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The infrared (IR) structure of the S-matrix in the basis of the QCD coherent states is studied.
To any order perturbation theory it is shown that these matrix elements are IR finite in spite of
the fact that they involve any number of soft gluons; moreover, these soft gluons do not even
contribute to the IR singular part of the inclusive Bloch-Nordsieck distribution. Finally, the BRS
charge related to the coherent state S-matrix elements is given and shown to be IR [inite to any
order perturbation theory.
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1. Introduction

During the last few years a considerable effort has been made [1] to analyze the
perturbative infrared (IR) behaviour of QCD. This study has provided insights on
many properties of perturbative QCD such as for instance: the non-factorization
theorem and the non cancellation of IR singularities in Bloch-Nordsieck inclusive
distributions [2]; the indications [3,4] that the perturbation theory is not consistent
in the case that QCD is not confined; the phenomenological structure [1,5] of QCD
radiation, and its consistency with present high energy hard scattering data.

A general method to study these IR properties is based on the construction of the
QCD _coherent states which describe the cloud of strongly correlated soft gluons
surrounding a hard scattering process. These states are obtained [3,4,6,7] for
instance by generalizing to QCD_the method of asymptotic (or_soft)_dynamics
introduced for QED by Faddeev and Kulish [8]. According to this method one
introduces an arbitrary energy scale E separating soft and hard partons and one can
show that the S-matrix can be factorized in the form

(5=9_(EN)S(E)2s (EA).) BY
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where g . (E,\) are the Moller operators for the soft or asymptotic dynamics.
This means that the perturbative expansion of £g ,(E.A sponds to diagrams

where[alllvarious transfer energies », are soft, i.e[», < E]Since », can be extended to
the IR singular value = 0 one introduces an IR cutoff in (1.1) by requiring[s, > X}
Consequently the perturbative expansion of Sg(E) corresponds to diagrams where

together with soft transfer energies one has at least one hard transfer every » > E.

In this paper we discuss the following two points arising from the factorization of
the S-matrix in (1.1).
(1)[Tn_QED the operator Sg(E) is IR regular [8], i.e. IR finite, in the Fock basis.
Therefore even if in Sg(E) there are soft photons, no singularities arise when their
frequency vanishes, and the IR singularities of the S-matrix are fully described by
the factorized soft Meller operators 25 ,(E, A). As a consequence one can intro-

duce the coherent states
|h, +)= 8% .(E,A)h), (12)

where |h) are hard Fock space states. The coherent state S-matrix reduces then to
Sg(E) and is IR regular.

In order to do the same formal operation in the case of QCD one has then to
show that also in this case Sg(E), although involving any number of soft gluons, is
IR regular. There are various indications [7] that actually Sg(E) is IR regular, but a
detailed analysis of this important point is lacking. In_this paper we analyze, within

the framework of perturbation theory, the IR structure of Sg(£) and show that is is_

actually IR regular. This is based on the following two points: () the possible IR
singularity of each propagator is screened by the presence of at least one hard
frequency » > E; tﬂl’ the cancellation of IR singularities acising when_some. propa-
gator _goes on shell.

We are able to show that each perturbative term for Sy(E) is IR finite by using
for the Maller operator of Sg(E) not the standard time ordered expression, but a
“frequency ordered” expression introduced in ref. [3]. For this expression in fact we
are able to show that the kernel itself is IR finite. Moreover, by using this frequency
ordered expansion we show that soft gluons exchanged between Sy(£) and
25 ,(E,\) do not produce IR singular contributions. This implies that the study of
nnon-cancellation of IR singularities in inclusive Bloch-Nordsieck distributions can
be done, to all orders, by disregarding the soft gluons in Sg(E) thus treating Sg(E)
at the tree level as usually done [2-4).

e—sccond point analyzed in this paper is related to the BRS invariance of

the theory. As known [4] the S-matrix, in the interaction picture, commutes with the

free BRS charge Q. As a consequence one can define BRS charges Qpes . (E)

properties of the theory. These charges are important also in the discussion_ELof the
properties of the coherent states and the corresponding physicality condition. Their
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Abstract

We address the problem of potential non-universality of the leading 1/Q power corrections
to jet shapes emerging from the non-inclusive character of these observables. We consider the
thrust distribution as an example and analyse the non-inclusive contributions which emerge at
the two-loop level. Although formally subleading in as, they modify the existing naive one-loop
result for the expected magnitude of the power term by a factor of order unity. Such a promotion
of a subleading correction into a numerical factor is natural since the non-perturbative power
terms are explicitly proportional to powers of the QCD scale A which can be fixed precisely
only at the two-loop level. The “jet-shape scaling factor” depends on the observable but remains
perturbatively calculable. Therefore it does not undermine the universal nature of 1/Q power
corrections, which remain expressible in terms of the universal running coupling and universal
soft-gluon emission. ©) 1998 Elsevier Science B.V.

