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� Introduction

The aim of this course is to provide an introduction to the basic features and methods of
e�ective �eld theories� working out� as an example� the case of electroweak interactions�

The use of e�ective lagrangians dates back to the early �	
s with the introduction of the
non�linear ��model �� as an e�ective model for low energy strong interactions� explicitly
exhibiting chiral symmetry breakdown� The theoretical basis of chiral lagrangians was
later formulated by Weinberg �� in an attempt to characterize the most general S�matrix
elements compatible with chiral symmetry and the general requirements of analyticity�
unitarity and cluster decomposition property�

Chiral lagrangians are essentially tailored to describe the phenomenon of spontaneous
symmetry breaking� which plays a major role in both strong and electroweak interactions�
They can be regarded as the low energy limit of an underlying fundamental theory� In the
case of strong interactions such a regime is di�cult to discuss in the framework of QCD
since the knowledge of the non�perturbative dynamical e�ects is required� Therefore� it is
not surprising that in the context of strong interactions the chiral lagrangian approach has
found its greatest development ��� �� ��

More recently� e�ective �eld theories have received attention in the analysis of radiative
corrections for electroweak theories ��� �� �� �� �	� Indeed� in the standard model of
electroweak interactions� low energy e�ective lagrangians naturally occur when some of the
particles of the theory become very heavy� Much interest has been devoted to the possibility
of an heavy Higgs ���� ��� ��� which is central in the discussion of the electroweak symmetry
breaking itself ����

Interesting problems� related to the non�applicability of the decoupling theorem ����
are also raised by the possibility of heavy fermions ���� ��� ��� ��� In particular� the case of
an heavy top quark calls for the use of the whole apparatus of non�linear realizations� the
usual linear realization of the electroweak symmetry being destroyed from the beginning
���� By removing heavy fermions from the low energy spectrum� one has also to take care
of possible anomalies in the gauge currents ��	� These anomalies are consistently avoided
thanks to the presence of a Wess�Zumino term ��� in the e�ective action and to the very
speci�c interplay of the latter with the non�linear realization of the symmetry�

Another fruitful application is that when the fundamental theory one is dealing with is
not known� or not precisely de�ned �actually� this was the case with the non�linear ��model��
If the possible symmetries are known� then chiral lagrangians may be naturally introduced�
This happens� for instance� with technicolor theories ���� where a considerable amount of
information can be extracted from the analysis of the corresponding low energy models
���� �� �� Chiral lagrangians are characterized by an in�nite tower of non�renormalizable
operators� actually all the operators which are consistent with the assumed symmetries�
To make practical use of such an in�nite expansion one has to be able to select the most
relevant terms� In some cases� when the full underlying theory is given� the size of the
possible terms can be computed� at least in principle� by matching the predictions of the
fundamental �eld theory and those of the e�ective one� at some reference scale ���� This
procedure� however� may not be always viable� In this case� some insight about the relevance
of the various terms can be obtained by a judicious use of dimensional analysis ����
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An interesting development of the e�ective lagrangian approach was o�ered by the
study of the hidden gauge symmetries ��� possessed by chiral models� Applications of
these symmetries have been made in low energy strong interactions� to describe the lowest
spin � states ���� and in the study of the so�called strong electroweak sector� to analyze
the e�ects of possible vector resonances ���� The strongly interacting symmetry breaking
sector has been extensively studied by means of chiral lagrangian techniques ����

E�ective �eld theories can also be introduced to perform a model independent analysis of
SU���L�U���Y supersymmetric gauge theories ��	� Finally� the case of N�� supergravity
��� shows a certain analogy with the examples quoted above� if interpreted as an e�ective
low energy theory derived by integrating out the massive modes of superstring theories ����

The lectures are organized as follows� Section � contains a review of the non�linear
realizations of a Lie group� The formalism is then applied to the case of weak interactions�
whose lowest order lagrangian is derived in section �� Section � presents a simpli�ed
discussion of the electroweak radiative corrections� focussing on the LEP I physics� In
section �� the e�ective electroweak lagrangian is extended to account for quantum e�ects
from heavy particles� and the physical content of the theory is detailed in section �� Finally
section � provides an example of matching between low energy and high energy physics�
leading to a speci�cation of the parameters in the e�ective lagrangian�
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� Non�Linear Realizations

This section contains a short review of the non�linear realizations of a Lie group G ����
We consider a real analytic manifoldM � together with a Lie Group G � of transformations
acting on M �

x� gx x �M� g � G �����

We assume that there is a special point of M called origin� described by the null vector 	
and invariant under the action of a continuous subgroup H of G�

h	 � 	 h � H �����

The physical situation one has in mind is that of a manifold of scalar �elds with the
origin describing the vacuum con�guration� The group G is the �global or local� invariance
group of the theory and the subgroup H is the invariance group of the vacuum� In other
words� one is dealing with the spontaneous breaking of G into H�

Our purpose is to characterize all possible non�linear realizations of the group G on
the manifold M � that is to classify all possible theories corresponding to that pattern of
symmetry breaking�

Preliminary to the analysis of this problem is a general result of quantum �eld the�
ory establishing the independence of the physical content of a theory from the choice of
interpolating �elds ���� In the framework of a lagrangian formulation of the theory� the
theorem can be rephrased in the following form ����

� Theorem� If a theory is de�ned by the lagrangian density�

L � L��� ���� �����

depending on a set of scalar �elds �� and if the following local transformation of �elds is
performed�

� � F ���� � �����

then the transformed lagrangian density�

L����� ���
�� � L�F ����� ��F ����� �����

de�nes in general a new theory� Nevertheless� provided the transformation ����� has a
Jacobian determinant equal to one at the origin� the S�matrix elements of the two theories
are the same�

From now on� we will refer to such transformations as allowed ones� The above theorem
also holds order by order in perturbation theory�

Another useful result is that the more general non�linear realization of the group G can
be regarded as linear� once specialized to the subgroup H of G�

�compact� connected and semisimple
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� Theorem� If H is the subgroup of G leaving the origin invariant� then it is always
possible to choose coordinates on M so that�

hy � D�h�y �h � H �����

where D�h� is a linear representation of H�

We sketch below the proof of this theorem� By expanding the element hx in powers of
x around the origin one has�

hx � D�h�x � O�x�� �����

In eq� ������ O�x�� denotes terms which are at least quadratic in x� The constant term is
absent� due to the fact that H leaves the origin invariant� We consider an invariant measure
dh on the group H� normalized so that�

Z
H
dh � � � �����

and we de�ne the following coordinates on M �

y �
Z
H
dhD���h�hx

� x�O�x�� �����

Acting with an element h� of H on the point y� one obtains�

h�y �
Z
H
dhD���h�hh�x

�
Z
H
d�hh��D

���hh�h
��
� ��hh��x

� D�h��y ����	�

Notice that the transformation given in eq� ����� is an allowed one�

We now give an example of a non�linear realization of G becoming linear when it is
restricted to the subgroup H� As we shall see� this example plays a central role in our
discussion and the non�linear realization dealt with is said to be in the standard form� To
start with� one introduces a complete set of generators of G� �Vi� Al�� orthonormal with
respect to the inner Cartan product and such that the V 
s are generators of the subgroup
H� Each element g� of G admits the unique decomposition�

g� � e�AeuV ������

where �A � �lAl and uV � uiVi� For every element g � G� one has�

ge�A � e�
gAeu

gV ������

with �
�g � �g���
ug � ug���

������



�� F� Feruglio

The idea is to use �� the parameters related to the generators A� as a subset of coordinates
of M � with a transformation law under G de�ned by eq� ������� To complete the set of
coordinates� one introduces a vector � carrying a linear representation of H�

