Amplitudes,Wilson loops, Symbols and Coproducts in N=4 Super Yang-Mills

Vittorio Del Duca
INFN LNF

Cortona 2012
I giugno 2012

Motivation

Q in gauge field theories, one-loop calculations are in general quite involved over 30 years since first non trivial computations
K. Ellis Ross Terrano 8।

Motivation

Q in gauge field theories, one-loop calculations are in general quite involved over 30 years since first non trivial computations
-9 progress has been very slow (adding one more parton would take ~ 10 years)

Motivation

Q in gauge field theories, one-loop calculations are in general quite involved over 30 years since first non trivial computations K. Elis Ross Terrano 81
Q. progress has been very slow (adding one more parton would take ~ 10 years)
Q. yet, in the last ~ 5 years, one-loop calculations have undergone tremendous progress, so-called NLO revolution
various causes:

- generalised unitarity
- Witten's twistor string theory
- OPP method

Bern Dixon Dunbar Kosower 94
Britto Cachazo Feng 04
Ossola Papadopoulos Pittau 2006

Motivation

9 in gauge field theories, one-loop calculations are in general quite involved over 30 years since first non trivial computations K. Elis Ross Terrano 81
Q. progress has been very slow (adding one more parton would take ~ 10 years)

- yet, in the last ~ 5 years, one-loop calculations have undergone tremendous progress, so-called NLO revolution
various causes:
- generalised unitarity
-Witten's twistor string theory
- OPP method

Bern Dixon Dunbar Kosower 94
Britto Cachazo Feng 04
Ossola Papadopoulos Pittau 2006

- two-loop calculations are much younger

Smirnov Tausk 99-00
obviously they are very difficult

Motivation

Q in gauge field theories, one-loop calculations are in general quite involved over 30 years since first non trivial computations K. Elis Ross Terrano 81

Q progress has been very slow (adding one more parton would take ~ 10 years)

- yet, in the last ~ 5 years, one-loop calculations have undergone tremendous progress, so-called NLO revolution
various causes:
- generalised unitarity
-Witten's twistor string theory
- OPP method

Bern Dixon Dunbar Kosower 94
Britto Cachazo Feng 04
Ossola Papadopoulos Pittau 2006
Q two-loop calculations are much younger
Smirnov Tausk 99-00 obviously they are very difficult

Q can we envisage a similar leap forward ?

N=4 Super Yang-Mills

Q maximal supersymmetric theory (without gravity) conformally invariant, β fn. $=0$

Q spin I gluon
4 spin I/2 gluinos
6 spin 0 real scalars

$\mathrm{N}=4$ Super Yang-Mills

Q maximal supersymmetric theory (without gravity) conformally invariant, β fn. $=0$

- spin I gluon

4 spin I/2 gluinos
6 spin 0 real scalars
Q ' t Hooft limit: $\mathrm{N}_{c} \rightarrow \infty$ with $\lambda=g^{2} N_{c}$ fixed
Q only planar diagrams

$\mathrm{N}=4$ Super Yang-Mills

Q maximal supersymmetric theory (without gravity) conformally invariant, β fn. $=0$

Q spin I gluon
4 spin I/2 gluinos
6 spin 0 real scalars
9 't Hooft limit: $N_{c} \rightarrow \infty$ with $\lambda=g^{2} N_{c}$ fixed

- only planar diagrams

9 AdS/CFT duality
Maldacena 97
Q large- λ limit of $4 \operatorname{dim}$ CFT \leftrightarrow weakly-coupled string theory (aka weak-strong duality)

AdS/CFT duality, amplitudes \& Wilson loops

9 planar scattering amplitude at strong coupling

Alday Maldacena 07

$$
\mathcal{M} \sim \exp \left[i \frac{\sqrt{\lambda}}{2 \pi}(\text { Area })_{c l}\right]
$$

area of string world-sheet $\left.\quad \begin{array}{l}\text { classical solution } \\ \text { neglect } O(1 / \sqrt{\lambda}) \text { corrections }\end{array}\right)$

AdS/CFT duality, amplitudes \& Wilson loops

9 planar scattering amplitude at strong coupling

$$
\mathcal{M} \sim \exp \left[i \frac{\sqrt{\lambda}}{2 \pi}(\text { Area })_{c l}\right]
$$

area of string world-sheet $\left.\quad \begin{array}{l}\text { classical solution } \\ \text { neglect } O(1 / \sqrt{\lambda}) \text { corrections }\end{array}\right)$

Q amplitude has same form as ansatz for MHV amplitudes at weak coupling

$$
M_{n}=M_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]
$$

AdS/CFT duality, amplitudes \& Wilson loops

9 planar scattering amplitude at strong coupling

$$
\mathcal{M} \sim \exp \left[i \frac{\sqrt{\lambda}}{2 \pi}(\text { Area })_{c l}\right]
$$

area of string world-sheet $\quad\binom{$ classical solution }{ neglect $O(1 / \sqrt{ } \lambda)$ corrections }

Q amplitude has same form as ansatz for MHV amplitudes at weak coupling

$$
M_{n}=M_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]
$$

Q computation "formally the same as ... the expectation value of a Wilson loop given by a sequence of light-like segments"

MHV amplitudes in planar $N=4$ SYM

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4$ SYM can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

9 at I loop
Bern Dixon Dunbar Kosower 94
$m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6$

MHV amplitudes in planar N=4 SYM

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4$ SYM can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

9 at I loop
Bern Dixon Dunbar Kosower 94
$m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6$

9 at 2 loops, iteration formula for the $n-p t$ amplitude

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

MHV amplitudes in planar N=4 SYM

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4$ SYM can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

9 at I loop
Bern Dixon Dunbar Kosower 94
$m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6$

9 at 2 loops, iteration formula for the $n-p t$ amplitude

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\text { Const }^{(2)}+R
$$

Anastasiou Bern Dixon Kosower 03
Q at all loops, ansatz for a resummed exponent

$$
m_{n}^{(L)}=\exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]+R
$$

MHV amplitudes in planar N=4 SYM

Q at any order in the coupling, colour-ordered MHV amplitude in $\mathrm{N}=4 \mathrm{SYM}$ can be written as tree-level amplitude times helicity-free loop coefficient

$$
M_{n}^{(L)}=M_{n}^{(0)} m_{n}^{(L)}
$$

Q at I loop
Bern Dixon Dunbar Kosower 94
$m_{n}^{(1)}=\sum_{p q} F^{2 \mathrm{me}}(p, q, P, Q) \quad n \geq 6$

Q at 2 loops, iteration formula for the $n-p t$ amplitude

$$
m_{n}^{(2)}(\epsilon)=\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}+f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)+\operatorname{Const}^{(2)}+R
$$

Anastasiou Bern Dixfn Kosower 03
Q at all loops, ansatz for a resummed exponent

$$
\begin{aligned}
& \text { at all loops, ansatz tor a resummed exponent } \\
& m_{n}^{(L)}=\exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right]+R
\end{aligned}
$$

ansatz for MHV amplitudes in planar $\mathrm{N}=4 \mathrm{SYM}$

$$
\begin{aligned}
M_{n} & =M_{n}^{(0)}\left[1+\sum_{L=1}^{\infty} a^{L} m_{n}^{(L)}(\epsilon)\right] \\
& =M_{n}^{(0)} \exp \left[\sum_{l=1}^{\infty} a^{l}\left(f^{(l)}(\epsilon) m_{n}^{(1)}(l \epsilon)+\text { Const }^{(l)}+E_{n}^{(l)}(\epsilon)\right)\right] \\
\text { coupling } a=\frac{\lambda}{8 \pi^{2}}\left(4 \pi e^{-\gamma}\right)^{\epsilon} & \lambda=g^{2} N \text { 't Hooft parameter Dixon Smirnov } 05 \\
f^{(l)}(\epsilon)=\frac{\hat{\gamma}_{K}^{(l)}}{4}+\epsilon \frac{l}{2} \hat{G}^{(l)}+\epsilon^{2} f_{2}^{(l)} & E_{n}^{(l)}(\epsilon)=O(\epsilon)
\end{aligned}
$$

$\hat{\gamma}_{K}^{(l)}$ cusp anomalous dimension, known to all orders of a
$\hat{G}^{(l)}$ collinear anomalous dimension, known through $\mathrm{O}\left(a^{4}\right)$

Korchemsky Radyuskin 86
Beisert Eden Staudacher 06
Bern Dixon Smirnov 05
Cachazo Spradlin Volovich 07

Factorisation of a multi-leg amplitude in QCD

Mueller I981

Sen 1983
Botts Sterman I 987
Kidonakis Oderda Sterman 1998 Catani 1998
Tejeda-Yeomans Sterman 2002
Kosower 2003
Aybat Dixon Sterman 2006
Becher Neubert 2009
Gardi Magnea 2009

$$
\begin{gathered}
\mathcal{M}_{N}\left(p_{i} / \mu, \epsilon\right)=\sum_{L} \mathcal{S}_{N L}\left(\beta_{i} \cdot \beta_{j}, \epsilon\right) H_{L}\left(\frac{2 p_{i} \cdot p_{j}}{\mu^{2}}, \frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}\right) \prod_{i} \frac{J_{i}\left(\frac{\left(2 p_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2} \mu^{2}}, \epsilon\right)}{\mathcal{J}_{i}\left(\frac{2\left(\beta_{i} \cdot n_{i}\right)^{2}}{n_{i}^{2}}, \epsilon\right)} \\
p_{i}=\beta_{i} Q_{0} / \sqrt{2} \quad \text { value of } Q_{0} \text { is immaterial in } S, J
\end{gathered}
$$

to avoid double counting of soft-collinear region (IR double poles), J_{i} removes eikonal part from J_{i}, which is already in S $\mathrm{J}_{\mathrm{i}} / \mathrm{J}_{\mathrm{i}}$ contains only single collinear poles

$N=4 S Y M$ in the planar limit

Q colour-wise, the planar limit is trivial: can absorb S into J_{i}

Q each slice is square root of Sudakov form factor

$\mathcal{M}_{n}=\prod_{i=1}^{n}\left[\mathcal{M}^{[g g \rightarrow 1]}\left(\frac{s_{i, i+1}}{\mu^{2}}, \alpha_{s}, \epsilon\right)\right]^{1 / 2} h_{n}\left(\left\{p_{i}\right\}, \mu^{2}, \alpha_{s}, \epsilon\right)$

Q $\beta \mathrm{fn}=0 \Rightarrow$ coupling runs only through dimension $\quad \bar{\alpha}_{s}\left(\mu^{2}\right) \mu^{2 \epsilon}=\bar{\alpha}_{s}\left(\lambda^{2}\right) \lambda^{2 \epsilon}$
Sudakov form factor has simple solution

$$
\begin{array}{ll}
\ln \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]=-\frac{1}{2} \sum_{n=1}^{\infty}\left(\frac{\alpha_{s}\left(\mu^{2}\right)}{\pi}\right)^{n}\left(\frac{-Q^{2}}{\mu^{2}}\right)^{-n \epsilon}\left[\frac{\gamma_{K}^{(n)}}{2 n^{2} \epsilon^{2}}+\frac{G^{(n)}(\epsilon)}{n \epsilon}\right] \\
\Rightarrow \text { IR structure of } N=4 \text { SYM amplitudes } & \text { Magnea Sterman } 90 \\
\text { Bern Dixon Smirnov } 05
\end{array}
$$

Q the ansatz checked for the 3-loop 4-pt amplitude

Q the ansatz fails on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08 Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q at 2 loops, the remainder function characterises the deviation from the ansatz

$$
R_{n}^{(2)}=m_{n}^{(2)}(\epsilon)-\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}-f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)-\text { Const }^{(2)}
$$

Q for $n=4,5, R$ is a constant
for $n \geq 6, \quad R$ is a function of conformally invariant cross ratios

Q the ansatz checked for the 3-loop 4-pt amplitude Bern Dixon Smirnov 05
2-loop 5-pt amplitude
Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06
Q the ansatz fails on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08 Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q at 2 loops, the remainder function characterises the deviation from the ansatz

$$
R_{n}^{(2)}=m_{n}^{(2)}(\epsilon)-\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}-f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)-\text { Const }^{(2)}
$$

Q for $n=4,5, R$ is a constant
for $n \geq 6, \quad R$ is a function of conformally invariant cross ratios
Q for $n=6$, the conformally invariant cross ratios are

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}} \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}} \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}
$$

x_{i} are variables in a dual space s.t. $\quad p_{i}=x_{i}-x_{i+1}$
thus $\quad x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}$

Q the ansatz checked for the 3-loop 4-pt amplitude 2-loop 5-pt amplitude

Bern Dixon Smirnov 05
Cachazo Spradlin Volovich 06
Bern Czakon Kosower Roiban Smirnov 06

Q the ansatz fails on 2-loop 6-pt amplitude
Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08 Alday Maldacena 07; Bartels Lipatov Sabio-Vera 08

Q at 2 loops, the remainder function characterises the deviation from the ansatz

$$
R_{n}^{(2)}=m_{n}^{(2)}(\epsilon)-\frac{1}{2}\left[m_{n}^{(1)}(\epsilon)\right]^{2}-f^{(2)}(\epsilon) m_{n}^{(1)}(2 \epsilon)-\text { Const }^{(2)}
$$

Q for $n=4,5, R$ is a constant
for $n \geq 6, \quad R$ is a function of conformally invariant cross ratios
Q for $n=6$, the conformally invariant cross ratios are

$$
u_{1}=\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}} \quad u_{2}=\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}} \quad u_{3}=\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}
$$

x_{i} are variables in a dual space s.t. $\quad p_{i}=x_{i}-x_{i+1}$
thus $x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}$

Bern Dixon Kosower Roiban Spradlin Vergu Volovich 08
$R_{6}^{(2)}$ known
numerically Drummond Henn Korchemsky Sokatchev 08
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
analytically Duhr Smirnov VDD 09