PACS: 1238.Cy; 12.38.Lg; 13.65.+i
Keywords: 1/Q power corrections; Jet shape; Soft-gluon universality; Hard QCD processes
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Using the QCD coherent branching algorithm, we compute the Deep Inelastic Scattering
and Drell-Yan hard cross sections in the semi-inclusive region of large x. The calculation is
done to next-to-leading logarithmic accuracy in the resummation of perturbative QCD. We
compare the results with the known analytical expressions to the same accuracy in the MS
subtraction scheme. They coincide if one defines an improved branching algorithm suitable for
Monte Carlo simulation, in which the two-loop running coupling constant and Altarelli-Parisi
splitting function are used. Therefore such a simulation can be used to measure A gg from these

semi-inclusive cross sections. Moreover we show that the same results can also be obtained using
the usual one-loop splitting function, provided the scale parameter A, used in the Monte
Carlo simulation is related to A gg by a computed factor: Ay = 1.569 A gz (for five flavours).




The Punchline
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branching algorithm provided one uses the two-loop expression for running a_ |eq.
(10)] and the following expression for the Altarelli- Parisi splitting function at
z2- ]
Ala,) a, a, )
Plz.a)e—t) ,4,((,\)»-(,—(1+K«’, (58)

g . ] > p
I (L &

with K given by eq. (9) and C,=Cy or C, for a quark or a gluon respectively.

Since the Monte Carlo algorithm with these improvements is accurate to
next-to-leading order in the large-x region, it can be used to determine the
fundamental QCD scale A g

From eq. (58) we see that the next-to-leading correction to the splitting functions
for z — 1 is a universal factor associated with soft gluon emission [8). Therefore it
can be absorbed into the one-loop splitting functions used in existing Monte Carlo
simulations with coherence [14, 15] (after conversion from the one-loop to the
two-loop definition of a ), simply by rescaling the value of A. Denoting by A,,,
the rescaled value used in the simulation with one-loop splitting functions, the
corresponding value of a_ should satisfy

(59)

and thus
‘1\1( - ‘MU‘"P( K/4mB,)

=~ 1.569 ‘\R for N" =§, ((\“)
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The Cusp Anomalous Dimension

& Wilson lines meeting at a cusp develop new UV divergences
depending on the cusp angle

B8 y
EERP

$ The divergences are controlled by a new anomalous dimension

cosh 0 =

Fcusp (97 as) = M% 1Og [W (CQ; s, :u) }
& For light-like lines the cusp develops a collinear pole B’

. 3/ 1
Fcusp (‘97055) B ALK (as) log (%) 7 E’VK (as)

Wilson lines meeting at a cusp

€ The cusp anomalous dimension yk (&s) plays an increasingly fundamental role in massless
gauge theories

* |t gives the soft limit of DGLAP splitting functions to all orders
* |t governs soft-gluon resummation for massless QCD cross sections
* |t controls soft singularities in planar massless gauge theory amplitudes

* |t is exactly known, from weak to strong coupling, in N=4 Super Yang-Mills theory

* |t is conjectured to control all soft singularities, including non-planar correlations, through
the dipole formula.
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Soft-collinear factorization

& Divergences arise in scattering amplitudes
from leading regions in loop momentum space.

¢ Power-counting arguments show that soft
gluons decouple from the hard subgraph.

¢ Ward identities decouple soft gluons from jets
and restrict color transfer to the hard part.

¢ Jet functions | represent color singlet
evolution of external hard partons.

¢ The soft function S is a matrix mixing
the available color representations.

€ In the planar limit soft exchanges are confined
to wedges: S is proportional to the identity.

¢ Beyond the planar limit S is determined by an
anomalous dimension matrix [s.

Leading integration regions in loop momentum space
for Sudakov factorization

¢ The matrix I's correlates color exchange with
kinematic dependence.



Soft-collinear factorization: pictorial

A pictorial representation of soft-collinear factorization for fixed-angle scattering amplitudes



Operator Definitions

The precise functional form of this graphical factorization is

e e N
Mr (pi/,uaOés(Mz)aE) = OSLk (51 ' 53',045(,“2)76) Hg (pzﬁpg’ (ngn;) ,Oés(,LLQ))

ng (L
<1

( oy )Q,as(uz) )/J <(5zn52) ,ozs(uz)m)} ,

We introduced factorization vectors n | nf # 0 to define the jets,

J (@'”) ,asm,e) u(p) = (0]%n(00,0)%(0) |p)

n2 12

where @, is the Wilson line operator along the direction n#,

A2
b, (A2, A1) = Pexp ig/ d\n - A(An)
A

The vectors nH: € Ensure gauge invariance of the jets.
¢ Separate collinear gluons from wide-angle soft ones.

