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1. History

F. Sauter 1931: Dirac’s theory predicts spontaneous pair creation from vacuum,
induced by an external field (first for weak static homogeneous fields).

J. Schwinger 1951:
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• Rate of pair creation per unit volume = w ≈ −2ImL

• kth term ↔ coherent production of k pairs by the field



ImL(E) nonperturbative in the field ↔ tunneling picture: A virtual pair turns
real by separating out along the field and drawing a sufficient energy to make up
for its rest mass energies.
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FIG. 1: Pair production as the separation of a virtual vacuum dipole pair under the influence of an external electric field.

building on earlier work of Sauter [18]. This result sets a basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:
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e h̄
≈ 1016 V/cm
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c ≈ 4× 1029 W/cm2 (1.4)

As a useful guiding analogy, recall Oppenheimer’s computation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:
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Taking as a representative atomic energy scale the binding energy of hydrogen, Eb =
me4

2h̄2 ≈ 13.6 eV, we find
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This result sets a basic scale of field strength and intensity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

h̄4 = α3Ec ≈ 4× 109 V/cm

I ionizationc = α6Ic ≈ 6× 1016 W/cm2 (1.7)

These, indeed, are the familiar scales of atomic ionization experiments. Note that E ionization
c differs from Ec by a factor

of α3 ∼ 4 × 10−7. These simple estimates explain why vacuum pair production has not yet been observed – it is an
astonishingly weak effect with conventional lasers [20, 21]. This is because it is primarily a non-perturbative effect,
that depends exponentially on the (inverse) electric field strength, and there is a factor of ∼ 107 difference between
the critical field scales in the atomic regime and in the vacuum pair production regime. Thus, with standard lasers
that can routinely probe ionization, there is no hope to see vacuum pair production. However, recent technological
advances in laser science, and also in theoretical refinements of the Heisenberg-Euler computation, suggest that lasers
such as those planned for ELI may be able to reach this elusive nonperturbative regime. This has the potential to open
up an entirely new domain of experiments, with the prospect of fundamental discoveries and practical applications,
as are described in many talks in this conference.

II. THE QED EFFECTIVE ACTION

In quantum field theory, the key object that encodes vacuum polarization corrections to classical Maxwell electro-
dynamics is the ”effective action” Γ[A], which is a functional of the applied classical gauge field Aµ(x) [22, 23, 24].
The effective action is the relativistic quantum field theory analogue of the grand potential of statistical physics, in
the sense that it contains a wealth of information about the quantum system: here, the nonlinear properties of the
quantum vacuum. For example, the polarization tensor Πµν = δ2Γ

δAµδAν
contains the electric permittivity �ij and the

magnetic permeability µij of the quantum vacuum, and is obtained by varying the effective action Γ[A] with respect

Pair creation rate exponentially small for E � Ecr = 1016V/cm.

Lasers are now coming close:

• Polaris (Jena): E2

E2
cr
∼ 10−7

• ELI (Extreme Light Infrastructure): E2

E2
cr
∼ 10−3

• XFEL (DESY): E2

E2
cr
∼ 10−2



The pair creation threshold could be substantially lower for laser field configura-
tions, for example:

• Counterpropagating laser beams of linear polarization (M. Ruf, G. R. Mocken,
C. Müller, K. Z. Hatsagortsyan, C. H. Keitel, PRL 102, 080402, 2009).

• Superimposing a plane-wave X-ray beam with a strongly focused optical laser
pulse (G.D. Dunne, H. Gies, R. Schützhold, PRD 80:111301, 2009).