Wilson loops

- $W\left[\mathcal{C}_{n}\right]=\operatorname{Tr} \mathcal{P} \exp \left[i g \oint \mathrm{~d} \tau \dot{x}^{\mu}(\tau) A_{\mu}(x(\tau))\right]$
closed contour \mathcal{C}_{n} made by light-like external momenta $p_{i}=x_{i}-x_{i+1}$ Alday Maldacena 07

Wilson loops

- $W\left[\mathcal{C}_{n}\right]=\operatorname{Tr} \mathcal{P} \exp \left[i g \oint \mathrm{~d} \tau \dot{x}^{\mu}(\tau) A_{\mu}(x(\tau))\right]$
closed contour \mathcal{C}_{n} made by light-like external momenta
$p_{i}=x_{i}-x_{i+1}$
Alday Maldacena 07
Q non-Abelian exponentiation theorem: vev of Wilson loop as an exponential, allows us to compute the \log of W

Gatheral 83
Frenkel Taylor 84

$$
\left\langle W\left[\mathcal{C}_{n}\right]\right\rangle=1+\sum_{L=1}^{\infty} a^{L} W_{n}^{(L)}=\exp \sum_{L=1}^{\infty} a^{L} w_{n}^{(L)}
$$

through 2 loops $\quad w_{n}^{(1)}=W_{n}^{(1)} \quad w_{n}^{(2)}=W_{n}^{(2)}-\frac{1}{2}\left(W_{n}^{(1)}\right)^{2}$

Wilson loops

- $W\left[\mathcal{C}_{n}\right]=\operatorname{Tr} \mathcal{P} \exp \left[i g \oint \mathrm{~d} \tau \dot{x}^{\mu}(\tau) A_{\mu}(x(\tau))\right]$
closed contour \mathcal{C}_{n} made by light-like external momenta
$p_{i}=x_{i}-x_{i+1}$
Alday Maldacena 07
Q non-Abelian exponentiation theorem: vev of Wilson loop as an exponential, allows us to compute the \log of W

Gatheral 83
Frenkel Taylor 84

$$
\left\langle W\left[\mathcal{C}_{n}\right]\right\rangle=1+\sum_{L=1}^{\infty} a^{L} W_{n}^{(L)}=\exp \sum_{L=1}^{\infty} a^{L} w_{n}^{(L)}
$$

through 2 loops $\quad w_{n}^{(1)}=W_{n}^{(1)} \quad w_{n}^{(2)}=W_{n}^{(2)}-\frac{1}{2}\left(W_{n}^{(1)}\right)^{2}$
Q relation between I loop amplitudes \& Wilson loops

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}=m_{n}^{(1)}-n \frac{\zeta_{2}}{2}+\mathcal{O}(\epsilon)
$$

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $\mathrm{N}=4 \mathrm{SYM}$ is invariant under $\mathrm{SO}(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

9 at 2 loops
$w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n, W L}^{(2)}+\mathcal{O}(\epsilon)$
with $f_{W L}^{(2)}(\epsilon)=-\zeta_{2}+7 \zeta_{3} \epsilon-5 \zeta_{4} \epsilon^{2}$
(to be compared with $f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2}$ for the amplitudes)

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $\mathrm{N}=4 \mathrm{SYM}$ is invariant under $\mathrm{SO}(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

9 at 2 loops
$w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n, W L}^{(2)}+\mathcal{O}(\epsilon)$
with $f_{W L}^{(2)}(\epsilon)=-\zeta_{2}+7 \zeta_{3} \epsilon-5 \zeta_{4} \epsilon^{2}$
(to be compared with $f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2}$ for the amplitudes)
9 $R_{n, W L}^{(2)}$ arbitrary function of conformally invariant cross ratios

$$
u_{i j}=\frac{x_{i j+1}^{2} x_{i+1 j}^{2}}{x_{i j}^{2} x_{i+1 j+1}^{2}} \quad \text { with } \quad x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}
$$

Wilson loops \& Ward identities

Drummond Henn Korchemsky Sokatchev 07
Q $\mathrm{N}=4 \mathrm{SYM}$ is invariant under $\mathrm{SO}(2,4)$ conformal transformations
Q the Wilson loops fulfill conformal Ward identities
Q the solution of the Ward identity for special conformal boosts is given by the finite parts of the BDS ansatz $+R$

9 at 2 loops

$$
\begin{aligned}
& w_{n}^{(2)}(\epsilon)=f_{W L}^{(2)}(\epsilon) w_{n}^{(1)}(2 \epsilon)+C_{W L}^{(2)}+R_{n, W L}^{(2)}+\mathcal{O}(\epsilon) \\
& \text { with } \quad f_{W L}^{(2)}(\epsilon)=-\zeta_{2}+7 \zeta_{3} \epsilon-5 \zeta_{4} \epsilon^{2}
\end{aligned}
$$

(to be compared with $f^{(2)}(\epsilon)=-\zeta_{2}-\zeta_{3} \epsilon-\zeta_{4} \epsilon^{2}$ for the amplitudes)
Q $R_{n, W L}^{(2)}$ arbitrary function of conformally invariant cross ratios

$$
u_{i j}=\frac{x_{i j+1}^{2} x_{i+1 j}^{2}}{x_{i j}^{2} x_{i+1 j+1}^{2}} \quad \text { with } \quad x_{k, k+r}^{2}=\left(p_{k}+\ldots+p_{k+r-1}\right)^{2}
$$

Q duality Wilson loop \Leftrightarrow MHV amplitude is expressed by

$$
R_{n, W L}^{(2)}=R_{n}^{(2)}
$$

MHV amplitudes \Leftrightarrow Wilson loops

Q agreement between n-edged Wilson loop and n-point MHV amplitude at weak coupling (aka weak-weak duality)

Q verified for n-edged I-loop Wilson loop

9 n-edged 2-loop Wilson loops computed (numerically)
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09
Q no amplitudes are known beyond the 6-point 2-loop amplitude!

2-loop 6-edged remainder function $R_{6}^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (for $n>6$, it is symmetric under cyclic permutations and reflections)

Q it is of uniform transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Li}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

9 it vanishes under collinear and multi-Regge limits (in Euclidean space)
Q it is in agreement with the numeric calculation by

2-loop 6-edged remainder function $R_{6}^{(2)}$

Q the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (for $n>6$, it is symmetric under cyclic permutations and reflections)

Q it is of uniform transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Liz}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

9 it vanishes under collinear and multi-Regge limits (in Euclidean space)
Q it is in agreement with the numeric calculation by

†
straightforward computation qmR kinematics make it technically feasible

2-loop 6-edged remainder function $R_{6}^{(2)}$

the remainder function $R_{6}{ }^{(2)}$ is explicitly dependent on the cross ratios u_{1}, u_{2}, u_{3}

Q it is symmetric in all its arguments (for $n>6$, it is symmetric under cyclic permutations and reflections)

Q it is of uniform transcendental weight 4 transcendental weights: $w(\ln x)=w(\pi)=1 \quad w\left(\operatorname{Liq}_{2}(x)\right)=w\left(\pi^{2}\right)=2$

9 it vanishes under collinear and multi-Regge limits (in Euclidean space)
Q it is in agreement with the numeric calculation by
straightforward computation qmR kinematics make it technically feasible
finite answer, but in intermediate steps many divergences output is punishingly long

Diagrams of 2-loop Wilson loops

curtain diagram

p_{2}

$\mathrm{P} 2 \mathrm{H2}$
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09 each diagram yields an integral, similar to a Feynman-parameter integral
factorised cross diagram

Quasi-multi-Regge limit of hexagon Wilson loop

Q 6-pt amplitude in the qmR limit of a pair along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \gg y_{6} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right|
$$

the conformally invariant cross ratios are

$$
\begin{aligned}
u_{36} & =\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \\
u_{14} & =\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \\
u_{25} & =\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

the cross ratios are all $O(1)$
$\rightarrow R_{6}$ does not change its functional dependence on the u's
Q R_{6} is invariant under the qmR limit of a pair along the ladder

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}
$$

$$
\ln \left(s_{i j}\right)+\operatorname{Li}_{2}\left(1-u_{i j}\right)
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$$
w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}
$$

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

Drummond Korchemsky Sokatchev 07 Duhr Smirnov VDD 09

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}$
u's are invariant in the qmRk

$\ln \left(s_{i j}\right)+\operatorname{Li}_{2}\left(1-u_{i j}\right)$
log's are not power suppressed

Quasi-multi-Regge limit of Wilson loops

- L-loop Wilson loops are Regge exact

$$
w_{n}^{(L)}(\epsilon)=f_{W L}^{(L)}(\epsilon) w_{n}^{(1)}(L \epsilon)+C_{W L}^{(L)}+R_{n, W L}^{(L)}\left(u_{i j}\right)+\mathcal{O}(\epsilon)
$$

$w_{n}^{(1)}=\frac{\Gamma(1-2 \epsilon)}{\Gamma^{2}(1-\epsilon)} m_{n}^{(1)}$
u's are invariant in the qmRk

$\ln \left(s_{i j}\right)+\operatorname{Li}_{2}\left(1-u_{i j}\right)$
log's are not power suppressed
Q we may compute the Wilson loop in qmRk the result will be correct in general kinematics !!!

Wilson loops: analytic calc

I. Use Mellin-Barnes (MB) representation of the Feynman-parameter integrals: replace each denominator by a contour integral
$\frac{1}{(A+B)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} \mathrm{~d} z \Gamma(-z) \Gamma(\lambda+z) \frac{A^{z}}{B^{\lambda+z}}$
integral turns into a sum of residues
$\operatorname{Res}_{z=-n} \Gamma(z)=\frac{(-1)^{n}}{n!}$

Wilson loops: analytic calc

I. Use Mellin-Barnes (MB) representation of the Feynman-parameter integrals: replace each denominator by a contour integral

$$
\frac{1}{(A+B)^{\lambda}}=\frac{1}{\Gamma(\lambda)} \frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} \mathrm{~d} z \Gamma(-z) \Gamma(\lambda+z) \frac{A^{z}}{B^{\lambda+z}}
$$

integral turns into a sum of residues

$$
\operatorname{Res}_{z=-n} \Gamma(z)=\frac{(-1)^{n}}{n!}
$$

2. Use Regge exactness in the qmR limit: retain only leading behaviour (i.e. leading residues) of the integral

leading residue

Wilson loops: analytic calc

3. Use Regge exactness again: iterate the $q m R$ limit n times, by taking the n cyclic permutations of the external legs

Wilson loops: analytic calc

3. Use Regge exactness again: iterate the $q m R$ limit n times, by taking the n cyclic permutations of the external legs

Wilson loops: analytic calc

3. Use Regge exactness again: iterate the $q m R$ limit n times, by taking the n cyclic permutations of the external legs
4. Sum remaining towers of residues

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{u^{n}}{n}=-\ln (1-u) \\
& \sum_{n=1}^{\infty} \frac{u^{n}}{n^{k}}=\operatorname{Li}_{k}(u)
\end{aligned}
$$

leading residue in step 2

Wilson loops: analytic calc

3. Use Regge exactness again: iterate the $q m R$ limit n times, by taking the n cyclic permutations of the external legs
4. Sum remaining towers of residues

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{u^{n}}{n}=-\ln (1-u) \\
& \sum_{n=1}^{\infty} \frac{u^{n}}{n^{k}}=\operatorname{Li}_{k}(u)
\end{aligned}
$$

leading residue in step 2

in general, get nested harmonic sums \rightarrow multiple polylogarithms

$$
\sum_{n_{1}=1}^{\infty} \frac{u_{1}^{n_{1}}}{n_{1}^{m_{1}}} \sum_{n_{2}=1}^{n_{1}-1} \cdots \sum_{n_{k}=1}^{n_{k}-1-1} \frac{u_{k}^{n_{k}}}{n_{k}^{m_{k}}}=(-1)^{k} G(\underbrace{0, \ldots, 0}_{m_{1}-1}, \frac{1}{u_{1}}, \ldots, \underbrace{0, \ldots, 0}_{m_{k}-1}, \frac{1}{u_{1} \ldots u_{k}} ; 1)
$$

Analytic 2-loop 6-edged Wilson loop

in MB representation of the integrals in general kinematics, get up to 8 -fold integrals

Analytic 2-loop 6-edged Wilson loop

Q in MB representation of the integrals in general kinematics, get up to 8 -fold integrals

Q after procedure in qmR limit, at most 3-fold integrals in fact, only one 3 -fold integral, which comes from $f_{H}\left(p_{1}, p_{3}, p_{5} ; p_{4}, p_{6}, p_{2}\right)$

$$
\begin{aligned}
& \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \frac{\mathrm{~d} z_{1}}{2 \pi i} \frac{\mathrm{~d} z_{2}}{2 \pi i} \frac{\mathrm{~d} z_{3}}{2 \pi i}\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right) u_{1}^{z_{1}} u_{2}^{z_{2}} u_{3}^{z_{3}} \\
& \times \Gamma\left(-z_{1}\right)^{2} \Gamma\left(-z_{2}\right)^{2} \Gamma\left(-z_{3}\right)^{2} \Gamma\left(z_{1}+z_{2}\right) \Gamma\left(z_{2}+z_{3}\right) \Gamma\left(z_{3}+z_{1}\right)
\end{aligned}
$$

Analytic 2-loop 6-edged Wilson loop

Q in MB representation of the integrals in general kinematics, get up to 8 -fold integrals