�� D�h�� h � H ������

It is not di�cult to show that the transformations

�
� � �g���

� � D�eu
g���V ��

������

provide a non�linear realization of the group G� the so�called standard one� By restricting
the transformations to H� one has�

he�A � he�Ah��h ������

from which one deduces� �
e�A � he�Ah��

� � D�h��
������

Therefore� the transformations of H on the standard coordinates are linearly realized�

The main result� not proved here� is contained in the following statement�

� Theorem� any non�linear realization of G can be put into the standard form by an
allowed coordinate transformation�

This theorem solves the problem of characterizing all possible non�linear realization of
G on M � Its physical content is that� in discussing a theory describing the spontaneous
breaking of the Lie group G into a subgroup H� it is not restrictive to choose a set of �elds
transforming according to the standard form given in eq� �������

� Example� we choose G � SU���L � SU���R and H its diagonal subgroup� SU���L�R�
The generators of G� Li and Ri �i � �� �� ��� satisfy the following algebra�

�Li� Lj � i�ijkLk

�Ri� Rj � i�ijkRk

�Li� Rj � 	 ������

As a realization of this algebra� one can take the following �� � matrices�

Li �

�
B� � i

�
	

	 	

�
CA Ri �

�
B� 	 	

	
� i

�

�
CA ������

where � i are the Pauli matrices� The generators �V�A� are given by�

Vi � Li �Ri

Ai � Li � Ri ����	�
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and satisfy the algebra�

�Vi� Vj � i�ijkVk

�Vi� Aj � i�ijkAk

�Ai� Aj � i�ijkVk ������

To every generator Ai we associate a coordinate �i� with the transformation law given by�

gei�A � ei	Aei
V ei�A

� ei�
gAeiu

gV ������

On the other hand� the group G possesses an automorphism g � R�g�� such that�

Vi � Vi

Ai � �Ai ������

and we can write�
R�g�e�i�A � e�i�gAeiugV ������

By combining eqs� ������ and ������� one �nally obtains�

e�i�
gA � ge�i�AR�g��� ������

or� more explicitly�

e�i�
gA � ei	Aei
V e�i�Ae�i
V ei	A ������

From the last equality we can immediately see that� by specifying the transformations to
the subgroup H� that is by putting the parameters 	 to zero� one has linear transformations
for the coordinates ��

At this point we have to face the problem of constructing an invariant formalism out
of the building block de�ned in eq� ������� the set of standard coordinates and their trans�
formation properties� After promoting the coordinates on the manifold M to scalar �elds
depending on the space�time points� we realize that� even in the case of global symmetry�
the transformation laws given in eq� ������ are local� because of the explicit dependence on
the �elds �
s� In order to work with objects depending on the derivatives of � and �� with
simple transformation properties under the group G� one can de�ne appropriate covariant
derivatives ���� dealing directly with the non�linearly transforming �elds � and �� How�
ever� there is another possibility consisting in building functions of the �elds ��� �� which
transform linearly under the group G� By combining such functions with the usual rules
of representation theory� it is then straightforward to de�ne invariant lagrangians� We will
now show how to implement such a procedure�

Consider a linear representation D�g� of G containing in its decomposition the repre�
sentation D�h� �see eqs� ������ and �������� We de�ne�

� � D�e�A�� � ������
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The combination � given above transforms linearly under G� according to the representa�
tion D�g��

�� � D�e�gA�D�eugV ��
� D�ge�Ae�ugV �D�eugV ��
� D�g�D�e�A��
� D�g�� ������

� Example� we take G � SU���L � SU���R and H � SU���L�R� Let � be an SU���L�R�
singlet� embedded into an SU���L � SU���R bidoublet�

� �

�
� 	
	 �

�
� ������

The action of the representation D�g� on a bidoublet � is de�ned as follows�
�� � D�g��

� e
i�� � ��

��e
�i� � ��

� ����	�

where �� and � are the parameters of the SU���L � SU���R transformations� It is easy to

verify that � is a singlet under the subgroup SU���L�R� characterized by �� � �� According
to eq� ������� we now de�ne�

� � D�ei�A��

� e
i�� � ��

�

�
� 	
	 �

�
e
i�� � ��

�

� �ei
�� � �� ������

By construction� the function � � ���� �� transforms as the bidoublet � of eq� ����	��
Explicitly we have�

�� � � ������

ei
��� � �� � e

i�� � ��
� ei

�� � �� e�i� �
��

� ������

To take into account the dimension of the �elds �� one usually performs the following
rescaling�

�i � �i
f

������

where f is a constant with the dimension of a mass� A lagrangian invariant under global
transformations of SU���L � SU���R is�

L �
f�

�
tr���U

y��U�

�
�

�
���i�

��i � ��� ������
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where�

U � e
i
�� � ��
f ������

This is the lagrangian of the well�known non�linear ��model ��� The global invariance under
SU���L � SU���R is spontaneously broken down to SU���L�R� The �elds �i� associated to
the broken generators Ai� are the Goldstone bosons� The dots in eq� ������ denote higher
order terms in the Goldstone �elds�

� Exercise� verify that the transformation law for U �see eq��������� agrees with the
transformation law for � given in eq� �������

� Exercise� build the gauged non�linear ��model by gauging the entire group G �
SU���L � SU���R� By going to the unitary gauge� discuss the physical degrees of free�
dom and their mass spectrum�
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� Electroweak Interactions� the Lowest Order

In this section we review the construction of the standard model of electroweak interactions
and of some of its variants� by explicitly applying the formalism developed in the previous
lecture� These models are characterized by an invariance under the gauge group G �
SU���L � U���Y � spontaneously broken down to the local subgroup H � U���em� The
generators T i �i � �� �� �� and Y of SU���L � U���Y satisfy the following algebra�

�Ti� Tj � i�ijkTk

�Ti� Y  � 	

�Y� Y  � 	 �����

The generators of the subgroup U���em and of the coset SU���L�U���Y �U���em are given
by ��

Xem � �T � � Y �	� U���em

Y i � T i 	� SU���L � U���Y �U���em �����

We begin by introducing the would�be Goldstone bosons and the Higgs �eld� We consider a
singlet � under U���em� embedded into a doublet representation D� of hypercharge Y � ����

� �

�
	
�

�
�����

The action of the representation D�g� on a doublet � is de�ned below�
�� � D�g��

� e
i�	 � ��

� e
	Y
�

�� �����

In the equation above� 	i and 	Y are the local parameters of the SU���L and U���Y
gauge transformations� respectively� It is immediate to verify that � is a singlet under the
unbroken group U���em� Following the prescription given in eq� ������� we de�ne�

� � D�ei�� � �Y ��

� e
i�� � ��

�

�
	
�

�

�����

By construction � transforms as a doublet with hypercharge Y � ���� We prefer to work
with a linear multiplet written in a matrix form and� to this purpose� we introduce the new
doublet�

�� � i����

� e
i�� � ��

�

�
�
	

�

�����

�di�erent choices for the generators of the coset are also possible
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The doublet �� has hypercharge Y � ����� We de�ne the �� � matrix M �
M �

�
���

�

� �e
i�� � ��

� �����

The matrix M transforms as follows�

M � � gLMgyR �����

where�

gL � e
i�	 � ��

� �����

gR � e
i	Y

��

� ����	�

Explicitly� one has�

�� � � ������

e
i��� � ��

� � gLe
i�� � ��

� gyR ������

The Higgs �eld� �� is invariant under the whole gauge group SU���L�U���Y � The would�be
Goldstone bosons transform non�linearly under SU���L�U���Y � However� the combination�

U � e
i
�� � ��
v ������

transforms linearly as speci�ed in eq� ������� In the previous equality we have rescaled the
�elds �� introducing the constant v� Let us forget for a while the Higgs �eld � and proceed
to de�ne the lagrangian for the bosonic �elds� The covariant derivative for the combination
U is de�ned as follows�

D�U � ��U � g �W�U � g�U �B� ������

where g and g� are the gauge coupling constants for SU���L and U���Y � �W�� �B� are the
gauge �elds� written as matrices�

�W� �
�

�i
�W� � ��

�B� �
�

�i
B��

� ������

The corresponding �eld strengths are given by�

�W�� � �� �W� � �� �W� � g� �W�� �W�

�B�� � �� �B� � �� �B� ������

Their transformation laws are the following�

�W �
� � gL �W�g

y
L �

�

g
gL��g

y
L

�B�
� � �B� � �

g�
gR��g

y
R ������
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and

�W �
�� � gL �W��g

y
L

�B�
�� � �B�� ������

The lagrangian for the bosonic �elds is given by�

LB � �
�
tr� �W��

�W �� � �B��
�B��� �

v�

�
tr�D�U

yD�U� ������

From the last term in the previous equation� by going to the unitary gauge U � �� we can
read the mass term for the gauge vector bosons� One introduces the combinations�

W�
� �

�W �
� 
 iW �

��p
�

Z� � cos � W �
� � sin � B�

A� � sin � W �
� � cos � B� ����	�

where the angle � is de�ned by�

tan � �
g�

g
������

The mass spectrum in the gauge vector boson sector is given in table I�

�mass��

W�
v�g�

�

Z
v��g� � g���

�
A 	

Table I� electroweak gauge vector boson masses�

Now we consider the lagrangian L� for the fermionic �elds� whose quantum numbers
are listed in table II�

� SU���L Y
�B � L�

�

qL �

�
uL
dL

�
� ��� ���

qR �

�
uR
dR

�
�
�

���
����

���
���

lL �

�
�L
eL

�
� ���� ����

lR �

�
	
eR

�
� �� ����

Table II� fermions and their electroweak quantum numbers�
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The kinetic terms for the fermionic �elds and their minimal coupling to the gauge vector
bosons are given by�

L� � i�qL�
�D�qL � i�qR�

�D�qR �

� i�lL�
�D�lL � i�lR�

�D�lR ������

Indices in the generation space are understood here� The covariant derivatives acting on
the left and right�handed fermions �L�R� �� � q� l� are de�ned below�

D��L � ��� � g �W� � g� �B�L�
� ��L ������

D��R � ��� � g� �B�R�
� ��R ������

The combinations �B�L�R�
� are given by�

�B�L�
� �

�

�i
�B � L�B� ������

�B�R�
� �

�

�i
��� � �B � L��B� ������

As a function of the mass eigenstates for the gauge vector bosons �eq� ����	��� the
lagrangian given in eq� ������ contains the following interaction terms�

� gp
�
�W�

� J
�� �W�

� J
���� eA�J

�
em �

g

cos �
Z�JZ

� ������

where

J�� �
X
�

��L�
����L ������

Jem
� �

X
�

Q�
em
����� ������

JZ
� � �J��L � sin� �J�em� ����	�

J�L
� �

X
�

��L�
� �

�

�
�L ������

As usual� one has �� � ��� � i������ Qem � T � � Y and e � g sin ��

The mass terms for quarks and leptons are introduced by means of gauge invariant
Yukawa interaction terms� LY � We have�

LY � �qLUmqqR � �lLUmllR � h�c� ������

LY is invariant under SU���L � U���Y provided the mass matrices mq and ml are linear
combinations of ��� and ��� in the corresponding two�dimensional �avour space� This means
that one has independent mass matrices for each separate charge u� d� e�

By ignoring the Higgs degree of freedom� the total lagrangian is given by�

L � LB � L� � LY ������
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This model can be easily extended to account for the presence of the Higgs particle� here
identi�ed with a real scalar �eld �� invariant under the whole gauge group SU���L�U���Y
�see eq� �������� One has simply to add to the lagrangian L� additional terms of the form�

L� �
�

�
����

�� � V ��� �

�

�
a
	
�

v



v�

�
tr�D�U

yD�U� � b
	
�

v


� v�
�
tr�D�U

yD�U� � ���

�

�
�	

�

v



�qLUMqqR �

	
�

v



�lLUMllR � h�c�


������

Since � is a singlet under the entire gauge group� other interactions could be easily added to
the lagrangian L�� which contains just few possible terms� Notice that a� b� ��� are arbitrary
real parameters� and Mq�l are matrices� linear combinations of � and ��� not necessarily
equal to the matrices mq�l� V ��� denotes here the scalar potential for the Higgs �eld�

The usual standard model of the electroweak interactions is a specialization of the
lagrangian L� L� to the following choice of a� b� Mq� Ml and V �

a � �

b � �

Mq � mq

Ml � ml

V ��� � v��� �
m�

�

�v�
��� � v�� � v��� ������

With the above choice� we can easily rewrite the lagrangian L� L� in the form�

LSM �
�

�
tr� �W��

�W �� � �B��
�B��� �

�

�
tr�D�M

yD�M�� V �tr�M yM���� �

� L� �
�
�qLM

mq

v
qR � �lLM

ml

v
lR � h�c�


������

where�

M � �U � �e
i
�� � ��
v ������

Finally� to obtain the lagrangian for the standard model in a more familiar form� we can
perform the following �eld rede�nition�

M �
p
�

�
�� ���

�� �����

�
������

Taking into account the vacuum expectation value v of the �eld � in eq� ������� we realize
that this �eld transformation is an allowed one and the S�matrix elements of the theory
remain unchanged� We recognize in �

��

��

�
������

the usual doublet of scalar �elds�
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Up to now� Higgs particles have not been detected� and on the standard Higgs mass�
the LEP collaborations have put a lower bound of �	 GeV ���� From this point of view�
there is no reason to prefer� as an e�ective model for low�energy electroweak interactions�
one particular model among L� L � L� � � LSM � However� an important property is en�
joyed only by LSM � the renormalizability� With the increasing accumulation of precision
tests of the electroweak theory� the compelling need to take into account quantum ef�
fects in comparing predictions and measurements makes mandatory the use of a consistent
framework for the evaluation of the radiative corrections� that is a renormalizable theory�
Nevertheless� as shown in the following sections� there is an interesting use one can make
of non�renormalizable� e�ective lagrangians� in connection with the existence of something
beyond the standard model�

We conclude this section with a remark� The lagrangian L�L� is not the most general
lagrangian invariant under SU���L � U���Y � containing up to two derivatives� By taking
advantage of the formalism of non�linear realizations� one could introduce interactions
between fermions and gauge bosons which explicitly violate the minimal form given in eq�
������ ���� As an example� we consider a left�handed quark bL of electric charge �����
embedded in a SU���L doublet with hypercharge Y � �����

	
bL

�
����	�

The corresponding linear multiplet� de�ned according the eq� ������� is given by�

 � U

�
	
bL

�
������

It is then immediate to verify that the interaction term

tr���U yD�U� �bL�
�bL ������

is gauge invariant and provides a modi�cation of the tree�level standard modelZb�b coupling�
Non�minimal terms of this kind arise for instance in the low energy limit of the standard
model for a large top mass ����

�Bounds on the matrices Mq�l in L� come from data on �avour changing processes
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� Precision Measurements and Electroweak Radia�

tive corrections

At the moment there is a quite astonishing agreement between the predictions of the
standard model and the whole set of data from precision measurements� The LEP data
have certainly played a major role in testing with great accuracy the standard model theory�
The agreement has been pushed to the level of checking the radiative corrections� namely
the predictions of the model including the most relevant quantum e�ects�

Associated to the problem of computing the radiative corrections� there is an obstacle
given by the presence of in�nities in the intermediate steps of the computation� Such in�ni�
ties are dealt with by a renormalization procedure� In practice� starting from a lagrangian
L�g� depending on a set of coupling constants g� one introduces a regulator ! to give a
mathematical meaning to the expressions obtained� The physical amplitudes computed in
the regulated theory L�g�!�� diverge in the limit of in�nite !� Order by order in pertur�
bation theory� a suitable set of counterterms

P
i �giCi is added to the original lagrangian

L�g�!�� so that each amplitude is �nite� at that given order� The ambiguities related
to the introduction of divergent counterterms are removed by the requirement of speci�c
renormalization conditions� de�ning the renormalized parameters of the theory�

The basic property of renormalizable theories is that the counterterms can be absorbed
by rede�ning the parameters of the original theory�

g � g� � g � �g �����

In this way� at all orders in perturbation theory� the predictions of the theory depend on a
given number of parameters� which can be determined by a �nite number of independent
measurements� In theories characterized by global or local symmetries� a great simpli�ca�
tion of the renormalization procedure is obtained by adopting a regularization preserving
the symmetries� However� there are cases in which classical symmetries are violated at the
quantum level ��	�

In the following� we will assume that we have computed� for a particular model� some
radiative corrections and we will discuss how the physical quantities are a�ected by them�
To simplify the analysis� we will make the following hypotheses ���� �� �� ��� �	�

�i� The radiative e�ects are related to a mass scaleM much greater than the electroweak
scale MZ�

�ii� The radiative e�ects are dominated by the gauge bosons self�energy corrections� at
least for a suitable set of measurable quantities ��

These assumptions are both violated in the standard model ���� However� they can
be ful�lled in some of its extensions� at least for that part of quantum e�ects having a
non�standard origin� Later on we will provide some examples�

We will denote by �i"��
ij �p� the set of self�energy corrections for the gauge boson �elds�

evaluated at some loop order �� The indices i� j can take the values 	 �for the �eld B� and
�� �� � �for the �elds W i�� or� alternatively� the values �� Z� W � One has�

� i"��
ij �p� � �i

h
"ij�p

��g�� � �p�p� terms�
i

�����

�In the following we will be mostly concerned with the LEP I physics�
�We are following here the presentation given in ref� ����
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The terms proportional to p�p� have no practical e�ect for the LEP I physics� and they
will be disregarded from now on� The scalar function "ij�p

�� can be expanded around the
point p� � 	�

"ij�p
�� � Aij � p�Fij � ��� �����

According to our assumption �i�� this expansion� meaningful for p� �M�� will contain real
coe�cients Aij � Fij� etc� Moreover� since "ij�p

�� has dimension two in units of mass� it will
be reasonable to neglect the dots in eq� ������ representing terms suppressed by positive
powers of �p��M���

As a consequence of the exact electromagnetism gauge invariance� we have A�� � A�Z �
	 	� Then we are left with the six independent coe�cients AZZ� AWW � F��� F�Z� FZZ�
FWW � The measurable quantities will depend on these six parameters� However� three
combinations of them are related to very special observables� which� in the electroweak
theory� play the role of fundamental constants� These are given by the electromagnetic �ne
structure constant 	� the Fermi constant GF and the mass of the Z gauge vector boson
MZ � It is immediate to verify that the shifts in the fundamental constants� due to the
quantum corrections induced by the gauge vector boson self�energies� are given by�

�	

	
� �F�� �����

�GF

GF

�
AWW

M�
W

�����

�M�
Z

M�
Z

� �
�
AZZ

M�
Z

� FZZ

�
�����

For future reference� we also give the shift for the W vector boson mass�

�M�
W

M�
W

� �
�
AWW

M�
W

� FWW

�
�����

� Exercise� derive eqs� ����������
We conclude that� in our approximation� the parameters counting independent measur�

able e�ects� induced at the quantum level by the underlying theory� are three combinations
among the six coe�cients AZZ � AWW � F��� F�Z� FZZ� FWW �

To identify these combinations� we will now compute the radiative corrections for the
three following observables� the ratio of the gauge boson masses MW�MZ � the forward�
backward asymmetry A�

FB in e
�e� � ���� at the Z peak and the partial width of the Z

into charged leptons� #l�

� MW

MZ

We trade MW �MZ for the observable $rW de�ned as follows�

	
MW

MZ


�
�
�

�
�

vuut�
�
� ��

M�
Z�� �$rW �

�����

�More precisely� the fermionic contribution to A�Z vanishes� and the bosonic one is zero in the unitary
gauge�
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where�

�� �
�	�M�

Z�p
�GF

� ������� GeV �� �����

The de�nition given in eqs� ��������� is suggested by the lowest order relation�

	
mW

mZ


�
�
�

�
�

vuut�
�
� ���
m�

Z

����	�

with�
��� �

�	�p
�G�

F

������

and

	 � 	��� �
�	

	
� ������

GF � G�
F �� �

�GF

GF

� ������

M�
W�Z � m�

W�Z�� �
�M�

W�Z

M�
W�Z

� ������

By combining eqs� ����������� one obtains�

	
MW

MZ


�
�
	
mW

mZ


��
�� sin� �

cos ��
�$rW � �M�

Z

M�
Z

�
�	

	
� �GF

GF

�

�
������

On the other hand� one has�

	
MW

MZ


�
�
	
mW

mZ


� �
� �

�M�
W

M�
W

� �M�
Z

M�
Z

�
������

By comparing eqs� ������ and ������ and by using eqs� ���������� one �nds�

$rW � �cos
� �

sin� �

�
AZZ

M�
Z

� AWW

M�
W

�
�

�
cos ��

sin� �
�FWW � F��� �

� �
cos �

sin �
F�� ������

� A�

FB

Also in this case we proceed through a series of de�nitions inspired to the lowest order
relations�

A�
FB�p

� �M�
Z� � �

�
gV gA

g�V � g�A

��

������

gV � ��
�
� � sin� �� ������

gA �
�

�
����	�
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sin� �� � �� �$k� sin� �� ������

sin� �� �
�

�
�
s
�

�
� ��

M�
Z

� 	������ �for MZ � ������ GeV � ������

With these de�nitions� the knowledge of A�
FB is equivalent to that of the parameter $k�

given in eq� ������� To determine the latter� we focus on the neutral current scattering
process e�e� � ����� with electrons and muons in the right�handed polarization state�
The lowest order amplitude to this process is derived by the interaction lagrangian �see
eqs� ������������� �

e�A� � g�
sin� ��
cos ��

Z�

�
J�em ������

and is proportional to�

i

�
�e��
p�
�

�
�g� sin

� ��
cos ��

��
�

�p� �m�
Z�

�
� ������

The self�energy corrections induce the terms�

� ie��
F��
p�

�

� ig��
sin� ��
cos� ��

�

�p� �m�
Z�

AZZ � p�FZZ
�p� �m�

Z�
�

� �i�e�g��
sin���
cos ��

F�Z
�p� �m�

Z�
������

The �rst term of eq� ������ combines with the �rst term in eq� ������� giving a shift of
the constant 	� as given by eq� ������ The sum of the remaining terms� up to higher order
corrections� is given by�

i
g��

cos� ��
�� � FZZ��� sin� ����

�
� � �

cos �

sin �
F�Z

�
�

�p� �M�
Z�

������

The factor �� � FZZ� in the previous expression represents a universal correction for the
neutral current� �It is the analogue of the factor ���F��� for the electromagnetic current��
To see this� one can consider the scattering process �e�e � ����� whose amplitude is
proportional to�

i
g��

cos� ��
�� � FZZ�

�

�p� �M�
Z�

������

In conclusion� the self�energy corrections can be accounted for by an e�ective neutral current
lagrangian given by�

g�
cos ��

q
� � FZZ

�
J��L � sin� ��

�
� �

cos �

sin �
F�Z

�
J�em

�
Z� ������

From this lagrangian� one can read the e�ective Weinberg angle sin� ���

sin� �� �

�
� �

cos �

sin �
F�Z

�
sin� �� ������
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On the other hand� from the de�nition of sin� �� given in eq� ������� one has�

sin� �� � sin� ��

�
� �

cos� �

cos ��

�
�	

	
� �GF

GF

� �M�
Z

M�
Z

��
����	�

By comparing eqs� ������ and ����	� and by making use of eqs� ���������� one �nds�

$k � � cos� �

cos ��

�
AZZ

M�
Z

� AWW

M�
W

�

�
�

cos ��

cos �

sin �
F�� ������

� #l
We de�ne #l as follows�

#l �
GFM

�
Z

��
p
�
�� �$�

�
g�V � g�A

�
������

To compute the parameter $� one can refer to the e�ective neutral current lagrangian of
eq� ������� This contains the overall factor�

g�
cos ��

q
� � FZZ ������

We relate this factor to the physical constants GF and MZ � One has�

�
p
�GFM

�
Z �

g��
cos� ��

�
� �

�GF

GF

�
�M�

Z

M�
Z

�
������

From the previous equation� and from eqs� ���������� one obtains�

g��
cos� ��

�� � FZZ� � �
p
�GFM

�
Z

�
� �

�
AZZ

M�
Z

� AWW

M�
W

��
������

Therefore� the parameter $ is given by�

$ �
AZZ

M�
Z

� AWW

M�
W

������

By looking at the expressions we have obtained for the quantities $rW � $k and $� we
recognize that they depend on the following three combinations of self�energy corrections�

�� �
AZZ

M�
Z

� AWW

M�
W

�� � FWW � F��

�� �
cos �

sin �
F�� ������
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We summarize this dependence below�

$rW � �cos
� �

sin� �
�� �

cos ��

sin� �
�� � ���

$k � � cos
� �

cos ��
�� �

�

cos ��
��

$ � �� ������

From the experimental values MW �MZ � 	���	� � 	�		��� Al
FB � 	�	��� � 	�		�	 and

#l � ����� � 	��� MeV � one �nds ����

�� � �	���� 	���� � �	��
�� � ��	��� � 	���� � �	��
�� � ��	�	� � 	���� � �	�� ������

As expected� the physical quantities depend on the three fundamental constants of the
electroweak theory and on three additional parameters carrying� in our approximation� all
the information concerning the quantum corrections 
� In the next section we will relate
these parameters to those which characterize the e�ective lagrangian of the electroweak
interactions up to O�p���

�To remove the assumptions �i	 and �ii	 made above� one may consider the eqs� �
���	 as de�nitions
of the parameters �s� taking advantage of the fact that the three observables involved are experimentally
clean� This is the point of view advocated by the authors of ref� �
��� Then the relation between the �s
and the radiative corrections will depend on the particular model examined�
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� Electroweak Interactions� Higher Orders

In section �� we have shown how to build an e�ective lagrangian for the electroweak inter�
actions� The underlying fundamental theory might considerably di�er from what presently
assumed� In particular� particles much heavier than those characterizing the known low�
energy spectrum might exist� In this case� none of the low�energy models described in
section � will be able to reproduce the predictions of the theory� As we have seen in the
previous section� in general� new heavy particles will a�ect the physical observables through
their contribution to radiative corrections� The low�energy models� as speci�ed in section
�� cannot account for these corrections and appropriate extensions of them are required�

At the same time� there is an independent motivation to enlarge the low energy models
introduced up to now� In fact� the lagrangian L of eq� ������ is naturally organized in
a derivative expansion� whose lowest order term is precisely given by eq� ������� At the
next order� gauge invariant structures with up to four derivatives must be included in the
e�ective lagrangian� and so on� As a �rst step� we will introduce these additional terms�
To this purpose we introduce the combinations�

T � U��U y

V� � �D�U�U
y �����

They transform under SU���L � U���Y as follows�

T � � gLTg
y
L

V �
� � gLV�g

y
L �����

The covariant derivative acting on V� is given by�

D�V� � ��V� � g� �W�� V�  �����

A frequently occurring identity is�

D�V� � D�V� � �g �W�� � g�U �B��U
y � �V�� V� �����

The algebraically independent SU���L � U���Y and CP invariants� functions of the gauge
vector bosons and the Goldstone �elds� containing up to four derivatives are listed below
���� ���

L� �
v�

�
�tr�TV��

�

L� � i
gg�

�
B��tr�T �W

���

L� � i
g�

�
B��tr�T �V

�� V � �

L� � gtr� �W�� �V
�� V � �

L� � �tr�V�V��
�

L� � �tr�V�V
���

L	 � tr�V�V��tr�TV
��tr�TV ��
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L
 � tr�V�V
���tr�TV ���

L� �
g�

�
�tr�T �W���

�

L� �
g

�
tr�T �W���tr�T �V

�� V � �

L�� � �tr�TV��tr�TV��
�

L�� � tr��D�V
����

L�� � tr�TD�D�V
��tr�TV ��

L�� �
�

�
�tr�TD�V��

�

L�� � ig�����tr� �W��V��tr�TV�� �����

Before analyzing the physical meaning of the invariants Li �i � 	� ������� we will discuss
the arbitrariness in the choice of a particular base of invariants� The above base can be
modi�ed either by adding total derivatives to the various terms� or by making use of the
classical equations of motion ���� �� ���

To illustrate this last point� we consider an e�ective lagrangian Leff � depending on a
single scalar �eld � and its derivatives� of the following form�

Leff � Lcl �
X
i

ciLi �����

Lcl �
�

�
����

��� m�

�
�� � V ��� �����

We assume that the coe�cients ci are of order h� � What we have in mind is that the partP
i ciLi� together with the O�h�� corrections from Lcl� correctly reproduce the results of the

underlying fundamental theory� at one�loop level�

Suppose that the term Lj� j being one particular among the i indices� has the form�

Lj � ��� �m��� � F ��� �����

where F ��� is at least quadratic in � and�or its derivatives� We perform the following local
transformation on the �eld ��

�� � cjF ��� �����

Notice that this is an allowed transformation� so that the S�matrix elements do not change�
One obtains�

�Scl �
Z
dx

�Lcl
��

��

� �
Z
dx

�
��� �m����

�V

��

�
cjF ���

� �
Z
dxcjLj �

Z
dxcj

�V

��
F ��� ����	�

On the other hand�

�

�Z
dx
X
i

ciLi
�
� O�h�

�
� ������
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In conclusion the transformed lagrangian is given by�

L�
eff � Lcl �

X
i�j

ciLi � cj
�V

��
F ��� �O�h�

�
� ������

The net e�ect of the transformation given in eq� ����� is identical to that obtained by using
the classical equations of motion� Up to higher order corrections� Leff and L�

eff will give
rise to the same on�shell amplitudes �� In the following we will make use of this freedom in
order to isolate the physically independent e�ects related to the invariant structures listed
in eq� ������

Coming back to the lagrangian L of eq� ������� the equations of motion for the gauge
�elds are given by�

��B�� � ig�
v�

�
tr�TV��� g�JB� � 	 ������

D� �W�� � g
v�

�
V� � g

�i
�JW� � 	 ������

where�

JB� � J �B�L�
� � J�R

�

�
X
�

��L�
� �B � L�

�
�L �

X
�

��R�
� �

� � �B � L�

�
�R ������

�JW� �
X
�

	
��L�

� �
a

�
�L



�a ������

� Exercise� derive eqs� ������������
Since ����B

�� � 	 and D�D�
�W �� � 	� from eqs� ������������ one obtains�

��tr�TV
�� � �i �

v�
��JB� ������

D�V� � i
�

v�
D� �JW� ������

Both right�hand sides of eqs� ������ and ������ are classically given by expressions of
the kind� X

�

m�

v�
� ���� ������

Therefore� as long as one considers light fermions� m� � v� they are practically negligible
and they will be discarded from now on�

�The result generalizes to higher orders �
��� If the e�ective theory contains terms up to the order
O�h�

n
	� and if the kinetic operator ��� � m�	 has already been eliminated from all the terms of order

O�h�
m
	 �m � n	� then the use of the classical equation of motion gives rise to an equivalent e�ective

action�
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� Exercise� by using the equations of motion for the gauge �elds W and B� given in eqs�
������������ show that�

L�� � 	 ����	�

L�� � 	 ������

L�� � �g
��

�
B��B

�� � L� � L� � L� � L� � L	 � L
 ������

As a consequence of the relations ����	������� one has the equivalence among the e�ective
lagrangians�

Leff � L�
��X
i�

aiLi ������

and

L�
eff � �L�

��X
i�

�aiLi ������

with�

�a� � a� � a��

�a� � a� � a��

�a� � a� � a��

�a	 � a	 � a��

�a
 � a
 � a��

�a� � a� � a��

�a�� � 	

�a�� � 	

�a�� � 	 ������

For the coe�cients not listed above one has �ai � ai and the lagrangian �L di�ers from L by
a wave function renormalization for the vector boson B�
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� Physical Meaning of Leff

We are now ready to discuss the meaning of the base fLig given in eq ������ The physical
content of the base is more transparent in the unitary gauge� U � �� where all the invariants
Li collapse into polynomials of the gauge �elds� All the invariants contain at most quartic
terms in the gauge �elds� but they can be grouped appropriately� depending on their
expansion which can start from two� three or four gauge vector bosons� The structures
containing bilinear terms in the gauge �elds are just six�

a�L� � ��
�
a�v

��gW �
� � g�B��

� � ���

a�L� �
�

�
a�gg

�B����
�W �� � ��W ��� � ���

a�L� � ��
�
a�g

����W
�
� � ��W

�
��

� � ���

a��L�� � ��
�
a���g

����W
���� � g����W

���� � ����gW
�� � g�B���� � ���

a��L�� � �a�������gW �� � g�B�� � �gW �� � g�B�� � ���

a��L�� � ��
�
a�����gW

�
� � g�B�� � ���gW �� � g�B�� � ���

�����

The dots stand for trilinear and quadrilinear terms in the gauge vector bosons� They are
there� together with the terms containing the would�be Goldstone bosons to ensure the
gauge invariance of each structure� It is straightforward to compute the contributions of
the above terms to the various two�point functions� We obtain�

�i"��
�� � �ia��g�p�p�

�i"��
�� � � i

�
a�v

�g�g��

�i�a� � a���g
��p�g�� � p�p��

�i�a�� � �a�� � a���g
�p�p�

�i"��
�� �

i

�
a�v

�gg�g��

�i�a�� a���gg
��p�g�� � p�p��

�i�a��� �a�� � a���gg
�p�p�

�i"��
�� � � i

�
a�v

�g�
�
g��

�ia��g���p�g�� � p�p��

�i�a�� � �a�� � a���g
��p�p� �����

One may be surprised by the fact that� apparently� beyond the lowest order represented by
the lagrangian L� the gauge�invariant independent terms a�ecting the two�point functions
of the theory are six and not three as expected on the basis of our discussion about the
radiative corrections� Notice that� as already observed� the present discussion is also based
on an expansion in powers of momenta where we are keeping exactly the same order as in
eq� ������ The apparent paradox is solved by recalling that� with the use of the equations
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of motion� L��� L�� and L�� can be eliminated by suitably rede�ning the parameters of the
e�ective lagrangian� that is by using the e�ective theory L�

eff de�ned in eqs� ������������
If we insist in using the complete base� with non�vanishing a��� a�� and a��� things will
arrange in such a way that the physical quantities will depend only on three combinations
among the six parameters a�� a�� a�� a��� a�� and a��� This is already evident from eqs�
������ the parameters a�� and a�� always multiply the harmless terms proportional to p�p�
and the parameter a�� can be absorbed in a rede�nition of 	 and MZ�

� Exercise� compute the contribution of Leff � L �P��
i� aiLi to the parameters ��� ��

and ��� One �nds�

�� � �a�

�� � �g��a� � a���

�� � �g��a� � a��� �����

The above relations show that the coe�cients a�� �a� � a��� and �a� � a��� are di�
rectly related to the observables discussed in section �� and are therefore appropriate in
parametrizing precision measurements performed at LEP I�

The other terms of the base Li �i � 	� ��� can be discussed along similar lines� The
invariants whose expansion starts with three gauge �elds are L�� L�� L� and L��� Again�
the use of the equations of motion can help in analyzing the physical e�ects� It turns out
that ��	�

L� � ig��JB� tr�TV
�� � �rede�nitions of �Z�� a�� a��

L� � ig�tr� �JW� V �� � �rede�nitions of �v�� �Z�� a�� �����

The parameters �Z�� �Z� and �v� correspond to wave function renormalizations for the
�elds B�� W� and �� respectively� The equations ����� bring in new invariant structures�
not considered up to now� containing fermionic vertices� In this new base one would
have universal corrections to the fermionic vertices� leading however to the same physical
predictions obtained in the framework of the original� purely bosonic base�

The parameters a�� a�� a� and a�� might be useful in discussing the LEP II physics�
Indeed� one can parametrize the most general couplings of two charged vector bosons with
a neutral vector boson according to the e�ective lagrangian ����

LWWN

gWWN

� ig�
N �W y

��W
�N � �W��W

y�N �� � ikNW
y
�W�N

��

�i
�N
M�

W

W y
��W

�
�N

�� � gN� �
�����W y

���W� � ��W
y
�W��N� �����

Here N� stands for the photon A or the Z �eld� W� is the W
� �eld� W�� � ��W� � ��W�

and similarly for N�� � The four terms in the previous equation are the most general CP
invariant terms one can build out of vector �elds with vanishing divergence� The �rst three
couplings are separately invariant under P and C transformations� whereas the last one
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violates both P and C� Additional terms can be added if CP violation is allowed ���� The
conventional choice for the overall normalization constants gWWN �N � �� Z� is�

gWW� � �e
gWWZ � �g cos � �����

The �rst term in eq� ����� has the form of a minimal coupling of the charged W current
to the photon or the Z �eld� The parameters g�� and g

