"Sapienza" Università di Roma – INFN sez. Roma 1

On the spin of the X(3872)

A. Pilloni

Cortona, 1 giugno 2012

R. Faccini, F. Piccinini, AP, A.D. Polosa arXiv:1204.1223 [hep-ph]

Outline

- Exotic states: the X(3872)
- Main models
- The spin of the X(3872)

XYZ

Before B factories, hidden charm mesons were as a $c\bar{c}$ system in a non-relativistic potential

XYZ

Before B factories, hidden charm mesons were as a $c\bar{c}$ system in a non-relativistic potential

XYZ

A lot of "weird" states appeared They do not fit in the classic $c\bar{c}$ system

X(3872)

- First exotic state discovered at Belle (2003)
- Too narrow (Γ < 1.2 MeV) for an above-treshold charmonium
- Radiative decay in $J/\psi \gamma$ too small for charmonium
- Isospin violation: $\frac{\Gamma(X \to J/\psi \ \omega)}{\Gamma(X \to J/\psi \ \rho)} \sim 0.8 \pm 0.3$ too big
- The mass cannot be predicted as a charmonium excitation (almost equal to $D^0 + D^{0*}$)

What is that?

(a digression on QCD)

Quarks are the building blocks of matter Quarks are colored particles: $q \in \mathbf{3}_c, \bar{q} \in \overline{\mathbf{3}}_c$

They must arrange in color neutral states

All hadronic matter fits in these two models (up to 2003)

(a digression on QCD)

Attraction and repulsion between electric charges is a matter product of signs. In QCD it is more complicated than that (matrix tensor products)

The singlet $\mathbf{1}_{c}$ is an attractive combination

A diquark in $\overline{\mathbf{3}}_{c}$ is an attractive combination A diquark is colored, so it can stay into hadrons but cannot be an asymptotic state We see diquarks in lattice QCD

(a digression on QCD)

Can we have other neutral color states?

1

- Isospin violation because of the threshold D^+D^{*-}
- Two scales:
 - $-R \sim 1$ fm radius of the mesons
 - $R \sim 10$ fm radius of the molecule

```
Analogies with deuteron (but spins!)
1-pion exchange: V(r) \propto \frac{e^{-m_{\pi}r}}{r}
```

Tornqvist, Z.Phys. C61, 525 (1994)

- Two classes for decay:
 - Long range: $X \to D^0 \overline{D^{0*}}$ mesons simply split up
 - Short range: $X \to J/\psi \ n\pi$ proportional to $|\psi(0)|^2$

We need a S-wave bound state to have $|\psi(0)|^2 \neq 0$ Also, too little binding energy for a P-wave state

- Short range: $X \to J/\psi \ n\pi$ proportional to $|\psi(0)|^2$

We need a S-wave bound state to have $|\psi(0)|^2 \neq 0$ Also, too little binding energy for a P-wave state

- Large binding energy: non-perturbative effects
- Double well models to describe $X \rightarrow J/\psi n\pi$
- One scale:
 - $-R \sim 1$ fm radius of the meson

Tetraquarks prefer to decay in baryon-antibaryon, but $M_X < M(\Lambda_c \overline{\Lambda_c}) \rightarrow \text{narrowness}$

Maiani, Piccinini, Polosa, Riquer, PRD71, 014028 (2005)

We can have both $[Cu][\overline{C}\overline{u}]$ and $[Cd][\overline{C}\overline{d}]$ Mass eigenstates could be a mixing: big isospin violation Maiani, Piccinini, Polosa, Riquer, PRD71, 014028 (2005)

String model for P-wave state: Wilczek arXiv:hep-ph/0409168 Where are charged partners?

X(3872): résumé

Molecule

- $\checkmark M_X = M_{D^0} + M_{D^{0*}}$
- ✓ Isospin violation
- ✓ Large decay into DD^*
- ★ Too small prompt production cross section in $p\bar{p} \rightarrow X + all$
- Not possible in P-wave

Tetraquark

- ✓ Isospin violation
- ✓ Narrowness (below $M(\Lambda_c \Lambda_c)$)
- ✓ Models in P-wave
- Charged partners?

The measure of the spin is no matter of taxonomy, it is important to test exotic models

 $J_X = 1 \rightarrow \text{S-wave state} \rightarrow \text{Molecule} \text{ and Tetraquark}$ $J_X = 2 \rightarrow \text{P-wave state} \rightarrow \text{Molecule} \text{ and Tetraquark}$

We explore two channels:

- Invariant mass of 2π, 3π system
- Angular correlations

 $V = \rho, \omega$

$$X \rightarrow J/\psi V$$

is a **S-wave** decay if $J_x = 1$ is a **P-wave** decay if $J_x = 2$

Belle, PRD84, 052004 (2011) $X \to J/\psi \ \pi^+\pi^-$ Babar, PRD82, 011101 (2010) $X \to J/\psi \ \pi^+\pi^-\pi^0$

History

- Belle (2005) estimated J^{PC} = 1⁺⁺
- CDF (2007) ruled out all but J^{PC}=1⁺⁺ and 2⁻⁺
- Babar (2010) prefered $J^{PC} = 2^{-+}$ in 3 π channel
- Belle (2011) both J^{PC}=1⁺⁺ and 2⁻⁺

Exact approach

The imposing of Lorentz, parity and gauge invariance allows us to write the **exact tensorial structure**