¢ Replace other hard partons with a collinear-safe absorber.



Soft anomalous dimensions

The soft function S obeys a matrix RG evolution equation

d

M@SIK (Bi - Bjyas(u®),€) = = Sry (Bi - B, a5 (1?), €) T3k (Bi - By, s (p*), €)

e [ is singular due to overlapping UV and collinear poles.

In dimensional regularization, using os(p4? =0,€ <0) =0, one finds

S (ﬁz 'ﬁjaQS(MQ)ve) = P eXp 9 52

> d&?
—1/ ¢ —T° (ﬁz ﬁ],ozs(§2,€),€):| :
0

Double poles cancel in the reduced soft function

Sri (8: - B, as(p?), €)
HJ< L ;%) ,as(u2)76>

¢ The matrix S must depend on rescallng invariant variables

ns (6 B;)°
i (5@ nz) (6] n])

¢ The anomalous dimension Fg(p,,;j, a ) for the evolution of S is finite.

SLi (Pz‘j» as(p?), 6) =
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The Dipole Formula

For massless partons, the soft anomalous dimension matrix obeys a set of exact equations
that correlate color exchange with kinematics.

The simplest solution to these equations is a sum over color dipoles (Becher, Neubert;
Gardi, LM, 09). It gives an ansatz for the all-order singularity structure of all multiparton
fixed-angle massless scattering amplitudes: the dipole formula.

& All soft and collinear singularities can be collected in a multiplicative operator Z

M (Zi,ozs(ﬁ),e) =7 (pi,ozs(u?c),e> H (pi, W,Ozs(MQ),e) ,

puf p'op

§ Z contains both soft singularities from S, and collinear ones from the jet functions. It
must satisfy its own matrix RG equation

a2 (Botine) = =2 (Fraine) T (Brentid)
7 | F= el e A e ST IR = 0y :
7 2 (o) (%)) T (2 (0)

The matrix I inherits the dipole structure from the soft matrix. It reads

Ldaip (]Z’ Oés(ﬂ2)> — —i S lﬂ( ] pj) T, -T; + z”: s ) -

=) gl

Note that all singularities are generated by integration over the scale of the coupling.
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Features of the dipole formula

& All known results for IR divergences of massless gauge theory amplitudes are recovered.

$ The absence of multiparton correlations implies remarkable diagrammatic cancellations.

* First observed at two loops by Aybat, Dixon and Sterman (2006).
$ The color matrix structure is fixed at one loop: path-ordering is not needed.
& All divergences are determined by a handful of anomalous dimensions.

¢ The cusp anomalous dimension plays a very special role: a universal IR coupling.

e All correlations between color and kinematics are governed by the cusp.

$ A simple generalization of the planar solution: sum over all dipoles, not just
color-adjacent ones

$ Massive partons spoil the simplicity: non-vanishing tripole correlations already
at two loops (Neubert et al., Sterman et al. 2010).

Can this be the definitive answer for IR divergences in massless non-abelian gauge theories?
B> There are precisely two sources of possible corrections.

e Quadrupole correlations may enter starting at three loops: they must be tightly
constrained functions of conformal cross ratios of parton momenta.

* The cusp anomalous dimension may violate Casimir scaling beyond three loops.



The dipole formula at high energy

& Introducing ‘Mandelstam’ color operators, and using color and momentum conservation

i T, — — (T3 +Ty) s+t+u=0

Tt = T1—|—T3:—(T2—|—T4), 4

T, = T 4o G e dECRaE LT = D O
P

it is easy to see that the infrared dipole operator Z factorizes in the high-energy limit
i = 0
Z <%7as(u2),e> =7 G,as(ﬁ),e) A (P,Ozs(/f),e)

® The operator Z1 is s-independent and proportional to the unit matrix in color space.

.

where the coupling dependence is (once again!) completely determined by the cusp
anomalous dimension and by the B function, through the function (Korchemsky 94-96)

® Color dependence and s dependence are collected in the factor

7 (ﬁ,as(,f),ﬁ) = 5D {K(QS(MQ),g) {ln (%) A0 L fy 10

t

K(as(/f),e) — —i /OM2 d)\—)\;‘y\K (as (A%, €))

& The simple structure of the high-energy operator governs Reggeization and its breaking.
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Reggeization of leading logarithms

$ At leading logarithmic accuracy, the (imaginary) s-channel contribution can be dropped, and
the dipole operator becomes diagonal in a t-channel basis.

M (% 0u02),€) = exp{ K (), ) In (=) 2| 200 (2 u)ve)

& If, at LO and at leading power in t/s, the scattering is dominated by t-channel exchange,
then the hard function is an eigenstate of the color operator T/

|t/s|—0

_>
12 349999 LLI20,  4y90-000

$ Leading-logarithmic Reggeization for arbitrary t-channel color representations follows

7 H99—>99
¢ 1 7%

AMII—99 ( S >CA K (as(4?)€)

$ The LL Regge trajectory is universal and obeys Casimir scaling.