• .......... (many more)

However, the calculation of the pair creation rate for generic electric fields requires
approximative methods.
Some classical results on pair creation by more general electric fields (mostly using
WKB):

• Keldysh 1965

• Brezin & Itzykson 1970

• Narozhnyi & Nikishov 1970

• Popov 1972

• Popov & Marinov 1972



The worldline instanton method

I.K. Affleck, O. Alvarez, N.S. Manton, NPB 197, 509 (1982)

Worldline representation of the QED effective action

• R.P. Feynman, PR 80, (1950) 440 (Scalar QED)

• R.P. Feynman, PR 84 (1951) 108 (Spinor QED)

Scalar QED:

(Quenched) effective action Γ(A)
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T = proper time of the loop scalar

S[x(τ )] = worldline action
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Start at one-loop:

Γscalar[A] =
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The new worldline action,

S = m

��
du ẋ2 + ie
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duA · ẋ

is stationary if

m
ẍµ��
du ẋ2

= ieFµνẋν

Contract with ẋµ ⇒ ẋ2 = const. ≡ a2 ⇒ mẍµ = ieaFµνẋν

⇒ the extremal action trajectory xcl(u) is a periodic solution of the
Lorentz force equation
(≡ worldline instanton )

semiclassical approximation (= weak field approximation)

ImL(E)
E→0∼ e−S[xcl]



Constant field case:

�E = (0, 0, E) = const.

Periodicity condition ⇒ a = m
eE 2nπ, n ∈ Z+

xcl(u) =
m

eE
(x1, x2, cos(2nπu), sin(2nπu))

S[xcl] = nπ
m2

eE

nth worldline instanton ⇒ nth Schwinger exponential

Generalization to arbitrary electric fields

G.V. Dunne, C.S., PRD 72, 105004 (2005)



Example: Single bump space dependent electric field

E(x3) = E sech2(kx3)
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S0 increases with γ̃ → decrease of pair creation rate
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FIG. 6: Instanton paths for the spatially inhomogeneous electric field E(x) = E sech2(kx) for

various values of the inhomogeneity parameter γ̃ defined in (60). As γ̃ → 0 we recover the circular

paths of the constant field case, but as γ̃ → 1 the loops become infinitely large.

the imaginary parts of the effective action in each case:
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This is plotted in Figure 8, and it compares very accurately with the numerically integrated

exact result of Nikishov [36] and with the recent numerical results of Gies et al (see Figure

3 in [32]).
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The instantons cease to exist for γ̃ > 1 (the total energy that can be ex-
tracted from the field is then less than 2m).



Comparison of the pair creation rate with exact results:
21
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FIG. 1: The dotted line plots the ratio of our semiclassical worldline instanton expression (4.7) to

the weak field limit of the corresponding locally constant field approximation (4.8). The dashed

line is the same ratio using a numerical integration of the exact expression, derived from Nikishov’s

exact result in [47] (see also [35]). The circles represent the numerical worldline results of Gies

and Klingmüller [38], which were evaluated for eE
m2 = 1. Note that the agreement is excellent, even

though it is far from the weak field limit.

• For the Minkowski electric field E(x3) = E cos(kx3), we have f(k x3) = sin(k x3), and
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The imaginary part of the Minkowski effective action is
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• For the Minkowski electric field E(x3) = E

[1+(kx3)
2]

3/2 , we have f(kx3) = kx3√
1+(kx3)

2
, and

No pair creation for γ̃ > 1!



3. Multiloop QED

I.K. Affleck, O. Alvarez, N.S. Manton, NPB 197, 509 (1982)

The worldline instanton remains a stationary trajectory even with photon
insertions. Evaluating the photon insertion term Si on this trajectory gives
an all-loop formula:

Lall−loop
scal (E) =

∞�
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ImL(l)
scal(E)
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8π3
exp[−π

β
+ απ] = L(1)

scal e
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(β = eE/m2).

The mass is the physically renormalized one!



This corresponds to an infinite set of Feynman diagrams:
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Figure 1: Diagrams contributing to ImL(all−loop)
scal (E) in the weak-field limit.

Moreover, the mass appearing in (1.15) is argued to be still the physical

renormalized mass, which means that the above figure should strictly speak-

ing include also the mass renormalization counter diagrams which appear in

EHL calculations starting from two loops.