Q after procedure in qmR limit, at most 3-fold integrals in fact, only one 3 -fold integral, which comes from $f_{H}\left(p_{1}, p_{3}, p_{5} ; p_{4}, p_{6}, p_{2}\right)$

$$
\begin{aligned}
& \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \frac{\mathrm{~d} z_{1}}{2 \pi i} \frac{\mathrm{~d} z_{2}}{2 \pi i} \frac{\mathrm{~d} z_{3}}{2 \pi i}\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right) u_{1}^{z_{1}} u_{2}^{z_{2}} u_{3}^{z_{3}} \\
& \times \Gamma\left(-z_{1}\right)^{2} \Gamma\left(-z_{2}\right)^{2} \Gamma\left(-z_{3}\right)^{2} \Gamma\left(z_{1}+z_{2}\right) \Gamma\left(z_{2}+z_{3}\right) \Gamma\left(z_{3}+z_{1}\right)
\end{aligned}
$$

the result is in terms of multiple polylogarithms
$G(a, \vec{w} ; z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a} G(\vec{w} ; t), \quad G(a ; z)=\ln \left(1-\frac{z}{a}\right)$

Analytic 2-loop 6-edged Wilson loop

Q in MB representation of the integrals in general kinematics, get up to 8 -fold integrals

Q after procedure in qmR limit, at most 3-fold integrals in fact, only one 3 -fold integral, which comes from $f_{H}\left(p_{1}, p_{3}, p_{5} ; p_{4}, p_{6}, p_{2}\right)$

$$
\begin{aligned}
& \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \int_{-i \infty}^{+i \infty} \frac{\mathrm{~d} z_{1}}{2 \pi i} \frac{\mathrm{~d} z_{2}}{2 \pi i} \frac{\mathrm{~d} z_{3}}{2 \pi i}\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right) u_{1}^{z_{1}} u_{2}^{z_{2}} u_{3}^{z_{3}} \\
& \times \Gamma\left(-z_{1}\right)^{2} \Gamma\left(-z_{2}\right)^{2} \Gamma\left(-z_{3}\right)^{2} \Gamma\left(z_{1}+z_{2}\right) \Gamma\left(z_{2}+z_{3}\right) \Gamma\left(z_{3}+z_{1}\right)
\end{aligned}
$$

the result is in terms of multiple polylogarithms

$$
G(a, \vec{w} ; z)=\int_{0}^{z} \frac{\mathrm{~d} t}{t-a} G(\vec{w} ; t), \quad G(a ; z)=\ln \left(1-\frac{z}{a}\right)
$$

Q the remainder function $R_{6}{ }^{(2)}$ is given in terms of $O\left(10^{3}\right)$ multiple polylogarithms $G\left(u_{1}, u_{2}, u_{3}\right)$

Z_{n} symmetric regular hexagons

regular hexagons are characterised by

$$
\begin{aligned}
x_{13}^{2} & =x_{24}^{2}=x_{35}^{2}=x_{46}^{2}=x_{51}^{2}=x_{62}^{2} ; \quad x_{14}^{2}=x_{25}^{2}=x_{36}^{2} \\
u_{36} & =\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \\
u_{14} & =\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \\
u_{25} & =\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

Z_{n} symmetric regular hexagons

regular hexagons are characterised by

$$
\begin{aligned}
x_{13}^{2} & =x_{24}^{2}=x_{35}^{2}=x_{46}^{2}=x_{51}^{2}=x_{62}^{2} ; \quad x_{14}^{2}=x_{25}^{2}=x_{36}^{2} \\
u_{36} & =\frac{x_{13}^{2} x_{46}^{2}}{x_{14}^{2} x_{36}^{2}}=\frac{s_{12} s_{45}}{s_{123} s_{345}} \\
u_{14} & =\frac{x_{24}^{2} x_{15}^{2}}{x_{25}^{2} x_{14}^{2}}=\frac{s_{23} s_{56}}{s_{234} s_{123}} \\
u_{25} & =\frac{x_{35}^{2} x_{26}^{2}}{x_{36}^{2} x_{25}^{2}}=\frac{s_{34} s_{61}}{s_{234} s_{345}}
\end{aligned}
$$

 end on a null polygonal contour at the boundary". One gets "integral equations which determine the area as a function of the shape of the polygon. The equations are identical to those of the Thermodynamics Bethe Ansatz. The area is given by the free energy of the TBA system. The high temperature limit of the TBA system can be exactly solved"

$$
R_{6}^{\text {strong }}(u, u, u)=\frac{\pi}{6}-\frac{1}{3 \pi} \phi^{2}-\frac{3}{8}(\ln ^{2}(u)+2 \underbrace{u L^{2}}_{\text {BDee energy }}(1-u))
$$

$$
u=\frac{1}{4 \cos ^{2}(\phi / 3)}
$$

Remainder function at weak and strong coupling

compare remainder functions at weak and strong coupling introducing coefficients in the strong coupling result and try to curve fit the 2 results

$$
\begin{aligned}
& R_{6}^{s t r o n g} \\
&(u, u, u)=c_{1}\left(\frac{\pi}{6}-\frac{1}{3 \pi} \phi^{2}\right)+c_{2}\left(\frac{3}{8}\left(\ln ^{2}(u)+2 \mathrm{Li}^{2}(1-u)\right)\right)+c_{3} \\
& c_{1}=0.263 \pi^{3} \quad c_{2}=0.860 \pi^{2} \quad c_{3}=-\frac{\pi^{2}}{12} c_{2}
\end{aligned}
$$

Alday Gaiotto Maldacena 09
Brandhuber Heslop Khoze Travaglini 09

Remainder function at weak and strong coupling

compare remainder functions at weak and strong coupling introducing coefficients in the strong coupling result and try to curve fit the 2 results

$$
\begin{aligned}
& R_{6}^{s t r o n g} \\
&(u, u, u)=c_{1}\left(\frac{\pi}{6}-\frac{1}{3 \pi} \phi^{2}\right)+c_{2}\left(\frac{3}{8}\left(\ln ^{2}(u)+2 \mathrm{Li}^{2}(1-u)\right)\right)+c_{3} \\
& c_{1}=0.263 \pi^{3} \quad c_{2}=0.860 \pi^{2} \quad c_{3}=-\frac{\pi^{2}}{12} c_{2}
\end{aligned}
$$

Q the 2 curves are strikingly similar
the remainder $R_{6}{ }^{(2)}$ has been simplified and given in terms of polylogarithms
Goncharov Spradlin Vergu Volovich 10

$$
\begin{aligned}
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right) & =\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right) \\
& -\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
\end{aligned}
$$

the remainder $R_{6}{ }^{(2)}$ has been simplified and given in terms of polylogarithms
Goncharov Spradlin Vergu Volovich 10
where

$$
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)
$$

$$
-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

$$
\begin{gathered}
x_{i}^{ \pm}=u_{i} x^{ \pm} \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3} \\
L_{4}\left(x^{+}, x^{-}\right)=\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right)+\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4} \\
\ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right)
\end{gathered} \quad J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right), ~ l
$$

the remainder $R_{6}{ }^{(2)}$ has been simplified and given in terms of polylogarithms
Goncharov Spradlin Vergu Volovich 10
where $\quad-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}$

$$
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)
$$

$x_{i}^{ \pm}=u_{i} x^{ \pm} \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}$

$$
\begin{aligned}
& L_{4}\left(x^{+}, x^{-}\right)=\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right)+\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4} \\
& \ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right) \quad J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)
\end{aligned}
$$

$\downarrow \quad \begin{aligned} & \text { not a new, independent, computation } \\ & \text { just a manipulation of our result }\end{aligned}$
the remainder $R_{6}{ }^{(2)}$ has been simplified and given in terms of polylogarithms
Goncharov Spradlin Vergu Volovich 10
where

$$
R_{6, W L}^{(2)}\left(u_{1}, u_{2}, u_{3}\right)=\sum_{i=1}^{3}\left(L_{4}\left(x_{i}^{+}, x_{i}^{-}\right)-\frac{1}{2} \operatorname{Li}_{4}\left(1-1 / u_{i}\right)\right)
$$

$$
-\frac{1}{8}\left(\sum_{i=1}^{3} \operatorname{Li}_{2}\left(1-1 / u_{i}\right)\right)^{2}+\frac{J^{4}}{24}+\frac{\pi^{2}}{12} J^{2}+\frac{\pi^{4}}{72}
$$

$$
x_{i}^{ \pm}=u_{i} x^{ \pm} \quad x^{ \pm}=\frac{u_{1}+u_{2}+u_{3}-1 \pm \sqrt{\Delta}}{2 u_{1} u_{2} u_{3}} \quad \Delta=\left(u_{1}+u_{2}+u_{3}-1\right)^{2}-4 u_{1} u_{2} u_{3}
$$

$$
\begin{aligned}
& L_{4}\left(x^{+}, x^{-}\right)=\sum_{m=0}^{3} \frac{(-1)^{m}}{(2 m)!!} \log \left(x^{+} x^{-}\right)^{m}\left(\ell_{4-m}\left(x^{+}\right)+\ell_{4-m}\left(x^{-}\right)\right)+\frac{1}{8!!} \log \left(x^{+} x^{-}\right)^{4} \\
& \ell_{n}(x)=\frac{1}{2}\left(\operatorname{Li}_{n}(x)-(-1)^{n} \operatorname{Li}_{n}(1 / x)\right) \quad J=\sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)
\end{aligned}
$$

not a new, independent, computation just a manipulation of our result answer is short and simple introduces symbols in TH physics

Symbols

9
take a fn. defined as an iterated integral of logs of rational functions R_{i}

$$
T^{(k)}=\int_{a}^{b} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k}=\int_{a}^{b}\left(\int_{a}^{t} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k-1}\right) \mathrm{d} \ln R_{k}(t)
$$

then the total differential can be written as

$$
d T^{(k)}=\sum_{i} T_{i}^{(k-1)} d \ln R_{i}
$$

Symbols

Q take a fn. defined as an iterated integral of logs of rational functions R_{i}

$$
T^{(k)}=\int_{a}^{b} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k}=\int_{a}^{b}\left(\int_{a}^{t} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k-1}\right) \mathrm{d} \ln R_{k}(t)
$$

then the total differential can be written as

$$
d T^{(k)}=\sum_{i} T_{i}^{(k-1)} d \ln R_{i}
$$

Q the symbol is defined recursively as $\quad \operatorname{Sym}\left[T^{(k)}\right]=\sum_{i} \operatorname{Sym}\left[T_{i}^{(k-1)}\right] \otimes R_{i}$
as such, the symbol is defined on the tensor product of the group of rational functions, modulo constants

$$
\begin{aligned}
& \cdots \otimes R_{1} R_{2} \otimes \cdots=\cdots \otimes R_{1} \otimes \cdots+\cdots \otimes R_{2} \otimes \cdots \\
& \cdots \otimes\left(c R_{1}\right) \otimes \cdots=\cdots \otimes R_{1} \otimes \cdots
\end{aligned}
$$

Symbols

Q take a fn. defined as an iterated integral of logs of rational functions R_{i}

$$
T^{(k)}=\int_{a}^{b} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k}=\int_{a}^{b}\left(\int_{a}^{t} \mathrm{~d} \ln R_{1} \circ \cdots \circ \mathrm{~d} \ln R_{k-1}\right) \mathrm{d} \ln R_{k}(t)
$$

then the total differential can be written as

$$
d T^{(k)}=\sum_{i} T_{i}^{(k-1)} d \ln R_{i}
$$

Q the symbol is defined recursively as $\quad \operatorname{Sym}\left[T^{(k)}\right]=\sum_{i} \operatorname{Sym}\left[T_{i}^{(k-1)}\right] \otimes R_{i}$
as such, the symbol is defined on the tensor product of the group of rational functions, modulo constants

$$
\begin{aligned}
\cdots \otimes R_{1} R_{2} \otimes \cdots & =\cdots \otimes R_{1} \otimes \cdots+\cdots \otimes R_{2} \otimes \cdots \\
\cdots \otimes\left(c R_{1}\right) \otimes \cdots & =\cdots \otimes R_{1} \otimes \cdots
\end{aligned}
$$

Q if T is a multiple polylogarithm G, then

$$
d G\left(a_{n-1}, \ldots, a_{1} ; a_{n}\right)=\sum_{i=1}^{n-1} G\left(a_{n-1}, \ldots, \hat{a}_{i}, \ldots, a_{1} ; a_{n}\right) d \ln \left(\frac{a_{i}-a_{i+1}}{a_{i}-a_{i-1}}\right)
$$

the symbol is

$$
\operatorname{Sym}\left(G\left(a_{n-1}, \ldots, a_{1} ; a_{n}\right)\right)=\sum_{i=1}^{n-1} \operatorname{Sym}\left(G\left(a_{n-1}, \ldots, \hat{a}_{i}, \ldots, a_{1} ; a_{n}\right)\right) \otimes\left(\frac{a_{i}-a_{i+1}}{a_{i}-a_{i-1}}\right)
$$

Q Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

$$
\begin{array}{ll}
G\left(\overrightarrow{0}_{n} ; x\right)=\frac{1}{n!} \ln ^{n} x & G\left(\vec{a}_{n} ; x\right)=\frac{1}{n!} \ln ^{n}\left(1-\frac{x}{a}\right) \\
G\left(\overrightarrow{0}_{n-1}, a ; x\right)=-\operatorname{Li}_{n}\left(\frac{x}{a}\right) & G\left(\overrightarrow{0}_{n}, \vec{a}_{m} ; x\right)=(-1)^{m} S_{n, m}\left(\frac{x}{a}\right) \quad S_{n-1,1}(x)=\operatorname{Li}_{n}(x)
\end{array}
$$

Q Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

$$
\begin{array}{ll}
G\left(\overrightarrow{0}_{n} ; x\right)=\frac{1}{n!} \ln ^{n} x & G\left(\vec{a}_{n} ; x\right)=\frac{1}{n!} \ln ^{n}\left(1-\frac{x}{a}\right) \\
G\left(\overrightarrow{0}_{n-1}, a ; x\right)=-\operatorname{Li}_{n}\left(\frac{x}{a}\right) & G\left(\overrightarrow{0}_{n}, \vec{a}_{m} ; x\right)=(-1)^{m} S_{n, m}\left(\frac{x}{a}\right)
\end{array} S_{n-1,1}(x)=\mathrm{Li}_{n}(x)
$$