Z
� represent the electromagnetic and

%Z% charges of the W � in units of gWW� and gWWZ � respectively� The coe�cients kN and
�N are related to the %magnetic% moments of the W � an anomalous %magnetic% moment
occurring if kN � � or �N � 	�
A direct access to the above parameters will be provided by W pair production in e�e�

collisions at the future LEP II facility� The di�erential angular distribution of the produced
W 
s turns out to be particularly sensitive to the chosen set of CP conserving couplings
����

By identifying the trilinear gauge boson interaction terms in the e�ective lagrangian
Leff � eq� ������� we can readily express the coe�cients of LWWN in terms of the parameters
ai� One obtains

� �

g�� � � � 	

gZ� � � � � g�

cos� �
a�

k� � � � g��a� � a� � a��� �� � ��

kZ � � �
g�

cos� �
�cos� ���a� � a��� sin� � a�� �� � tan� � ��

�� � 	

�Z � 	

g�� � 	

gZ� � � g�

cos� �
a�� �����

The relation g�� � � expresses the exact conservation of the electromagnetic charge� The
coe�cients �N are vanishing since Leff contains terms up to the fourth order in momenta
or gauge �elds�

The parameters a�� a� and a� or any set of independent combinations� together with the
coe�cient a��� appear to play in LEP II physics the same role covered by the �
s parameters
in LEP I measurements� Notice that invariance under isospin would require a� � a�� � 	�

It may be observed that the present bounds on the �
s parameters� summarized in eq�
������� translate into a bound of few percents on a�� �a��a��� and �a��a���� On the other
hand� it seems reasonable to assume that� in any sensible theory� the parameters ai are all
of the same order of magnitude� It would be a rather surprising result to �nd that� for
instance� a� and a� are larger than a�� �a� � a��� and �a� � a��� by a factor �	 or more�
On this basis� one would expect that the deviations listed in eq� ����� might be at most
of order �	����	��� and thus probably too small to be appreciated at LEP II ��	� Indeed�

�We do not include the e�ects of the gauge bosons wave function renormalization�
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if we were to use %naive dimensional analysis% ��� to estimate the size of the e�ects at
LEP II� by assuming a range of validity for Leff extending up to energies close to ��v� we
would guess for the dimensionless coe�cients ai values of order one in units of ������

���
even smaller than those indicated by the LEP I data�

It is maybe useful to recall that this kind of considerations requires that the scale of new
physics is considerably higher than �MW and� in any event� it is certainly not a substitute
for the experimental tests ����

Finally� L�� L�� L	� L
 and L�� contain only quadrilinear terms in the gauge boson
�elds� We could think to �x them� at least in principle� by means of scattering experiments
among gauge vector bosons� to occur at the future LHC�SSC facilities ���� Notice that all
the invariants but L�� are invariant under parity�
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� The Matching Conditions

The e�ective lagrangian Leff de�ned in the previous section is able to reproduce the quan�
tum e�ects originating from the heavy sector of an underlying fundamental theory of the
electroweak interactions� Such a piece of information is contained in the coe�cients ai of
the invariants Li� In particular� a�� a�� a�� a��� a�� and a�� are related� as we have seen�
to the self�energy corrections� Corrections to the three and four point functions may be
discussed as well�

Before concluding these lectures� we will show� in an example� how to deduce� in practice�
the coe�cients ai from the knowledge of the fundamental theory� This is done by means of
the so called matching procedure ���� It consists in equating amplitudes evaluated in the
fundamental theory and in the e�ective one� At the end� the parameters of the e�ective
theory will be run from the scale where the matching has taken place� down to the energy
where one will use the e�ective lagrangian�

As a simple example� we consider a fundamental theory consisting just of the standard
model with a fourth generation of light leptons �Ml � MZ� and heavy quarks �M �MZ��
We denote by M the common mass of the quarks� We will restrict the discussion to the
two point functions in the gauge boson sector evaluated at one�loop order� the extension
to the other Green functions being straightforward ���

The matching condition is given by�

"C
ij
�� �"L

ij
�� � " �C

ij

��
� "a

ij
�� �����

Here the left�hand side refers to the fundamental theory and the right�hand side refers
to the e�ective one� "C is the contribution of the counterterms of the fundamental theory�
derived from�

��
�
�� � �Z��B��B

�� � �
�
�� � �Z��W

i
��W

i�� �

�
�

�
�v� � �v��g��W �

�W
�� �W �

�W
��� �

�

�
�v� � �v���gW �

� � g�B��
� �����

"L is the loop contribution from the heavy quark doublet� "a is the contribution from
the invariants Li� already evaluated in eq� ������ Finally� " �C is the contribution from
possible �nite counterterms in the e�ective theory� of exactly the same form as those given
in eq� ������ with renormalization constants � �Z�� � �Z�� � �v�� Such terms may be present for
a particular choice of renormalization conditions� Two comments are in order�

We have not included the loop contributions from the light sector� These are exactly
the same for the fundamental and the e�ective theories� and can be simply dropped out
from both sides of eq� ������ Actually� this is the reason why at low energy we can de�ne an
e�ective lagrangian� The amplitude computed in the fundamental theory in the large mass
limit and the amplitude evaluated with the lagrangian obtained by simply suppressing the
heavy �elds� have equal absorptive parts in the various channels� Their di�erence is an

�	The e�ective theory will also contain a Wess�Zumino term ���� whose gauge variation cancels the
anomaly produced by the light leptons �����
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analytic function� which� for momenta much lower than the scale M � can be approximated
with a polynomial�

In principle� in a generic renormalization scheme� additional �nite counterterms have
to be added to the loop contribution from the fundamental theory� to properly ensure
the validity of the Ward identities� If the regularization procedure does not respect the
gauge symmetry� the Ward identities will be apparently broken by a loop computation and
they will have to be repaired by properly adding �nite terms� In the following� we will
use dimensional regularization with f��� ��g � 	 in all dimensions� which automatically
accounts for the non�anomalous Ward identities and which� in the example given� can be
safely applied�

The contributions from the counterterms of eq� ����� are given by�

�i"C
��
�� � �i"C

��
�� � �i"C

��
�� � i

�v�

�
g�g�� � i�Z��p

�g�� � p�p��

�i"C
��
�� � �i�v

�

�
gg�g��

�i"C
��
�� � i

�v�

�
g�
�
g�� � i�Z��p

�g�� � p�p��

�����

Those from the counterterms of the e�ective theory are immediately derived from the above
equations� Finally� the one�loop contribution from the heavy quark doublet is given by�

�i"L
��
�� � �i"L

��
�� � �i"L

��
�� �

�i
����

g�
�
�M�

�
A� ln

M�

��

�
g��

�

�
�
�
A� ln

M�

��

�
� �
�

�
�p�g�� � p�p��

��
�
p�p�

�
�����

�i"L
��
�� �

�i
����

gg�
�
��M�

�
A� ln

M�

��

�
g��

�
�

�
�p�g�� � p�p��

�
�

�
p�p�

�
�����

�i"L
��
�� �

�i
����

g��
�
�M�

�
A� ln

M�

��

�
g��

�

�
���
�

�
A� ln

M�

��

�
� �
�

�
�p�g�� � p�p��

��
�
p�p�

�
�����

where

A � � �

�� d
� �E � ln��

�E � 	���� �����
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and � denotes the scale parameter of dimensional regularization� The expressions given
above have been obtained in the limit p� �M�� neglecting positive powers of p��M�� We
are now ready to solve the matching conditions� From eq� ������ by using eqs� ���������
and ������ one obtains�

�v� � ��v� �
�

����
��M�

�
A� ln

M�

��

�

�Z� � � �Z� �
g�

����

�
A� ln

M�

��
�
�

�

�

�Z� � � �Z� � g��a�� �
g��

����

�
��

�

�
A� ln

M�

��

�
�
�

�

�
�����

and

a� � 	

a� � a�� �
�

����

	
��
�



a� � a�� � 	

a�� �
�

����

	
��
�



a�� � �a�� �����

As expected� these relations are already su�cient to determine the contribution of the
heavy quark doublet to the parameters �
s� One �nds ����

��� � 	

��� � 	

��� � �
g�

����
����	�

Notice that� since the parameters �� and �� are associated to isospin breaking e�ects �see
eqs� �������� they receive a vanishing contribution from a degenerate quark doublet�

� Exercise� compute the contribution to the �
s parameters from a degenerate doublet of
heavy leptons� Do the overall contribution to �� due to a whole fourth generation of heavy
degenerate fermions vanish&

The case analyzed above provides an example of non�decoupling� If decoupling applies�
the e�ects of a large mass limit are just the appearance of higher dimensional operators�
with coe�cients suppressed by inverse powers of the large mass� and a renormalization of
the parameters ���� In this case the physics associated with the heavy scale decouples
from the low energy theory� Instead� the e�ects described in eqs� ����������	� are neither
suppressed nor absorbable in a rede�nition of the fundamental constants� The point is that�
in order to have decoupling� one is not allowed to let a dimensionless coupling grow with
the heavy mass� On the other hand� this is just our case� since� in order to preserve the
gauge invariance� the large mass limit for the quark doublet has been implicitly achieved
by increasing the corresponding Yukawa coupling� ��

By imposing the matching conditions on a su�cient number of gauge bosons Green
functions� one can determine the whole set of parameters ai �i � 	� ������ and we have
collected the results in table III�

��The e�ective lagrangian we have dealt with so far has been constructed by applying the formalism of
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LARGE m���� LARGE mt� � mb� �M ��� LARGE mt �mb���
L � ln�m���� L � ln�mt���

a� ��
�
g��L 	

�

�

m�
t

v�

a� ��
�
L ��

�
�
�

�
L� �

�

a� � �
��
L ��

�
�
�

�
L� �

�

a� �
�

��
L �

�

�
�
�

�

a� �
�

�
L �

�

�
�L� �

�

a� �
�

��
L ��

�
�L� ��

��

a	 	 	 �L� ��
��

a
 	 	 �L� ��
��

a� 	 	 �L� �

��

a� 	 	 �L� ��
��

a�� 	 	 � �
��

a�� 	 ��
�

��
�

a�� 	 	 ��
�

a�� 	 	 ��
�

a�� 	 	 �
�

�

Table III� ai coe�cients � in units of ������
�� � for three particular limits

of the SM� The scale � is some intermediate scale between the low external
momenta and the large mass�

As a last step� to fully de�ne the low energy e�ective lagrangian� one has to specify
the renormalization group equations �RGE� according to which the various parameters run

non�linear realizations sketched in section �� According to a widely accepted point of view� going beyond the
SM� one should use non�linear realizations whenever the decoupling theorem does not apply� the opposite
case requiring the use of linear realizations� Although this choice may be in practice convenient� it is
not so compelling� In fact� the use of non�linear realizations is requested when the degrees of freedom
of the low energy e�ective theory cannot be assembled into linear multiplets of the symmetry group G�
When this happens the low energy theory is non�renormalizable� which is indeed the case if the decoupling
theorem does not apply� On the other hand� when the light degrees of freedom can be arranged into linear
multiplets of G� which may happen whether or not the decoupling theorem applies� one can choose to work
with linear realizations or non�linear ones� the two being related by an allowed �eld transformation� For
instance� the case of a vector�like doublet of heavy quarks can still be discussed in the framework of the
e�ective lagrangian of eq� ����	� In this case� the e�ects of the doublet decouple and the coe�cients ai will
contain inverse power of the heavy scale �
���
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from energy scales close to M down to lower energies� By working in the e�ective theory
and by choosing vanishing renormalization constants � �Z�� � �Z� and ��v�� one can readily
conclude that no contribution from the heavy quark doublet survives in the RGE
s� at one�
loop order� The one�loop RGE
s are then determined by the contribution of the light sector�
We �nd instructive to recover this conclusion by working at the level of the fundamental
theory� focusing just on the possible contribution from the heavy particles� As an example�
we will compute such a contribution for the g gauge coupling constant� for the previously
analyzed case of a new doublet of heavy quarks� As far as the fermionic contribution is
concerned� the relation between the unrenormalized coupling g� and the renormalized one
g is given by�

g� � �
��d

�

�
gp
Z�

�
������

where Z� � �� �Z� and� since we are interested in the running of g due to the heavy quark
doublet� �Z� is the renormalization constant given in eq� ������ Actually� eq� ����� gives
the combination �Z� � � �Z� and� to proceed� we have to specify the �nite counterterm � �Z��
that is the renormalization scheme we are going to adopt� For instance� in the MS scheme�
we would choose � �Z� in such a way to obtain �Z� � �g�������A� a mass independent
renormalization constant� Here we prefer to make the unusual but simpler choice � �Z� � 	�
to obtain�

�Z� �
g�

����

�
A� ln

M�

��
�
�

�

�
������

To compute the contribution of the heavy quark doublet to the 
 function of g� we act on
both sides of eq� ������ with �d�d�� We �nd�

	 �
�� d

�

�
gp
Z�

�
�

�

�g

�
gp
Z�

�
�
d

d�
g � �

�

��

�
gp
Z�

�
�

�

�M

�
gp
Z�

�
�
d

d�
M ������

By explicitly evaluating the right�hand side of the previous equation and by taking the
limit d� �� we obtain�


�g� � �
d

d�
g

�
g�

����
�

M

�
�
d

d�
M

�
�O�g�� ������

Eq� ������ shows that the usual contribution from the quark doublet� g������� drops from
the �nal result� which is of higher order in g� More precisely� this cancellation is due

to the term proportional to �
�

��

�
gp
Z�

�
in eq� ������� Usually� in a mass independent

renormalization scheme� this term and the last one of eq� ������� are absent� On the other
hand� the renormalization scheme chosen here is particularly suitable to discuss the e�ect
of the heavy doublet� since in this case the e�ect simply disappears �at the order g��� as
expected�

Indeed� nothing prevents the use of a mass independent scheme� For instance� in the
MS scheme one has �Z� � �g

�������A and we would have obtain�


�g� �
g�

����
� ������
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the usual result for a quark doublet� However� for the matching conditions to hold� this
would have required the presence of the �nite counterterm�

� �Z� � � g�

����

�
ln
M�

��
�
�

�

�
������

In turn� this �nite counterterm could have been absorbed in the e�ective coupling�

g� � g

�
� �

g�

����

�
ln
M�

��
�
�

�

��
������

As one may easily verify� g� runs according to the 
 function de�ned in eq� ������� not
containing any g� term�

Other cases can be studied along similar lines� The invariant structures Li also occur
in the low energy e�ective lagrangian derived from the standard electroweak theory in the
limit of an heavy Higgs ���� �� and in the limit of an heavy top quark ��� and we have listed
the corresponding results in table III� In principle� any extension of the standard model�
characterized by heavy particles� will leave its peculiar mark at low energies through a
speci�c contribution to the parameters ai�
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