$ Scattering of arbitrary color representations can be analyzed
Example: let 1 and 2 be antiquarks, 4 a gluon and 3 a sextet; use

36 = 3915 38, =39641

LL Reggeization of the 3 and 135 t-channel exchanges follows.

Scattering for generic color exchange



Beyond leading logarithms

& The high-energy infrared operator can be systematically expanded beyond LL, using the
Baker-Campbell-Hausdorff formula. At NLL one finds a series of commutators

i K(as,e)Tf K
2ol = () {irinano [12- Kot (2) o

1

A (;;876) In® (—it) o3, [mh ] | + ]}

& The real part of the amplitude Reggeizes also at NLL for arbitrary t-channel exchanges.

NLL

& At NNLL Reggeization generically breaks down also for the real part of the amplitude.

® At two loops, terms that are non-logarithmic and non-diagonal in a t-channel basis arise

£ (@, 6) = — 572 K?(ap,) (T2)’

® At three loops, the first Reggeization-breaking logarithms of s/t arise, generated by

2

&1 (;,043,6) = — %K?»(as,e) In (it) [Ti, [Tf,TgH

€ NOTE e In the planar limit (Nc —o0) all commutators vanish and Reggeization holds
also beyond NLL (as perhaps expected from string theory).
® Possible quadrupole corrections to the dipole formula cannot come to the rescue.
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Conformal cross-ratios

The dipole formula is a solution to an exact inhomogeneous equation for ['. It may be
corrected by adding a solution to the corresponding homogeneous equation.

Pi 2 Pi 9 9 Pi - Dj Pk - Dl
I' —, Qg U ) e Fdi (_7058 H ) 7l A Pijkl, s\ U ) Pijkl =
(u () v (%) (P (#) : Di * Pk Dj " Di

¢ The function A can only depend on conformal invariant cross ratio of parton momenta.
¢ The function A must correlate at least four partons: it an arise starting at three loops.

¢ The function A is tightly constrained:

j k

® |t must vanish in all non-trivial collinear limits.

e Its degree of transcendentality is bounded from above
(and must be T = 5 at three loops).

e |t must be a Bose symmetric gluon correlator.

e |t must not generate super-leading Regge logarithms.

$ No examples satisfying all constraints are known.

¢ Work is in progress to compute A directly, both via amplitudes

and Wilson lines: a non-trivial, four-point, three-loop non-planar
calculation. Symbol technology may help. A three-loop diagram for A



Casimir Conspiracies

The dipole formula was derived assuming that the cusp anomalous dimension in a given color

representation satisfies (quadratic) Casimir scaling

7&? (O‘s) 3 C(Z) /’?K(O‘s) C(Z) o Tz ) Tz

€ Casimir scaling holds to three loops but can be violated
starting at four loops, when quartic Casimirs can appear

@ = g, Tr [T“TbTCTd}
r
€ An indirect argument (Becher, Neubert 2009) shows that
quartic Casimirs at four loops would be inconsistent with
factorization and collinear constraints

$ Strong coupling results in planar N=4 Super Yang-Mills theory
(Armoni, Maldacena 2006-2007) suggest that Casimir scaling
should not hold to all orders

& The cusp anomalous dimension is known exactly in the
planar limit of N=4 SYM: not enough to disentangle Ca.

& A direct calculation is just outside feasibility with current
technology

A possible contribution
involving quartic Casimirs
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Summary

€ Pino is an extremely hard act to follow ...

& We are trying anyway!

€ Progress:a definitive solution of the problem of infrared divergences of (massless) gauge
theory amplitudes may be at hand.

v We are probing the all-order structure of the nonabelian exponent.

& A simple dipole formula may encode all infrared singularites for any massless gauge
theory, a natural generalization of the planar limit.

& The study of possible corrections to the dipole formula is under way.

€ The high-energy limit of the dipole formula provides insights into Reggeization and beyond,
at least for divergent contributions to the amplitude.

$ Regge factorization generically breaks down at NNLL, with computable corrections which
may be related to Regge cuts in the angular momentum plane.
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theory amplitudes may be at hand.

v We are probing the all-order structure of the nonabelian exponent.

& A simple dipole formula may encode all infrared singularites for any massless gauge
theory, a natural generalization of the planar limit.

& The study of possible corrections to the dipole formula is under way.

€ The high-energy limit of the dipole formula provides insights into Reggeization and beyond,
at least for divergent contributions to the amplitude.

$ Regge factorization generically breaks down at NNLL, with computable corrections which
may be related to Regge cuts in the angular momentum plane.

$ QCD is a theory of great beauty, and it’s a privilege to study it.
Thank you Pino for teaching us a lot about it!
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