Q when the root equals $+I,-I, 0$ multiple polylogarithms become harmonic polylogarithms (HPLs)

$$
\begin{array}{cl}
H(a, \vec{w} ; z)=\int_{0}^{z} \mathrm{~d} t f(a ; t) H(\vec{w} ; t) \quad f(-1 ; t)=\frac{1}{1+t}, \quad f(0 ; t)=\frac{1}{t}, & f(1 ; t)=\frac{1}{1-t} \\
\text { with }\{a, \vec{w}\} \in\{-1,0,1\} & \text { RemiddiVermaseren }
\end{array}
$$

when the root equals $+1,0$ HPLs reduce to Euler and Nielsen polylogarithms

$$
\operatorname{Li}_{n}(x)=H\left(\overrightarrow{0}_{n-1}, 1 ; x\right) \quad S_{n, m}(x)=H\left(\overrightarrow{0}_{n}, \overrightarrow{1}_{m} ; x\right)
$$

Q Euler and Nielsen polylogarithms are multiple polylogarithms with special arguments

$$
\begin{array}{ll}
G\left(\overrightarrow{0}_{n} ; x\right)=\frac{1}{n!} \ln ^{n} x & G\left(\vec{a}_{n} ; x\right)=\frac{1}{n!} \ln ^{n}\left(1-\frac{x}{a}\right) \\
G\left(\overrightarrow{0}_{n-1}, a ; x\right)=-\operatorname{Li}_{n}\left(\frac{x}{a}\right) & G\left(\overrightarrow{0}_{n}, \vec{a}_{m} ; x\right)=(-1)^{m} S_{n, m}\left(\frac{x}{a}\right) \quad S_{n-1,1}(x)=\operatorname{Li}_{n}(x)
\end{array}
$$

Q when the root equals $+1,-1,0$ multiple polylogarithms become harmonic polylogarithms (HPLs)

$$
\begin{array}{cl}
H(a, \vec{w} ; z)=\int_{0}^{z} \mathrm{~d} t f(a ; t) H(\vec{w} ; t) \quad f(-1 ; t)=\frac{1}{1+t}, \quad f(0 ; t)=\frac{1}{t}, & f(1 ; t)=\frac{1}{1-t} \\
\text { with } \quad\{a, \vec{w}\} \in\{-1,0,1\} & \text { RemiddiVermaseren }
\end{array}
$$

when the root equals $+1,0$ HPLs reduce to Euler and Nielsen polylogarithms

$$
\operatorname{Li}_{n}(x)=H\left(\overrightarrow{0}_{n-1}, 1 ; x\right) \quad S_{n, m}(x)=H\left(\overrightarrow{0}_{n}, \overrightarrow{1}_{m} ; x\right)
$$

... on to symbols
$\operatorname{Sym}[\ln x]=x \quad \operatorname{Sym}\left[\frac{1}{n!} \ln ^{n} x\right]=\underbrace{x \otimes \cdots \otimes x} \equiv x^{\otimes n}$
$\operatorname{Sym}\left[\operatorname{Li}_{n}(x)\right]=-(1-x) \otimes x^{\otimes(n-1)}$
$\operatorname{Sym}\left[S_{n, m}(x)\right]=(-1)^{m}(1-x)^{\otimes m} \otimes x^{\otimes n}$
$\operatorname{Sym}\left[H\left(a_{1}, \ldots, a_{n} ; x\right)\right]=(-1)^{k}\left(a_{n}-x\right) \otimes \cdots \otimes\left(a_{1}-x\right) \quad\left\{a_{i}\right\} \in\{0,1\}$
k is the number of a 's equal to I

Q using symbols, one can reduce the HPLs to a minimal set
weight I: $\quad B_{1}^{(1)}(x)=\ln x, \quad B_{1}^{(2)}(x)=\ln (1-x), \quad B_{1}^{(3)}(x)=\ln (1+x)$
weight 2: $\quad B_{2}^{(1)}(x)=\operatorname{Li}_{2}(x), \quad B_{2}^{(2)}(x)=\operatorname{Li}_{2}(-x), \quad B_{2}^{(3)}(x)=\operatorname{Li}_{2}\left(\frac{1-x}{2}\right)$
weight 3: polylogarithms of type Li_{3} of various arguments
weight 4: polylogarithms of type Li_{4} of various arguments, plus a few polylogarithms of type $\mathrm{Li}_{2,2}$, like $\mathrm{Li}_{2,2}(-\mathrm{I}, \mathrm{x})$ etc. Alternatively, the polylogarithms of type $\mathrm{Li}_{2,2}$ can be replaced by the HPLs: $H(0, I, 0,-I ; x)$ and $H(0, I, I,-I ; x)$
if needed numerically, any combination of HPLs up to weight 4 can be evaluated in terms of a minimal set of numerical routines

Q using symbols, one can reduce the HPLs to a minimal set
weight I: $\quad B_{1}^{(1)}(x)=\ln x, \quad B_{1}^{(2)}(x)=\ln (1-x), \quad B_{1}^{(3)}(x)=\ln (1+x)$
weight 2: $\quad B_{2}^{(1)}(x)=\operatorname{Li}_{2}(x), \quad B_{2}^{(2)}(x)=\operatorname{Li}_{2}(-x), \quad B_{2}^{(3)}(x)=\operatorname{Li}_{2}\left(\frac{1-x}{2}\right)$
weight 3: polylogarithms of type Li_{3} of various arguments
weight 4: polylogarithms of type Li_{4} of various arguments, plus a few polylogarithms of type $\mathrm{Li}_{2,2}$, like $\mathrm{Li}_{2,2}(-I, x)$ etc. Alternatively, the polylogarithms of type $\mathrm{Li}_{2,2}$ can be replaced by the HPLs: $H(0, I, 0,-I ; x)$ and $H(0, I, I,-I ; x)$
if needed numerically, any combination of HPLs up to weight 4 can be evaluated in terms of a minimal set of numerical routines

Q multiple polylogarithms are also defined through nested harmonic sums

$$
\begin{aligned}
& \operatorname{Li}_{m_{1}, \ldots, m_{k}}\left(u_{1}, \ldots, u_{k}\right)=\sum_{n_{k}=1}^{\infty} \frac{u_{k}^{n_{k}}}{n_{k}^{m_{k}}} \sum_{n_{k-1}=1}^{n_{k}-1} \ldots \sum_{n_{1}=1}^{n_{2}-1} \frac{u_{1}^{n_{1}}}{n_{1}^{m_{1}}}=(-1)^{k} G_{m_{k}, \ldots, m_{1}}\left(\frac{1}{u_{k}}, \ldots, \frac{1}{u_{1} \cdots u_{k}}\right) \\
& G_{m_{1}, \ldots, m_{k}}\left(u_{1}, \ldots, u_{k}\right)=G(\underbrace{0, \ldots, 0}_{m_{1}-1}, u_{1}, \ldots, \underbrace{0, \ldots, 0}_{m_{k}-1}, u_{k} ; 1)
\end{aligned}
$$

also multiple polylogarithms can be reduced to a minimal set Duhr Gangl Rhodes II weight I: one needs functions of type $\ln x$
weight 2:
weight 3:
weight 4:
weight 5:
weight 6:

```
\(\mathrm{Li}_{2}(x)\)
    \(\mathrm{Li}_{3}(x)\)
    \(\operatorname{Li}_{4}(x), \mathrm{Li}_{2,2}(x, y)\)
    \(\operatorname{Lis}^{(x)}, \operatorname{Li}_{2,3}(x, y)\)
    \(\operatorname{Li}_{6}(x), \operatorname{Li}_{2,4}(x, y), \operatorname{Li}_{3,3}(x, y), \operatorname{Li}_{2,2,2}(x, y, z)\)
```

9 the symbol knows about the discontinuities of T; if

$$
\operatorname{Sym}\left[T^{(k)}\right]=R_{1} \otimes \cdots \otimes R_{k}
$$

then T has a branch cut at $R_{I}=0$, and the symbol of the discontinuity is

$$
\operatorname{Sym}\left[\operatorname{Disc}_{R_{1}}\left(T^{(k)}\right)\right]=R_{2} \otimes \cdots \otimes R_{k}
$$

9 the symbol knows about the discontinuities of T; if

$$
\operatorname{Sym}\left[T^{(k)}\right]=R_{1} \otimes \cdots \otimes R_{k}
$$

then T has a branch cut at $R_{I}=0$, and the symbol of the discontinuity is

$$
\operatorname{Sym}\left[\operatorname{Disc}_{R_{1}}\left(T^{(k)}\right)\right]=R_{2} \otimes \cdots \otimes R_{k}
$$

Q $\operatorname{Disc}(\ln x \ln y)= \begin{cases}2 \pi i \ln x & \text { along the } y \operatorname{cut}[-\infty, 0] \\ 2 \pi i \ln y & \text { along the } x \text { cut }[-\infty, 0]\end{cases}$

$$
\operatorname{Sym}[\ln x \ln y]=x \otimes y+y \otimes x
$$

Q the symbol knows about the discontinuities of T; if

$$
\operatorname{Sym}\left[T^{(k)}\right]=R_{1} \otimes \cdots \otimes R_{k}
$$

then T has a branch cut at $R_{l}=0$, and the symbol of the discontinuity is

$$
\operatorname{Sym}\left[\operatorname{Disc}_{R_{1}}\left(T^{(k)}\right)\right]=R_{2} \otimes \cdots \otimes R_{k}
$$

Q $\operatorname{Disc}(\ln x \ln y)= \begin{cases}2 \pi i \ln x & \text { along the } y \text { cut }[-\infty, 0] \\ 2 \pi i \ln y & \text { along the } x \text { cut }[-\infty, 0]\end{cases}$

$$
\operatorname{Sym}[\ln x \ln y]=x \otimes y+y \otimes x
$$

Q in general, if $\operatorname{Disc}(f g)=\operatorname{Disc}(f) g+f \operatorname{Disc}(g)$

$$
\text { and } \quad \operatorname{Sym}[f]=\otimes_{i=1}^{n} R_{i} \quad \operatorname{Sym}[g]=\otimes_{i=n+1}^{m} R_{i}
$$

$$
\text { then } \quad \operatorname{Sym}[f g]=\sum_{\sigma} \otimes_{i=1}^{n} R_{\sigma(i)}
$$

where σ denotes the set of all shuffles of $n+(m-n)$ elements

$$
\begin{aligned}
& \text { e.g. } \quad \operatorname{Sym}[f]=R_{1} \otimes R_{2} \quad \operatorname{Sym}[g]=R_{3} \otimes R_{4} \\
& \begin{aligned}
\operatorname{Sym}[f g] & =R_{1} \otimes R_{2} \otimes R_{3} \otimes R_{4}+R_{1} \otimes R_{3} \otimes R_{2} \otimes R_{4}+R_{1} \otimes R_{3} \otimes R_{4} \otimes R_{2} \\
+ & R_{3} \otimes R_{1} \otimes R_{2} \otimes R_{4}+R_{3} \otimes R_{1} \otimes R_{4} \otimes R_{2}+R_{3} \otimes R_{4} \otimes R_{1} \otimes R_{2}
\end{aligned}
\end{aligned}
$$

Q the symbol knows about the discontinuities of T; if

$$
\operatorname{Sym}\left[T^{(k)}\right]=R_{1} \otimes \cdots \otimes R_{k}
$$

then T has a branch cut at $R_{I}=0$, and the symbol of the discontinuity is

$$
\operatorname{Sym}\left[\operatorname{Disc}_{R_{1}}\left(T^{(k)}\right)\right]=R_{2} \otimes \cdots \otimes R_{k}
$$

Q $\operatorname{Disc}(\ln x \ln y)= \begin{cases}2 \pi i \ln x & \text { along the } y \operatorname{cut}[-\infty, 0] \\ 2 \pi i \ln y & \text { along the } x \text { cut }[-\infty, 0]\end{cases}$

$$
\operatorname{Sym}[\ln x \ln y]=x \otimes y+y \otimes x
$$

Q in general, if $\operatorname{Disc}(f \mathrm{~g})=\operatorname{Disc}(f) \mathrm{g}+f \operatorname{Disc}(\mathrm{~g})$

$$
\text { and } \quad \operatorname{Sym}[f]=\otimes_{i=1}^{n} R_{i} \quad \operatorname{Sym}[g]=\otimes_{i=n+1}^{m} R_{i}
$$

$$
\text { then } \quad \operatorname{Sym}[f g]=\sum_{\sigma} \otimes_{i=1}^{n} R_{\sigma(i)}
$$

where σ denotes the set of all shuffles of $n+(m-n)$ elements

$$
\begin{aligned}
& \text { e.g. } \quad \operatorname{Sym}[f]=R_{1} \otimes R_{2} \quad \operatorname{Sym}[g]=R_{3} \otimes R_{4} \\
& \begin{array}{r}
\operatorname{Sym}[f g]= \\
+ \\
+ \\
+
\end{array} R_{3} \otimes R_{2} \otimes R_{1} \otimes R_{3} \otimes R_{2} \otimes R_{4}+R_{1} \otimes R_{3} \otimes R_{3} \otimes R_{1} \otimes R_{4} \otimes R_{4}+R_{1} \otimes R_{3} \otimes R_{3} \otimes R_{4} \otimes R_{1} \otimes R_{2} \otimes R_{2}
\end{aligned}
$$

