical non�ergodic update�

������� de�nes Pi� In order to obtain the complete transition matrix we must then
sweep over the lattice� We will study the case of a sequential update with checkerboard
ordering� but the results are true for any sequential update �but not for random updates
as we shall see��� In this case a single sweep corresponds to two steps� in the �rst one we
update the even sites� while in the second we update the odd ones�

Let us �rstly perform a Fourier expansion� Let &�� be the Fourier transform of the �elds�
i�e�

&���p� �
�

�

X
x

e�ipx ��� ����
P

�
x���x �������

and &X��p� the Fourier transform of the random numbers

&X��p� �
�

�

X
x

e�ipx ��� ����
P

�
x��Xx �������

Then the update of the even sites corresponds to

&����p� � ��� ��&���p� � ���p�&���p� � &X��p� �������

&����p� � &���p� �����	�

while the update of the odd sites corresponds to

&����p� � &���p� �������

&����p� � ��� ��&���p� � ���p�&���p� � &X��p� �������
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where

��p� �
�D �  p�

�D �m�
�������

and

 p� � 

DX
���

sin�
p�
�

�������

Then introducing


�p� �

�
� &���p�

&���p�

�
A �����
�

and an analogous vector for the random numbers� a full sweep reads


� � M��� ��
 � A��� ��X �����
�

where

M��� �� �

�
� �� � ��

��� ���� � � � � ����

�
A �������

and

A��� �� �

�
� � �

��� �� �

�
A �������

The convergence of the algorithm is determined by the largest �in absolute value� eigenvalue
of M � In the heat�bath case � � �� the eigenvalues are � and ��p�� Then

�exp�p � � �

� log j��p�j �������

Since j��p�j � ���� � � the critical behaviour is dominated by the modes with low momen�
tum p� Then

�exp 	 D

m�
� �� �����	�

which shows that in this model zexp � �� The same is then expected to be true for zint�A for
all observables A which are strongly coupled with the low�momentum modes� The typical
one is the magnetization

M �
X
i

�i � &����� � &����� �������

Let us now compute the eigenvalues for general �� We �nd

� � � � ������ �
q
�� � � � �������� � �� � ��� �������

The term under the square root can be rewritten as

��������� � 
� � 
��
 �������

Then let us choose � such that
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We get
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which satis�es � � � � � if � � m �
p
�D� In this case� for p �� � the square root is always

imaginary and then it is easy to check that the absolute value of the eigenvalues is always
� � �� This means that

�exp�p �

p
D

�m
� � �����
�

for all modes p� It follows that� if we tune � as

�� � � ��� �������

we obtain an algorithm which has a critical exponent z 	 ��

We want to stress that this result is strictly connected with the fact that we have
performed a sequential update �we used the checkerboard update but this is not essential��
Had we used a random update� we would have got zexp � � for all ��s� Indeed overrelaxation
works because the eigenvalues of the transition matrix can be complex and this is possible
only if the full transition matrix P does not satisfy detailed balance� since in the latter case
P is self�adjoint and thus with real spectrum�

This form of overrelaxation with a tunable parameter � cannot be easily extended to non
Gaussian models� There is however a variant� called hybrid overrelaxation� which can be
easily extended to more general models� and in particular to gauge theories� The idea here
is to mixmicrocanonical and heat�bath sweeps� More precisely an iteration of the algorithm
consists in one heat�bath �sequential� sweep and in N microcanonical �sequential� sweeps�
If N scales like � it is likely that one iteration of this algorithm is equivalent to N�� sweeps
of the tunable algorithm with � satisfying �������� Thus one expects the autocorrelation
time �expressed in sweeps� to scale again like �� i�e� z 	 �� This is supported by an analytic
study of the Gaussian model and by extensive simulations of two�dimensional 
�models and
lattice gauge theories�

Exercise �� Consider the following algorithm� choose a lattice site i� then perform N
microcanonical updates followed by � heat�bath update� then sweep over the lattice� What
is the expected critical exponent z�
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