The derivation given in [33] is very simple, if formal. Based on a station-

ary path approximation of Feynman’s worldline path integral representation

[34] of Lscal(E), it actually uses only a one-loop semiclassical trajectory, and

arguments that this trajectory remains valid in the presence of virtual pho-

ton insertions. This also implies that non-quenched diagrams do not con-

tribute in the limit (1.15), which is why we have shown only the quenched

ones in fig. 1.

Although the derivation of (1.15) in [33] cannot be considered rigorous,

an independent heuristic derivation of (1.15), as well as extension to the

spinor QED case (with the same factor of e
απ

) was given by Lebedev and

Ritus [31] through the consideration of higher-order corrections to the pair

creation energy in the vacuum tunneling picture. At the two-loop level,

(1.15) and its spinor QED extension state that

6

All mass renormalization counterdiagrams are also included.



S.L. Lebedev and V.I. Ritus 1984:

• Independent derivation from Coulomb corrections to the tunneling pic-
ture.

• Explicit two-loop check,

2�
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β
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Program: From the AAM formula one can, using Borel

dispersion relations, obtain information on the l - loop N -

photon amplitudes:

• High-order behaviour qualitatively different for physi-

cal and generic mass renormalization.

• For large N it is dominated by the quenched (one

fermion loop) contribution.

• The perturbation series may converge in the quenched

approximation.

Gerald V. Dunne and C.S., JHEP 0206:042 (2002);

J. Phys.: Conf. Ser. 37 (2006) 59.

L.C. Martin, C.S., V.M. Villanueva, NPB 668, 335 (2003).

I. Huet, D.G.C. McKeon, C.S., JHEP 12 (2010) 036.

I. Huet, M. Rausch de Traubenberg, C.S., arXiv:1112.1049

[hep-th].



4. One-loop open string theory

Pair creation of open strings by a constant electric field:

C.P. Burgess, Nucl. Phys. B 294, 427 (1987).
C. Bachas and M. Porrati, Phys. Lett. B 296, 77 (1992).

At one-loop, have to replace the particle loop by a string annulus:

Open strings interact only at the boundary, have to insert

� T

0
dτ ieA · ẋ

on both boundaries.



Bachas and Porrati:
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Here the first sum is over the physical states of the bosonic string, with MS

the mass of the state. The second sum is a Schwinger-type sum.

β1,2 = πq1,2E

where q1,2 are the U(1) charges at the string endpoints, and
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π
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This formula reproduces in the weak – field limit the Schwinger formula for
arbitrary integer spin J .
For stronger fields it diverges at a critical field strength

Ecr =
1

π |max qi|
Heuristically, a field of this strength would break the string apart.



A. Torrielli and C. S., JPA 43:402003 (2010): Use worldsheet instantons:
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Path integral over the embeddings of the annulus at fixed T into D - dimen-
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Here α� is the Regge slope, which will be set equal to 1
2 in the following. The

worldsheet is parameterized as a rectangle σ ∈ [0, 12] and τ ∈ [0, T ] where
τ = T is identified with τ = 0.



Rescale τ = Tu and do the T - integral by the method of steepest descent.

Stationary point:
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kth worldsheet instanton:

xD−1
k =

2πMS

|a| cos(2πku) cosh(b− aσ)

xDk =
2πMS

|a| sin(2πku) cosh(b− aσ)

(with the remaining coordinates constants).

b = arctanhβ1
a = 2(arctanhβ1 + arctanhβ2)

Worldsheet action:

S[xµk ] = 2π2M 2
S

k

a

This correctly reproduces the exponents of the Bachas-Porrati formula in
the large MS limit.



Next:

• On to more general electric field backgrounds (for strings, so far only
the constant field case has been feasible).

• The boundaries of the worldsheet instanton are worldline instantons.
Will this be true for the general case?