Q symbols form a shuffle algebra, i.e. a vector space with a shuffle product (also iterated integrals and multiple polylogarithms form shuffle algebras)
polylogarithm identities satisfied by the function f become algebraic identities satisfied by its symbol let us prove the identity $\quad \mathrm{Li}_{2}(1-x)=-\mathrm{Li}_{2}(x)-\ln x \ln (1-x)+\frac{\pi^{2}}{6}$
polylogarithm identities satisfied by the function f become algebraic identities satisfied by its symbol
let us prove the identity $\quad \mathrm{Li}_{2}(1-x)=-\mathrm{Li}_{2}(x)-\ln x \ln (1-x)+\frac{\pi^{2}}{6}$
proof

$$
\operatorname{Sym}\left[\operatorname{Li}_{2}(x)\right]=-(1-x) \otimes x \quad \operatorname{Sym}^{2}\left[\operatorname{Li}_{2}(1-x)\right]=-x \otimes(1-x)
$$

$$
\operatorname{Sym}[\ln x \ln (1-x)]=x \otimes(1-x)+(1-x) \otimes x
$$

thus

$$
\operatorname{Sym}\left[\operatorname{Li}_{2}(1-x)\right]=\operatorname{Sym}\left[-\operatorname{Li}_{2}(x)-\ln x \ln (1-x)\right]
$$

which determines the function up to functions of lesser degree

$$
\operatorname{Li}_{2}(1-x)=-\operatorname{Li}_{2}(x)-\ln x \ln (1-x)+c \pi^{2}+i \pi\left(c^{\prime} \ln x+c^{\prime \prime} \ln (1-x)\right)
$$

polylogarithm identities satisfied by the function f become algebraic identities satisfied by its symbol
let us prove the identity $\quad \mathrm{Li}_{2}(1-x)=-\mathrm{Li}_{2}(x)-\ln x \ln (1-x)+\frac{\pi^{2}}{6}$
proof

$$
\operatorname{Sym}\left[\operatorname{Li}_{2}(x)\right]=-(1-x) \otimes x \quad \operatorname{Sym}\left[\operatorname{Li}_{2}(1-x)\right]=-x \otimes(1-x)
$$

$$
\operatorname{Sym}[\ln x \ln (1-x)]=x \otimes(1-x)+(1-x) \otimes x
$$

thus

$$
\operatorname{Sym}\left[\operatorname{Li}_{2}(1-x)\right]=\operatorname{Sym}\left[-\operatorname{Li}_{2}(x)-\ln x \ln (1-x)\right]
$$

which determines the function up to functions of lesser degree
$\mathrm{Li}_{2}(1-x)=-\mathrm{Li}_{2}(x)-\ln x \ln (1-x)+c \pi^{2}+i \pi\left(c^{\prime} \ln x+c^{\prime \prime} \ln (1-x)\right)$
but the equation is real for $0<x<1$, so c '=c" $=0$
at $x=\mathrm{I} \quad 0=-\frac{\pi^{2}}{6}-0+c \pi^{2}$
$\longrightarrow c=\frac{1}{6}$

9 take f, g with $w(f)=w(g)=n$ and $\operatorname{Sym}[f]=\operatorname{Sym}[g]$ then $f-g=h$ with $w(h)=n-I$ the symbol does not know about h info on the degree $n-I$ is lost by taking the symbol

Q take f, g with $w(f)=w(g)=n$ and $\operatorname{Sym}[f]=\operatorname{Sym}[g]$ then $f-g=h$ with $w(h)=n-I$ the symbol does not know about h info on the degree $n-I$ is lost by taking the symbol

9 in $\mathrm{N}=4$ SYM, polynomials exhibit a uniform weight $w(\ln x)=\mathrm{I}, w\left(\operatorname{Li}_{k}(x)\right)=k, w(\pi)=1$
\rightarrow symbols fix polynomials up to factors of π times functions of lesser weight

Q take f, g with $w(f)=w(g)=n$ and $\operatorname{Sym}[f]=\operatorname{Sym}[g]$ then $f-g=h$ with $w(h)=n-I$
the symbol does not know about h info on the degree $n-I$ is lost by taking the symbol

Q in $\mathrm{N}=4$ SYM, polynomials exhibit a uniform weight
$w(\ln x)=\mathrm{I}, w\left(\operatorname{Li}_{k}(x)\right)=k, w(\pi)=1$
\rightarrow symbols fix polynomials up to factors of π times functions of lesser weight

Thus, we have a procedure to simplify a generic function of polylogarithms:
Q find suitable variables (through momentum twistors or else) such that the arguments of the multiple polylogarithms become rational functions

Q determine the symbol of the function
Q through some symbol-processing procedure, find a simpler form of the integral in terms of multiple polylogarithms

Recent results on symbols

9
symbol of n-point 2-loop MHV amplitudes/Wilson loops (in principle one can get the n-point 2 -loop Wilson loop, but the symbol is complicated)

Q symbol of 6-point 3-loop MHV amplitude, up to 2 constants (and function in the multi-Regge limit)

Dixon Drummond Henn II

Q symbol of 6-point 2-loop NMHV amplitude (and function up to a I-dim integral)

Dixon Drummond Henn II
Q symbol of non-planar massive double box (to be used in $q q, g g \rightarrow t t b a r$) von Manteuffel presented at ACAT20II

9 symbol of 3-gluon 2-loop form factor

6-dim one-loop 6-point integrals

Q $2 n$-dim one-loop $2 n$-pt integrals ($n>2$) are finite and conformal invariant
Q For $n=3$, its symbol contributes to the symbol of two-loop Wilson loop

6-dim one-loop 6-point integrals

Q $2 n$-dim one-loop $2 n$-pt integrals ($n>2$) are finite and conformal invariant
Q For $n=3$, its symbol contributes to the symbol of two-loop Wilson loop
explicit expression of massless one-loop 6-pt integral is reminiscent of 2 -loop 6 -edged Wilson loop, but it has weight 3

$$
\left.\begin{array}{rl}
I_{6}\left(u_{1}, u_{2}, u_{3}\right) & =\frac{1}{\sqrt{\Delta}}\left[-2 \sum_{i=1}^{3} L_{3}\left(x_{i}^{+}, x_{i}^{-}\right)\right. \\
& \left.+\frac{1}{3}\left(\sum_{i=1}^{3} \ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)^{3}+\frac{\pi^{2}}{3} \chi \sum_{i=1}^{3}\left(\ell_{1}\left(x_{i}^{+}\right)-\ell_{1}\left(x_{i}^{-}\right)\right)\right] \\
\text {Dixon Drummond H }
\end{array}\right]
$$

6-dim 3-mass easy one-loop 6-pt integral

Q hexagon with 3 massive sides, x_{24}, x_{57}, x_{81} the cross ratios are

$$
\begin{aligned}
& u_{1}=\frac{x_{25}^{2} x_{17}^{2}}{x_{15}^{2} x_{27}^{2}}, \quad u_{2}=\frac{x_{58}^{2} x_{41}^{2}}{x_{48}^{2} x_{15}^{2}}, \quad u_{3}=\frac{x_{82}^{2} x_{74}^{2}}{x_{27}^{2} x_{48}^{2}} \\
& u_{4}=\frac{x_{24}^{2} x_{15}^{2}}{x_{14}^{2} x_{25}^{2}}, \quad u_{5}=\frac{x_{57}^{2} x_{48}^{2}}{x_{47}^{2} x_{58}^{2}}, \quad u_{6}=\frac{x_{81}^{2} x_{72}^{2}}{x_{82}^{2} x_{17}^{2}}
\end{aligned}
$$

Q in the massless limit, $u_{4}, u_{5}, u_{6} \rightarrow 0$

Q $D_{3} \cong S_{3}$ symmetry made of cyclic rotations c and reflections r

$$
\begin{aligned}
& u_{1} \xrightarrow{c} u_{2} \xrightarrow{c} u_{3} \xrightarrow{c} u_{1}, u_{4} \stackrel{c}{\longrightarrow} u_{5} \xrightarrow{c} u_{6} \xrightarrow{c} u_{4} \\
& u_{1} \stackrel{r}{\longleftrightarrow} u_{3}, u_{4} \stackrel{r}{\longleftrightarrow} u_{5}, \\
& u_{2} \stackrel{r}{\longleftrightarrow} u_{2}, u_{6} \stackrel{r}{\longleftrightarrow} u_{6} . \\
& \text { Dixon Drummond Duhr Henn SmirnovVDD | }
\end{aligned}
$$

6-dim 3-mass easy one-loop 6-pt integral

9
hexagon with 3 massive sides, x_{24}, x_{57}, x_{81} the cross ratios are

$$
\begin{array}{lr}
u_{1}=\frac{x_{25}^{2} x_{17}^{2}}{x_{15}^{2} x_{27}^{2}}, \quad u_{2}=\frac{x_{58}^{2} x_{41}^{2}}{x_{48}^{2} x_{15}^{2}}, \quad u_{3}=\frac{x_{82}^{2} x_{74}^{2}}{x_{27}^{2} x_{48}^{2}} \\
u_{4}=\frac{x_{24}^{2} x_{15}^{2}}{x_{14}^{2} x_{25}^{2}}, \quad u_{5}=\frac{x_{57}^{2} x_{48}^{2}}{x_{47}^{2} x_{58}^{2}}, \quad u_{6}=\frac{x_{81}^{2} x_{72}^{2}}{x_{82}^{2} x_{17}^{2}}
\end{array}
$$

(2) in the massless limit, $u_{4}, u_{5}, u_{6} \rightarrow 0$

Q $D_{3} \cong S_{3}$ symmetry made of cyclic rotations c and reflections r

$$
u_{1} \xrightarrow{c} u_{2} \xrightarrow{c} u_{3} \xrightarrow{c} u_{1}, u_{4} \xrightarrow{c} u_{5} \xrightarrow{c} u_{6} \xrightarrow{c} u_{4},
$$

$$
u_{1} \stackrel{r}{\longleftrightarrow} u_{3}, u_{4} \stackrel{r}{\longleftrightarrow} u_{5},
$$

$$
u_{2} \stackrel{r}{\longleftrightarrow} u_{2}, u_{6} \stackrel{r}{\longleftrightarrow} u_{6} . \quad \text { Dixon Drummond Duhr Henn Smirnov VDD I। }
$$

Q after using diff. eqs, the symbol map and momentum twistors, the integral is

$$
\begin{aligned}
\Phi_{9}\left(u_{1}, \ldots, u_{6}\right) & =\frac{1}{\sqrt{\Delta_{9}}} \sum_{i=1}^{4} \sum_{g \in S_{3}} \sigma(g) \mathcal{L}_{3}\left(x_{i, g}^{+}, x_{i, g}^{-}\right) \quad \sigma(g)=\left\{\begin{array}{l}
+\mathrm{l} \text { for }\left\{\mathrm{I}, \mathrm{c}, \mathrm{c}^{2}\right\} \\
\text {-l for }\left\{r, r c, r \mathrm{c}^{2}\right\}
\end{array}\right. \\
x_{i, g}^{ \pm} & =g\left(x_{i}^{ \pm}\right) \quad x_{i}^{ \pm}=x_{i}^{ \pm}\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right) \\
\mathcal{L}_{3}\left(x^{+}, x^{-}\right) & =\frac{1}{18}\left(\ell_{1}\left(x^{+}\right)-\ell_{1}\left(x^{-}\right)\right)^{3}+L_{3}\left(x^{+}, x^{-}\right)
\end{aligned}
$$

$\Delta_{9}=\left(1-u_{1}-u_{2}-u_{3}+u_{4} u_{1} u_{2}+u_{5} u_{2} u_{3}+u_{6} u_{3} u_{1}-u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}\right)^{2}-4 u_{1} u_{2} u_{3}\left(1-u_{4}\right)\left(1-u_{5}\right)\left(1-u_{6}\right)$ reduces to Δ in the massless limit

8-edged Wilson loop in AdS_{3}

Q at strong coupling, Alday \& Maldacena have considered $2 n$-sided polygons embedded into the boundary of AdS_{3}

Q $2 n$-sided remainder function depends on $2(n-3)$ variables

8-edged Wilson loop in AdS_{3}

Q at strong coupling, Alday \& Maldacena have considered $2 n$-sided polygons embedded into the boundary of AdS_{3}

Q $2 n$-sided remainder function depends on $2(n-3)$ variables
Q for the octagon, the remainder function is
$R_{8, W L}^{s \text { strong }}=-\frac{1}{2} \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{+}}\right)+\frac{7 \pi}{6}$

$$
+\int_{-\infty}^{+\infty} \mathrm{d} t \frac{|m| \sinh t}{\tanh (2 t+2 i \phi)} \ln \left(1+e^{-2 \pi|m| \cosh t}\right)
$$

where

$$
\chi^{+}=e^{2 \pi \operatorname{Im} m} \quad \chi^{-}=e^{-2 \pi \operatorname{Re} m} \quad m=|m| e^{i \phi}
$$

8-edged Wilson loop in AdS_{3}

Q at strong coupling, Alday \& Maldacena have considered $2 n$-sided polygons embedded into the boundary of AdS_{3}

Q $2 n$-sided remainder function depends on $2(n-3)$ variables
Q for the octagon, the remainder function is

$$
\begin{array}{rlr}
R_{8, W L}^{s t r o n g}= & -\frac{1}{2} \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{+}}\right)+\frac{7 \pi}{6} & \text { Alday Maldacena } 09 \\
& +\int_{-\infty}^{+\infty} \mathrm{d} t \frac{|m| \sinh t}{\tanh (2 t+2 i \phi)} \ln \left(1+e^{-2 \pi|m| \cosh t}\right)
\end{array}
$$

where

$$
\chi^{+}=e^{2 \pi \operatorname{Im} m} \quad \chi^{-}=e^{-2 \pi \operatorname{Re} m}
$$

$$
m=|m| e^{i \phi}
$$

Q at weak coupling, the 2-loop octagon remainder function is

$$
R_{8, W L}^{(2)}\left(\chi^{+}, \chi^{-}\right)=-\frac{\pi^{4}}{18}-\frac{1}{2} \ln \left(1+\chi^{+}\right) \ln \left(1+\frac{1}{\chi^{+}}\right) \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{-}}\right)
$$

8-edged Wilson loop in AdS_{3}

Q at strong coupling, Alday \& Maldacena have considered $2 n$-sided polygons embedded into the boundary of AdS_{3}