If $J_{\chi} = 1$ $\langle \psi(\varepsilon, p) V(\eta, q) | X(\lambda, P) \rangle = g_{1V} \varepsilon^{\mu\nu\rho\sigma} \lambda_{\mu}(P) \varepsilon^{*}_{\nu}(p) \eta^{*}_{\rho}(q) P_{\sigma}$

 $\begin{aligned} \langle \psi(\varepsilon, p) \, V(\eta, q) \, | \, X(\pi, P) \rangle \\ = g_{2V} \, \varepsilon^{\mu\nu\rho\sigma} \, \pi_{\alpha\mu}(P) \big(\varepsilon^{*\alpha}(p) \, \eta^*_{\sigma}(q) \, p_{\nu}q_{\rho} - \eta^{*\alpha}(q) \, \varepsilon^*_{\sigma}(p) \, q_{\nu}p_{\rho} \big) \\ + g'_{2V}(p-q)^{\alpha} \pi_{\alpha\mu}(P) \, \varepsilon^{\mu\nu\rho\sigma} \, \epsilon^*_{\rho}(p) \, \eta^*_{\sigma}(q) \end{aligned}$

Faccini, Piccinini, AP, Polosa, arXiv:1204.1223 [hep-ph]

Exact approach

Our ignorance is in the effective couplings We parametrize them with **polar form factors**

$$g \to g(k^*) = g \frac{1}{1 + R^2 k^{*2}}$$

 $k^* =$ decay 3-momentum in X rest frame

Actually this R can be extracted from data as a free fit parameter. We can learn some indications on the model by the size of R

Exact approach

We do not need any assumption We only simplify matrix elements with Narrow Width Approximation

$$\sum_{\text{spin}} |\langle \psi \, n\pi \mid X \, \rangle|^2 \sim \sum_{\text{spin}} |\langle \, n\pi \mid V \, \rangle|^2 \frac{1}{|M_{n\pi}^2 - M_V^2 + iM_V\Gamma_V|^2} \frac{1}{3} \sum_{\text{spin}} |\langle \psi \, V \mid X \, \rangle|^2$$

In practice we neglect the angular correlations between the X and the pions

Good for invariant mass spectra impossible for angular analysis

Combined fit

Faccini, Piccinini, AP, Polosa arXiv:1204.1223 [hep-ph]

1⁺⁺: χ² / DOF = 25.2 / 22 R = 1.6 GeV⁻¹ 2⁻⁺: χ^2 / DOF = 17.7 / 20 R = 5.6 GeV⁻¹

Combined fit

Faccini, Piccinini, AP, Polosa arXiv:1204.1223 [hep-ph]

Both χ^2 are very good because of the rich useless statistics of the 2π channel Can we do it better?

Combined fit

A Toy MC allows us to separate the two spin hypotheses

 $P(1^{++}) \sim 0.2\%$ $P(2^{-+}) \sim 46\%$

Strong support for 2^{-+}

Moreover, the molecular hypothesis is challenged by $R = 1.3 \text{ fm} \gg 0.2 \text{ fm}$

Angular correlations

We can get over the narrow width approximation

and explore angular correlations

Same architecture, but MC approach (too big matrix elements & phase space)

Some data published by Belle (2011) in the 2π channel

Low statistic, but some indications

Angular correlations

Conclusions?

- The X(3872) puzzle still has no solution!
- Invariant mass in 3π channel suggests 2^{-+}
- Angular correlations in 2π channel suggest 1^{++}
- Different particles? (with same mass???)
- Our MC tools will repeat the analysis when new data by Belle and LHCb will be available

Thank you

BACKUP

without ρ - ω mixing

with ρ - ω mixing

In particular for the P-wave, we need a big interference term This can be constrained and ruled out by the 3π channel

CDF PRL96 (2006) 102002

In particular for the P-wave, we need a big interference term This can be constrained and ruled out by the 3π channel

With a polar form factor, the fits are good even without the mixing; we can add it and constrain with the 3π channel

Blatt-Weisskopf

Experimentalists use BW barrier factors to fit invariant mass spectra

$$\frac{dN}{dm_{n\pi}} \propto (k^*)^{2l+1} f_{lX}^2(k^*) \left| \frac{\sqrt{m_{n\pi}}\Gamma_V}{m_V^2 - m_{n\pi}^2 - im_V}\Gamma_V \right|^2$$

with $\Gamma_V = \Gamma_{0V} \left(\frac{q^*(m_{n\pi})}{q^*(m_V)}\right)^3 \left(\frac{m_V}{m_{n\pi}}\right) \left(\frac{f_{lV}(q^*(m_{n\pi}))}{f_{lV}(q^*(m_V))}\right)^2$

BW barrier factors depend on orbital angular momentum of decay products

$$f_0(k^*) = 1$$
 for a S-wave $f_1(k^*) = \frac{1}{\sqrt{1 + R^2 k^{*2}}}$ for a P-wave

BW do not depend directly on spin!

Blatt-Weisskopf

BW factors are calculated in nuclear theory

1D model of spin-0 particles (potential well + centrifugal barrier)

Problems:

- Rough model (no spin, only orbital angular momentum)
- Analicity (the square root)
- R cannot be extracted from data, must be fixed:
 - Belle (2010): R = 5 GeV⁻¹: good 2⁻⁺
 - Hanhart et al. (2011): R = 1 GeV⁻¹: bad 2⁻⁺

Narrow width

Is narrow width approximation really good? $\Gamma_{\omega} \sim 8 \text{ MeV}$, very narrow $\Gamma_{\rho} \sim 146 \text{ MeV}$, not so narrow...

We verify *a posteriori* with a MC taking R from the approximated fit

Good, in particular for 2⁻⁺