Q $2 n$-sided remainder function depends on $2(n-3)$ variables
Q for the octagon, the remainder function is

$$
\begin{align*}
R_{8, W L}^{\text {strong }}= & -\frac{1}{2} \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{+}}\right)+\frac{7 \pi}{6} \\
& +\int_{-\infty}^{+\infty} \mathrm{d} t \frac{|m| \sinh t}{\tanh (2 t+2 i \phi)} \ln \left(1+e^{-2 \pi|m| \cosh t}\right)
\end{align*}
$$

where

$$
\chi^{+}=e^{2 \pi \operatorname{Im} m} \quad \chi^{-}=e^{-2 \pi \operatorname{Re} m}
$$

$$
m=|m| e^{i \phi}
$$

Q at weak coupling, the 2-loop octagon remainder function is

$$
R_{8, W L}^{(2)}\left(\chi^{+}, \chi^{-}\right)=-\frac{\pi^{4}}{18}-\frac{1}{2} \ln \left(1+\chi^{+}\right) \ln \left(1+\frac{1}{\chi^{+}}\right) \ln \left(1+\chi^{-}\right) \ln \left(1+\frac{1}{\chi^{-}}\right)
$$

Duhr Smirnov VDD 10
Q 2-loop $2 n$-sided polygon R conjectured through collinear limits Heslop Khoze 10 proven through OPE

Coproducts

symbols miss transcendental constants
Q look for something with more structure

Coproducts

symbols miss transcendental constants

look for something with more structure
Q multiple polylogarithms form a Hopf algebra with a coproduct

Coproducts

9
symbols miss transcendental constants
look for something with more structure
Q multiple polylogarithms form a Hopf algebra with a coproduct
algebra is a vector space with a multiplication
$\mu: A \otimes A \rightarrow A$ $\mu(a \otimes b)=a \cdot b$ that is associative $A \otimes A \otimes A \rightarrow A \otimes A \rightarrow A$ $(a \cdot b) \cdot c=a \cdot(b \cdot c)$

Coproducts

symbols miss transcendental constants
look for something with more structure
multiple polylogarithms form a Hopf algebra with a coproduct
algebra is a vector space with a multiplication
$\mu: A \otimes A \rightarrow A$
$\mu(a \otimes b)=a \cdot b$ that is associative $A \otimes A \otimes A \rightarrow A \otimes A \rightarrow A \quad(a \cdot b) \cdot c=a^{\circ}(b \cdot c)$

Q coalgebra is a vector space with a comultiplication $\Delta: B \rightarrow B \otimes B$ that is coassociative $B \rightarrow B \otimes B \rightarrow B \otimes B \otimes B$

$$
\Delta(a)=\sum_{i} a_{i}^{(1)} \otimes a_{i}^{(2)}
$$

Coproducts

symbols miss transcendental constants
look for something with more structure multiple polylogarithms form a Hopf algebra with a coproduct algebra is a vector space with a multiplication $\mu: A \otimes A \rightarrow A$ $\mu(a \otimes b)=a \cdot b$ that is associative $A \otimes A \otimes A \rightarrow A \otimes A \rightarrow A \quad(a \cdot b) \cdot c=a \cdot(b \cdot c)$

Q coalgebra is a vector space with a comultiplication $\Delta: B \rightarrow B \otimes B$ that is coassociative $B \rightarrow B \otimes B \rightarrow B \otimes B \otimes B$

$$
\Delta(a)=\sum_{i} a_{i}^{(1)} \otimes a_{i}^{(2)}
$$

Q μ puts together; Δ decomposes

Coproducts

9
symbols miss transcendental constants
look for something with more structure
Q multiple polylogarithms form a Hopf algebra with a coproduct
algebra is a vector space with a multiplication
$\mu: A \otimes A \rightarrow A$
$\mu(a \otimes b)=a \cdot b$ that is associative $A \otimes A \otimes A \rightarrow A \otimes A \rightarrow A \quad\left(a{ }^{\circ} b\right)^{\circ} C=a^{\circ}\left(b{ }^{\circ} c\right)$

Q coalgebra is a vector space with a comultiplication $\Delta: B \rightarrow B \otimes B$ that is coassociative $B \rightarrow B \otimes B \rightarrow B \otimes B \otimes B$

$$
\Delta(a)=\sum_{i} a_{i}^{(1)} \otimes a_{i}^{(2)}
$$

Q μ puts together; Δ decomposes
Q take a word, sum over ways to split it into two: deconcatenation
$T=w x y z$
$\Delta(T)=w x y z \otimes 1+w x y \otimes z+w x \otimes y z+w \otimes x y z+1 \otimes w x y z$

Coproducts

9
symbols miss transcendental constants look for something with more structure

Q multiple polylogarithms form a Hopf algebra with a coproduct
algebra is a vector space with a multiplication that is associative $A \otimes A \otimes A \rightarrow A \otimes A \rightarrow A \quad(a \circ b){ }^{\circ} C=a^{\circ}(b \cdot c)$

Q coalgebra is a vector space with a comultiplication $\Delta: B \rightarrow B \otimes B$ that is coassociative $B \rightarrow B \otimes B \rightarrow B \otimes B \otimes B$

$$
\Delta(a)=\sum_{i} a_{i}^{(1)} \otimes a_{i}^{(2)}
$$

Q μ puts together; Δ decomposes
Q take a word, sum over ways to split it into two: deconcatenation
$T=w x y z$
$\Delta(T)=w x y z \otimes 1+w x y \otimes z+w x \otimes y z+w \otimes x y z+1 \otimes w x y z$
iterate: sum over ways to split it into three

$$
\begin{array}{ll}
w x \otimes y z \rightarrow(w \otimes x) \otimes y z & \text { if sum over all possibilities, } \\
w x \otimes y z \rightarrow w x \otimes(y \otimes z) & \text { get to the same result }
\end{array}
$$

Hopf algebra

9
a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

9 let's see how it works on the classical polylogarithms
(9) $\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1$

Q $\Delta(\ln y \ln z)=\Delta(\ln y) \cdot \Delta(\ln z)$

$$
\begin{aligned}
& =(1 \otimes \ln y+\ln y \otimes 1) \cdot(1 \otimes \ln z+\ln z \otimes 1) \\
& =1 \otimes \ln y \ln z+\ln y \otimes \ln z+\ln z \otimes \ln y+\ln y \ln z \otimes 1
\end{aligned}
$$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

Q let's see how it works on the classical polylogarithms
(9) $\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1$

Q $\Delta(\ln y \ln z)=\Delta(\ln y) \cdot \Delta(\ln z)$

$$
\begin{aligned}
& =(1 \otimes \ln y+\ln y \otimes 1) \cdot(1 \otimes \ln z+\ln z \otimes 1) \\
& =1 \otimes \ln y \ln z \underset{\ln y \otimes \ln z+\ln z \otimes \ln y \rightarrow \ln y \ln z \otimes 1}{ } \quad \begin{array}{l}
\operatorname{Sym}[\ln y \ln z]=y \otimes z+z \otimes y
\end{array}
\end{aligned}
$$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

Q let's see how it works on the classical polylogarithms
(9) $\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1$

- $\Delta(\ln y \ln z)=\Delta(\ln y) \cdot \Delta(\ln z)$
$=(1 \otimes \ln y+\ln y \otimes 1) \cdot(1 \otimes \ln z+\ln z \otimes 1)$
$=1 \otimes \ln y \ln z \quad \ln y \otimes \ln z+\ln z \otimes \ln y \rightarrow \ln y \ln z \otimes 1$
$\operatorname{Sym}[\ln y \ln z]=y \otimes z+z \otimes y$
- $\Delta\left(\operatorname{Li}_{2}(z)\right)=1 \otimes \operatorname{Li}_{2}(z)+\operatorname{Li}_{2}(z) \otimes 1-\ln (1-z) \otimes \ln z$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

Q let's see how it works on the classical polylogarithms
(9) $\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1$

Q $\Delta(\ln y \ln z)=\Delta(\ln y) \cdot \Delta(\ln z)$

$$
\begin{aligned}
& =(1 \otimes \ln y+\ln y \otimes 1) \cdot(1 \otimes \ln z+\ln z \otimes 1) \\
& =1 \otimes \ln y \ln z \underset{\ln y \otimes \ln z+\ln z \otimes \ln y \ln y \ln z \otimes 1}{ }
\end{aligned}
$$

$$
\operatorname{Sym}[\ln y \ln z]=y \otimes z+z \otimes y
$$

Q $\Delta\left(\operatorname{Li}_{2}(z)\right)=1 \otimes \operatorname{Li}_{2}(z)+\operatorname{Li}_{2}(z) \otimes 1-\ln (1-z) \otimes \ln z$ $\operatorname{Sym}\left[\operatorname{Li}_{2}(z)\right]=-(1-z) \otimes z$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

Q let's see how it works on the classical polylogarithms
(9) $\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1$

Q $\Delta(\ln y \ln z)=\Delta(\ln y) \cdot \Delta(\ln z)$

$$
\begin{aligned}
& =(1 \otimes \ln y+\ln y \otimes 1) \cdot(1 \otimes \ln z+\ln z \otimes 1) \\
& =1 \otimes \ln y \ln z+\ln y \otimes \ln z+\ln z \otimes \ln y \ln y \ln z \otimes 1
\end{aligned}
$$

$$
\operatorname{Sym}[\ln y \ln z]=y \otimes z+z \otimes y
$$

Q $\Delta\left(\operatorname{Li}_{2}(z)\right)=1 \otimes \operatorname{Li}_{2}(z)+\operatorname{Li}_{2}(z) \otimes 1-\operatorname{Ln}(1-z) \otimes \ln z$

Q in general $\Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!}$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

Q let's see how it works on the classical polylogarithms
(9) $\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1$
(9) $\Delta(\ln y \ln z)=\Delta(\ln y) \cdot \Delta(\ln z)$

$$
\operatorname{Sym}[\ln y \ln z]=y \otimes z+z \otimes y
$$

Q $\Delta\left(\operatorname{Li}_{2}(z)\right)=1 \otimes \operatorname{Li}_{2}(z)+\operatorname{Li}_{2}(z) \otimes 1-\operatorname{Ln}(1-z) \otimes \ln z$
© in general $\Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!}$

$$
\Delta_{n-1,1}\left(\operatorname{Li}_{n}(z)\right)=\operatorname{Li}_{n-1}(z) \otimes \ln z
$$

iterating $\begin{array}{r}\Delta_{1, \ldots, 1}\left(\operatorname{Li}_{n}(z)\right)=-\ln (1-z) \otimes \underbrace{\ln z \otimes \cdots \ln z}_{n-\mathrm{I}} \\ \operatorname{Sym}\left[\operatorname{Li}_{n}(z)\right]=-(1-z) \otimes \overbrace{z \otimes \cdots \otimes z}\end{array}$

$$
\begin{aligned}
& =(1 \otimes \ln y+\ln y \otimes 1) \cdot(1 \otimes \ln z+\ln z \otimes 1) \\
& =1 \otimes \ln y \ln z \quad \ln y \otimes \ln z+\ln z \otimes \ln y \ln y \ln z \otimes 1
\end{aligned}
$$

Hopf algebra

Q a Hopf algebra is an algebra and a coalgebra, such that product and coproduct are compatible $\Delta(a \cdot b)=\Delta(a) \cdot \Delta(b)$
Q multiple polylogarithms form a Hopf algebra with a coproduct

$$
\Delta\left(L_{w}\right)=\sum_{k=0}^{w} \Delta_{k, w-k}\left(L_{w}\right)=\sum_{k=0}^{w} L_{k} \otimes L_{w-k}
$$

Q let's see how it works on the classical polylogarithms
(9) $\Delta(\ln z)=1 \otimes \ln z+\ln z \otimes 1$

Q $\Delta(\ln y \ln z)=\Delta(\ln y) \cdot \Delta(\ln z)$

$$
\begin{aligned}
& =(1 \otimes \ln y+\ln y \otimes 1) \cdot(1 \otimes \ln z+\ln z \otimes 1) \\
& =1 \otimes \ln y \ln z+\ln y \otimes \ln z+\ln z \otimes \ln y \rightarrow \ln y \ln z \otimes 1
\end{aligned}
$$

$$
\operatorname{Sym}[\ln y \ln z]=y \otimes z+z \otimes y
$$

Q $\Delta\left(\operatorname{Li}_{2}(z)\right)=1 \otimes \operatorname{Li}_{2}(z)+\operatorname{Li}_{2}(z) \otimes 1-\ln (1-z) \otimes \ln z$

9 in general $\Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes \sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!}$

$$
\Delta_{n-1,1}\left(\operatorname{Li}_{n}(z)\right)=\operatorname{Li}_{n-1}(z) \otimes \ln z
$$

primitive element
iterating $\Delta_{1, \ldots, 1}\left(\operatorname{Li}_{n}(z)\right)=-\ln (1-z) \otimes \underbrace{\ln z \otimes \cdots \otimes \ln z}_{n-\mathrm{I}}$

$$
\operatorname{Sym}\left[\operatorname{Li}_{n}(z)\right]=-(1-z) \otimes \overbrace{z \otimes \cdots \otimes z}^{n-I}
$$

example on a function of weight 4

symbols represent the maximal iteration of a coproduct

Q ... but there is a problem
put $z=\mathrm{I}$ in $\quad \Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!}$
get $\quad \Delta\left(\zeta_{n}\right)=1 \otimes \zeta_{n}+\zeta_{n} \otimes 1$
better than symbols $\operatorname{Sym}\left[\zeta_{n}\right]=0$
however $\zeta_{4}=\frac{1}{15} \zeta_{2}^{2}$
$\Delta\left(\zeta_{4}\right)=\frac{1}{15} \Delta\left(\zeta_{2}\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}+\zeta_{2} \otimes 1\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}^{2}+\zeta_{2}^{2} \otimes 1+2 \zeta_{2} \otimes \zeta_{2}\right) \quad$ contradiction!

Q ... but there is a problem

$$
\text { put } z=\mathrm{I} \text { in } \quad \Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!}
$$

$$
\text { get } \quad \Delta\left(\zeta_{n}\right)=1 \otimes \zeta_{n}+\zeta_{n} \otimes 1
$$

better than symbols $\operatorname{Sym}\left[\zeta_{n}\right]=0$
however $\zeta_{4}=\frac{1}{15} \zeta_{2}^{2}$
$\Delta\left(\zeta_{4}\right)=\frac{1}{15} \Delta\left(\zeta_{2}\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}+\zeta_{2} \otimes 1\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}^{2}+\zeta_{2}^{2} \otimes 1+2 \zeta_{2} \otimes \zeta_{2}\right) \quad$ contradiction!

Q define

$$
\Delta\left(\zeta_{2 n}\right)=\zeta_{2 n} \otimes 1
$$

$$
\text { so } \quad \Delta\left(\zeta_{4}\right)=\frac{1}{15} \Delta\left(\zeta_{2}\right)^{2}=\frac{1}{15}\left(\zeta_{2} \otimes 1\right)^{2}=\frac{1}{15} \zeta_{2}^{2} \otimes 1=\zeta_{4} \otimes 1
$$

Q ... but there is a problem

$$
\text { put } \mathbf{z}=\mathrm{I} \text { in } \quad \Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!}
$$

$$
\text { get } \quad \Delta\left(\zeta_{n}\right)=1 \otimes \zeta_{n}+\zeta_{n} \otimes 1
$$

better than symbols $\operatorname{Sym}\left[\zeta_{n}\right]=0$
however $\zeta_{4}=\frac{1}{15} \zeta_{2}^{2}$
$\Delta\left(\zeta_{4}\right)=\frac{1}{15} \Delta\left(\zeta_{2}\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}+\zeta_{2} \otimes 1\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}^{2}+\zeta_{2}^{2} \otimes 1+2 \zeta_{2} \otimes \zeta_{2}\right) \quad$ contradiction!

Q define $\quad \Delta\left(\zeta_{2 n}\right)=\zeta_{2 n} \otimes 1$
so $\quad \Delta\left(\zeta_{4}\right)=\frac{1}{15} \Delta\left(\zeta_{2}\right)^{2}=\frac{1}{15}\left(\zeta_{2} \otimes 1\right)^{2}=\frac{1}{15} \zeta_{2}^{2} \otimes 1=\zeta_{4} \otimes 1$
Q define also $\quad \Delta(\pi)=\pi \otimes 1$
Duhr 12

Q ... but there is a problem

$$
\begin{aligned}
& \text { put } z=\mathrm{I} \text { in } \quad \Delta\left(\operatorname{Li}_{n}(z)\right)=1 \otimes \operatorname{Li}_{n}(z)+\operatorname{Li}_{n}(z) \otimes 1+\sum_{k=1}^{n-1} \operatorname{Li}_{n-k}(z) \otimes \frac{\ln ^{k} z}{k!} \\
& \text { get } \quad \Delta\left(\zeta_{n}\right)=1 \otimes \zeta_{n}+\zeta_{n} \otimes 1
\end{aligned}
$$

better than symbols $\operatorname{Sym}\left[\zeta_{n}\right]=0$
however $\zeta_{4}=\frac{1}{15} \zeta_{2}^{2}$
$\Delta\left(\zeta_{4}\right)=\frac{1}{15} \Delta\left(\zeta_{2}\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}+\zeta_{2} \otimes 1\right)^{2}=\frac{1}{15}\left(1 \otimes \zeta_{2}^{2}+\zeta_{2}^{2} \otimes 1+2 \zeta_{2} \otimes \zeta_{2}\right) \quad$ contradiction!

Q define $\Delta\left(\zeta_{2 n}\right)=\zeta_{2 n} \otimes 1$
so $\quad \Delta\left(\zeta_{4}\right)=\frac{1}{15} \Delta\left(\zeta_{2}\right)^{2}=\frac{1}{15}\left(\zeta_{2} \otimes 1\right)^{2}=\frac{1}{15} \zeta_{2}^{2} \otimes 1=\zeta_{4} \otimes 1$

- define also

$$
\Delta(\pi)=\pi \otimes 1
$$

Duhr 12

Q this allows us to account consistently for ζ, im terms (which the symbol misses) so the coproduct fixes all but the primitive elements

Coproducts and inverse relations

Q weight I $\operatorname{Li}_{1}\left(\frac{1}{z}\right)=-\ln \left(1-\frac{1}{z}\right)=-\ln (1-z)+\ln (-z)=-\ln (1-z)+\ln z-i \pi$

Coproducts and inverse relations

Q weight $1 \quad \operatorname{Li}_{1}\left(\frac{1}{z}\right)=-\ln \left(1-\frac{1}{z}\right)=-\ln (1-z)+\ln (-z)=-\ln (1-z)+\ln z-i \pi$
Q weight $2 \quad \Delta_{1,1}\left(\operatorname{Li}_{2}\left(\frac{1}{z}\right)\right)=-\ln \left(1-\frac{1}{z}\right) \otimes \ln \left(\frac{1}{z}\right)$

$$
\begin{aligned}
& =\ln (1-z) \otimes \ln z-\ln z \otimes \ln z+i \pi \otimes \ln z \\
& =\Delta_{1,1}\left(-\operatorname{Li}_{2}(z)-\frac{1}{2} \ln ^{2} z+i \pi \ln z\right)
\end{aligned}
$$

$i \pi$ more than the symbol
so $\quad \operatorname{Li}_{2}\left(\frac{1}{z}\right)=-\operatorname{Li}_{2}(z)-\frac{1}{2} \ln ^{2} z+i \pi \ln z+c \pi^{2} \quad z=1 \rightarrow c=\frac{1}{3}$

Coproducts and inverse relations

Q weight I $\operatorname{Li}_{1}\left(\frac{1}{z}\right)=-\ln \left(1-\frac{1}{z}\right)=-\ln (1-z)+\ln (-z)=-\ln (1-z)+\ln z-i \pi$
Q weight $2 \quad \Delta_{1,1}\left(\operatorname{Li}_{2}\left(\frac{1}{z}\right)\right)=-\ln \left(1-\frac{1}{z}\right) \otimes \ln \left(\frac{1}{z}\right)$

$$
\begin{aligned}
& =\ln (1-z) \otimes \ln z-\ln z \otimes \ln z+i \pi \otimes \ln z \\
& =\Delta_{1,1}\left(-\operatorname{Li}_{2}(z)-\frac{1}{2} \ln ^{2} z+i \pi \ln z\right)
\end{aligned}
$$

$i \pi$ more than the symbol
so $\quad \operatorname{Li}_{2}\left(\frac{1}{z}\right)=-\operatorname{Li}_{2}(z)-\frac{1}{2} \ln ^{2} z+i \pi \ln z+c \pi^{2}$

$$
z=1 \rightarrow c=\frac{1}{3}
$$

Q weight 3

$$
\begin{aligned}
\Delta_{1,1,1}\left(\operatorname{Li}_{3}\left(\frac{1}{z}\right)\right) & =-\ln \left(1-\frac{1}{z}\right) \otimes \ln \left(\frac{1}{z}\right) \otimes \ln \left(\frac{1}{z}\right) \\
& =-\ln (1-z) \otimes \ln z \otimes \ln z+\ln z \otimes \ln z \otimes \ln z-i \pi \otimes \ln z \otimes \ln z \\
& =\Delta_{1,1,1}\left(\operatorname{Li}_{3}(z)+\frac{1}{6} \ln ^{3} z-\frac{i \pi}{2} \ln ^{2} z\right)
\end{aligned}
$$

Coproducts and inverse relations

Q weight I $\operatorname{Li}_{1}\left(\frac{1}{z}\right)=-\ln \left(1-\frac{1}{z}\right)=-\ln (1-z)+\ln (-z)=-\ln (1-z)+\ln z-i \pi$
Q weight $2 \quad \Delta_{1,1}\left(\operatorname{Li}_{2}\left(\frac{1}{z}\right)\right)=-\ln \left(1-\frac{1}{z}\right) \otimes \ln \left(\frac{1}{z}\right)$

$$
\begin{aligned}
& =\ln (1-z) \otimes \ln z-\ln z \otimes \ln z+i \pi \otimes \ln z \\
& =\Delta_{1,1}\left(-\operatorname{Li}_{2}(z)-\frac{1}{2} \ln ^{2} z+i \pi \ln z\right)
\end{aligned}
$$

$i \pi$ more than the symbol
so $\quad \operatorname{Li}_{2}\left(\frac{1}{z}\right)=-\operatorname{Li}_{2}(z)-\frac{1}{2} \ln ^{2} z+i \pi \ln z+c \pi^{2}$

$$
z=1 \rightarrow c=\frac{1}{3}
$$

weight 3

$$
\begin{aligned}
\Delta_{1,1,1}\left(\operatorname{Li}_{3}\left(\frac{1}{z}\right)\right) & =-\ln \left(1-\frac{1}{z}\right) \otimes \ln \left(\frac{1}{z}\right) \otimes \ln \left(\frac{1}{z}\right) \\
& =-\ln (1-z) \otimes \ln z \otimes \ln z+\ln z \otimes \ln z \otimes \ln z-i \pi \otimes \ln z \otimes \ln z \\
& =\Delta_{1,1,1}\left(\operatorname{Li}_{3}(z)+\frac{1}{6} \ln ^{3} z-\frac{i \pi}{2} \ln ^{2} z\right)
\end{aligned}
$$

one can do better

$$
\begin{aligned}
\Delta_{2,1}\left(\operatorname{Li}_{3}\left(\frac{1}{z}\right)-\left(\operatorname{Li}_{3}(z)+\frac{1}{6} \ln ^{3} z-\frac{i \pi}{2} \ln ^{2} z\right)\right) & =-\frac{\pi^{2}}{3} \otimes \ln z \\
& =\Delta_{2,1}\left(-\frac{\pi^{2}}{3} \ln z\right)
\end{aligned}
$$

so $\quad \operatorname{Li}_{3}\left(\frac{1}{z}\right)=\operatorname{Li}_{3}(z)+\frac{1}{6} \ln ^{3} z-\frac{i \pi}{2} \ln ^{2} z-\frac{\pi^{2}}{3} \ln z+c_{1} \zeta_{3}+c_{2} i \pi^{3}$
$z=1 \rightarrow c_{1}=c_{2}=0$

Higgs + 3 gluons

Q the 2-loop amplitudes for Higgs +3 gluons have been computed in terms of 2 -dim HPLs

Koukoutsakis 03
Gehrmann Jacquier Glover Koukoutsakis I I

Higgs + 3 gluons

Q the 2-loop amplitudes for Higgs +3 gluons have been computed in terms of 2 -dim HPLs

Q the symbol of the leading colour maximally transcendental part equals the symbol of the 2-loop 3 -gluon form factor in $\mathrm{N}=4$ SYM and can be expressed in terms of classical polylogarithms up to weight 4

Brandhuber Travaglini Yang I2

Higgs + 3 gluons

Q the 2-loop amplitudes for Higgs +3 gluons have been computed in terms of 2-dim HPLs

Q the symbol of the leading colour maximally transcendental part equals the symbol of the 2-loop 3 -gluon form factor in $\mathrm{N}=4$ SYM and can be expressed in terms of classical polylogarithms up to weight 4

Brandhuber Travaglini Yang I2
Q using coproducts, the whole 2-loop amplitude for Higgs + 3 gluons can be expressed in terms of classical polylogarithms up to weight 4

Conclusions

Q Planar $\mathrm{N}=4$ SYM is an ideal lab where to learn how an integrable field theory works

Conclusions

Q Planar $\mathrm{N}=4$ SYM is an ideal lab where to learn how an integrable field theory works
Q one can make comparisons between quantities at weak and strong couplings: the 2-loop 6-edged Wilson loop

Conclusions

Q Planar $\mathrm{N}=4$ SYM is an ideal lab where to learn how an integrable field theory works
Q one can make comparisons between quantities at weak and strong couplings: the 2-loop 6-edged Wilson loop
Q one can learn about 2-loop n-point (N)MHV amplitudes, and think of recycling that knowledge in realistic gauge field theories

Q in a particular $(1+1)$-dim kinematic set-up, the problem of computing the 2-loop MHV amplitudes/Wilson loops is now completely solved

Conclusions

Q Planar $\mathrm{N}=4$ SYM is an ideal lab where to learn how an integrable field theory works
Q one can make comparisons between quantities at weak and strong couplings: the 2-loop 6-edged Wilson loop
Q one can learn about 2-loop n-point (N)MHV amplitudes, and think of recycling that knowledge in realistic gauge field theories

- in a particular $(1+1)$-dim kinematic set-up, the problem of computing the 2-loop MHV amplitudes/Wilson loops is now completely solved
Q a major progress has come from the introduction of symbols, which capture most of the analytic properties of a function, and help us in simplifying what the final result should be like. Symbols are being introduced in the analytic results of 2-loop quantities in QCD, and will certainly be used there more and more

Conclusions

Q Planar $\mathrm{N}=4$ SYM is an ideal lab where to learn how an integrable field theory works
Q one can make comparisons between quantities at weak and strong couplings: the 2-loop 6-edged Wilson loop
Q one can learn about 2-loop n-point (N)MHV amplitudes, and think of recycling that knowledge in realistic gauge field theories

Q in a particular $(1+1)$-dim kinematic set-up, the problem of computing the 2-loop MHV amplitudes/Wilson loops is now completely solved
Q a major progress has come from the introduction of symbols, which capture most of the analytic properties of a function, and help us in simplifying what the final result should be like. Symbols are being introduced in the analytic results of 2-loop quantities in QCD, and will certainly be used there more and more
Q ... but symbols loose much info about the target function. Most of that info can be recovered using coproducts, which include the symbols, and much more ...

Back-up slides

Resummation: Sudakov form factor

Q. Sudakov (quark) form factor as matrix element of EM current

$$
\Gamma_{\mu}\left(p_{1}, p_{2} ; \mu^{2}, \epsilon\right) \equiv<0\left|J_{\mu}(0)\right| p_{1}, p_{2}>=\bar{v}\left(p_{2}\right) \gamma_{\mu} u\left(p_{1}\right) \Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)
$$

obeys evolution equation

$$
Q^{2} \frac{\partial}{\partial Q^{2}} \ln \left[\Gamma\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]=\frac{1}{2}\left[K\left(\alpha_{s}\left(\mu^{2}\right), \epsilon\right)+G\left(\frac{Q^{2}}{\mu^{2}}, \alpha_{s}\left(\mu^{2}\right), \epsilon\right)\right]
$$

K is a counterterm; G is finite as $\varepsilon \rightarrow 0$
RG invariance requires

$$
\mu \frac{d G}{d \mu}=-\mu \frac{d K}{d \mu}=\gamma_{K}\left(\alpha_{s}\left(\mu^{2}\right)\right)
$$

Korchemsky Radyushkin I987
γ_{k} is the cusp anomalous dimension
solution is

$$
\Gamma\left(Q^{2}, \epsilon\right)=\exp \left\{\frac{1}{2} \int_{0}^{-Q^{2}} \frac{d \xi^{2}}{\xi^{2}}\left[G\left(-1, \bar{\alpha}_{s}\left(\xi^{2}, \epsilon\right), \epsilon\right)-\frac{1}{2} \gamma_{K}\left(\bar{\alpha}_{s}\left(\xi^{2}, \epsilon\right)\right) \ln \left(\frac{-Q^{2}}{\xi^{2}}\right)\right]\right\}
$$

Collinear limits of Wilson loops

collinear limit $a|\mid b$
Anastasiou Brandhuber Heslop Khoze Spence Travaglini 09

$$
R_{6} \rightarrow 0 \quad R_{7} \rightarrow R_{6} \quad R_{n} \rightarrow R_{n-1}
$$

triple collinear limit $a||b|| c$

$$
R_{6} \rightarrow R_{6} \quad R_{7} \rightarrow R_{6} \quad R_{8} \rightarrow R_{6}+R_{6} \quad R_{n} \rightarrow R_{n-2}+R_{6}
$$

quadruple collinear limit $a||b|| c|\mid d$

$$
R_{7} \rightarrow R_{7} \quad R_{8} \rightarrow R_{7} \quad R_{9} \rightarrow R_{6}+R_{7} \quad R_{n} \rightarrow R_{n-3}+R_{7}
$$

Collinear limits of Wilson loops

collinear limit $a \| b$

$$
R_{6} \rightarrow 0 \quad R_{7} \rightarrow R_{6} \quad R_{n} \rightarrow R_{n-1}
$$

triple collinear limit $a||b|| c$

$$
R_{6} \rightarrow R_{6} \quad R_{7} \rightarrow R_{6} \quad R_{8} \rightarrow R_{6}+R_{6} \quad R_{n} \rightarrow R_{n-2}+R_{6}
$$

quadruple collinear limit $a||b|| c|\mid d$

$$
R_{7} \rightarrow R_{7} \quad R_{8} \rightarrow R_{7} \quad R_{9} \rightarrow R_{6}+R_{7} \quad R_{n} \rightarrow R_{n-3}+R_{7}
$$

$(\mathbf{k}+\mathrm{I})$-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{k+1}$

$$
R_{n} \rightarrow R_{n-k}+R_{k+4}
$$

(n-4)-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{n-4}$

$$
R_{n-1} \rightarrow R_{n-1} \quad R_{n} \rightarrow R_{n-1}
$$

(n-3)-ple collinear limit $\quad i_{1}\left\|i_{2}\right\| \cdots \| i_{n-3}$

$$
R_{n} \rightarrow R_{n}
$$

Q thus R_{n} is fixed by the ($n-3$)-ple collinear limit

Quasi-multi-Regge limit of n-sided Wilson loop

Q 7-pt amplitude in the qmR limit of a triple along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \simeq y_{6} \gg y_{7} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right| \simeq\left|p_{7 \perp}\right|
$$

7 cross ratios, which are all $O(1)$ R_{7} is invariant under the $q m R$ limit of a triple along the ladder

Quasi-multi-Regge limit of n-sided Wilson loop

Q 7-pt amplitude in the qmR limit of a triple along the ladder

$$
y_{3} \gg y_{4} \simeq y_{5} \simeq y_{6} \gg y_{7} ; \quad\left|p_{3 \perp}\right| \simeq\left|p_{4 \perp}\right| \simeq\left|p_{5 \perp}\right| \simeq\left|p_{6 \perp}\right| \simeq\left|p_{7 \perp}\right|
$$

7 cross ratios, which are all $O(I)$ R_{7} is invariant under the $q m R$ limit of a triple along the ladder

Q can be generalised to the n-pt amplitude in the $q m R$ limit of a ($n-4$)-ple along the ladder

$$
y_{3} \gg y_{4} \simeq \ldots \simeq y_{n-1} \gg y_{n} ; \quad\left|p_{3 \perp}\right| \simeq \ldots \simeq\left|p_{n \perp}\right|
$$

Computing 2-loop Wilson loops

cusp diagrams are given by cross and Y diagrams with gluons attaching to consecutive sides

Computing 2-loop Wilson loops

cusp diagrams are given by cross and Y diagrams with gluons attaching to consecutive sides

Q most difficult diagrams to compute are hard diagrams

f_{H} has I / ε^{2} singularities if $Q_{1}=Q_{2}=0, Q_{3} \neq 0$ it has I / ε singularities if $Q_{1}=0, Q_{2}, Q_{3} \neq 0$ it is finite if $Q_{1}, Q_{2}, Q_{3} \neq 0$
e.g. for $n=6$, the most difficult diagram is $f_{H}\left(p_{1}, p_{3}, p_{5} ; p_{4}, p_{6}, p_{2}\right) \quad$ which is finite

Computing 2-loop Wilson loops

cusp diagrams are given by cross and Y diagrams with gluons attaching to consecutive sides
 most difficult diagrams to compute are hard diagrams
most general hard diagram has $Q_{1}{ }^{2}, Q_{2}{ }^{2}, Q_{3}{ }^{2} \neq 0$; it occurs for $n \geq 9$

A comment on 2-loop n-edged Wilson loops

Q 2-loop 7-edged Wilson loop:
in the MB repr. of the integrals in $q m R k$, one gets up to 4-fold integrals

A comment on 2-loop n-edged Wilson loops

Q 2-loop 7-edged Wilson loop: in the MB repr. of the integrals in qmRk, one gets up to 4-fold integrals

Q 2-loop 8-edged Wilson loop: in the MB repr. of the integrals in $q m R k$, one gets up to 5 -fold integrals

A comment on 2-loop n-edged Wilson loops

Q 2-loop 7-edged Wilson loop: in the MB repr. of the integrals in $q m R k$, one gets up to 4-fold integrals

Q 2-loop 8-edged Wilson loop:
in the MB repr. of the integrals in $q m R k$, one gets up to 5 -fold integrals
Q 2-loop 9-edged Wilson loop:
in the MB repr. of the integrals in qmRk, one gets up to 6-fold integrals
Q At 9 edges, the hard diagram topology saturates, which generates the highest-fold integrals

A comment on 2-loop n-edged Wilson loops

Q 2-loop 7-edged Wilson loop: in the MB repr. of the integrals in $q m R k$, one gets up to 4-fold integrals

Q 2-loop 8-edged Wilson loop:
in the MB repr. of the integrals in $q m R k$, one gets up to 5 -fold integrals
Q 2-loop 9-edged Wilson loop:
in the MB repr. of the integrals in qmRk, one gets up to 6-fold integrals
Q At 9 edges, the hard diagram topology saturates, which generates the highest-fold integrals

Q For $10 \leq n \leq 12$, the only new contributions come from the factorized cross diagram topology, which is the simplest
let us prove the identity $\quad \operatorname{Li}_{2}\left(1-\frac{1}{x}\right)=-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x$
let us prove the identity $\quad \operatorname{Li}_{2}\left(1-\frac{1}{x}\right)=-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x$
proof $\quad \operatorname{Sym}\left[\operatorname{Li}_{2}(1-x)\right]=-x \otimes(1-x)$

$$
\begin{aligned}
\operatorname{Sym}\left[\operatorname{Li}_{2}\left(1-\frac{1}{x}\right)\right] & =-\frac{1}{x} \otimes\left(1-\frac{1}{x}\right) \\
& =x \otimes \frac{x-1}{x} \\
& =x \otimes(1-x)-x \otimes x
\end{aligned}
$$

$\operatorname{Sym}\left[\ln ^{2} x\right]=2 x \otimes x$
let us prove the identity $\quad \operatorname{Li}_{2}\left(1-\frac{1}{x}\right)=-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x$
proof $\quad \operatorname{Sym}\left[\operatorname{Li}_{2}(1-x)\right]=-x \otimes(1-x)$

$$
\begin{aligned}
\operatorname{Sym}\left[\operatorname{Li}_{2}\left(1-\frac{1}{x}\right)\right] & =-\frac{1}{x} \otimes\left(1-\frac{1}{x}\right) \\
& =x \otimes \frac{x-1}{x} \\
& =x \otimes(1-x)-x \otimes x
\end{aligned}
$$

$\operatorname{Sym}\left[\ln ^{2} x\right]=2 x \otimes x$
thus $\quad \operatorname{Sym}\left[-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x\right]=x \otimes(1-x)-\frac{1}{2} 2 x \otimes x=\operatorname{Sym}\left[\operatorname{Li}_{2}\left(1-\frac{1}{x}\right)\right]$
which determines the function up to functions of lesser degree
$\mathrm{Li}_{2}\left(1-\frac{1}{x}\right)=-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x+c \pi^{2}$
let us prove the identity $\quad \operatorname{Li}_{2}\left(1-\frac{1}{x}\right)=-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x$
proof $\quad \operatorname{Sym}\left[\operatorname{Li}_{2}(1-x)\right]=-x \otimes(1-x)$

$$
\begin{aligned}
\operatorname{Sym}\left[\operatorname{Li}_{2}\left(1-\frac{1}{x}\right)\right] & =-\frac{1}{x} \otimes\left(1-\frac{1}{x}\right) \\
& =x \otimes \frac{x-1}{x} \\
& =x \otimes(1-x)-x \otimes x
\end{aligned}
$$

$\operatorname{Sym}\left[\ln ^{2} x\right]=2 x \otimes x$
thus $\quad \operatorname{Sym}\left[-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x\right]=x \otimes(1-x)-\frac{1}{2} 2 x \otimes x=\operatorname{Sym}\left[\operatorname{Li}_{2}\left(1-\frac{1}{x}\right)\right]$
which determines the function up to functions of lesser degree
$\mathrm{Li}_{2}\left(1-\frac{1}{x}\right)=-\operatorname{Li}_{2}(1-x)-\frac{1}{2} \ln ^{2} x+c \pi^{2}$
at $x=\mathbf{l} \quad 0=-0-0+c \pi^{2}$
$\longrightarrow c=0$

Symbols in the DGR construction

Duhr Gangl Rhodes II
Q DGR associate decorated ($n+l$)-gons to multiple polylogarithms of weight n
$9 G(a ; x) \leftrightarrow \underset{a}{\sum^{x}}$

$$
\mathcal{S}(G(a ; x))=\left(1-\frac{x}{a}\right)
$$

Gangl Goncharov Levin 05
$9 G(a, b ; x) \leftrightarrow \stackrel{x}{b}$

$$
S(G(a, b ; x)) \leftrightarrow
$$

$+b x \mid a x$

$-b x \mid a b$
$a b \left\lvert\, c d=\left(1-\frac{b}{a}\right) \otimes\left(1-\frac{d}{c}\right)\right.$

- $G(a, b, c ; x) \leftrightarrow$

Symbols in the DGR construction

Duhr Gangl Rhodes II
Q DGR associate decorated ($n+l$)-gons to multiple polylogarithms of weight n

- $G(a ; x) \leftrightarrow \underset{a}{\sum_{a}^{x}}$

$$
\mathcal{S}(G(a ; x))=\left(1-\frac{x}{a}\right)
$$

$G(a, b ; x) \leftrightarrow \sum_{a}^{\frac{x}{e}}$

$$
S(G(a, b ; x)) \leftrightarrow
$$

$+b x \mid a x$

$-b x \mid a b$

$$
a b \left\lvert\, c d=\left(1-\frac{b}{a}\right) \otimes\left(1-\frac{d}{c}\right)\right.
$$

- $G(a, b, c ; x) \leftrightarrow$

Q the symbol in the DGR construction is basically equivalent to GSVV's, except that one needs not treat $d \log c$ as zero

$$
C \otimes 2^{m} 3^{n} x^{-5} \otimes D=m(C \otimes 2 \otimes D)+n(C \otimes 3 \otimes D)-5(C \otimes x \otimes D)
$$

Amplitudes in twistor space

Q twistors live in the fundamental irrep of $\operatorname{SO}(2,4)$
Q any point in dual space corresponds to a line in twistor space $x_{a} \leftrightarrow\left(Z_{a}, Z_{a+1}\right)$

Amplitudes in twistor space

Q twistors live in the fundamental irrep of $\operatorname{SO}(2,4)$
Q any point in dual space corresponds to a line in twistor space

$$
x_{a} \leftrightarrow\left(Z_{a}, Z_{a+1}\right)
$$

null separations in dual space correspond to intersections in twistor space

Amplitudes in twistor space

Q twistors live in the fundamental irrep of $\operatorname{SO}(2,4)$
Q any point in dual space corresponds to a line in twistor space

$$
x_{a} \leftrightarrow\left(Z_{a}, Z_{a+1}\right)
$$

null separations in dual space correspond to intersections in twistor space

2-loop n-pt MHV amplitudes can be written
 as sum of pentaboxes in twistor space

Arkani-Hamed Bourjaily Cachazo Trnka IO

