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Benefits of NLO

* [eading Order 1s often a quite crude approximation

& normalization can float arbitrarily up and down by just
changing os (more so with more jets in the final state)

& poor description of jets, without any internal substructure
(Ijetzlpartﬂn)
& poor control on shapes of distributions (but BSM searches

rely beavily on a solid control ﬂf dﬁap&f to ﬂxtrapﬂ&zte
ngmum?}d frﬂm control regiond to J@mf regiond)

& Next-to-Leading order 1s just “a better approximation” to data:
this 1s manifest in reduced theory uncertainties (often estimated

by varying renormalization and factorization scales)

BUT: even at NLO the scale choice is an issue and different choices

can lead to a different picture/contrasting conclusions




Scale choice at NLO

Example where a scale choice leads to a different picture at NLO
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ttbb important background to ttH with H — bb. Whether or not we can
control this background to better than 20% makes a crucial difference
(ttH 1s unique to measure the ttH Yukawa coupling)




Scale choice at NLO

EXEI.IHP]E where a scale choice leads to a different picture at NLO
Bern et al. 0907.1984
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W+ multi-jet processes are important backgrnunds to SUSY searches
at high transverse energies

Could quote many more examples. In general the problem is more
severe as the number of jets increases (as more scales enter into play)




Scale choice at NLO

Often a “good scale” is determined a podteriori, either by requiring
NLO corrections to be small, or by looking where the sensitivity to the

scale is minimized

-] 50 BEl S 0 IS0 W 3ED 400 430 SO0 B0 i Mh RS NN M0 M0 4% 500
L] LI I L] L : L L | | L] | L

7 WeljeseX - i Waljs+X - Lo
— WL

=

Wi o= 1T o = BTV

oy =y = N

dofdE, [pbiGeV ]

p Wil Uy 0 &

v B0aV, Ig1 & 33

do/dE, [ pb/GeV ]

B

K =
F. = HidaV l’: 3

R T re— sl i = Shrpa

[ < porsmn I SO wele dependence
- Dol aceky drpande s —

i ::t:-:-:-rs-:f_!'!"?f:':'.:!'_ :::::f:::::::::::':.: e e
| P ) ) .
x nd 13 Z0 IN Mg 3M
Second Jot Ep [ GeV ]

[bad scale J [guud scale]




Scale choice at NLO

Often a “good scale” is determined a podteriori, either by requiring
NLO corrections to be small, or by looking where the sensitivity to the
scale i1s minimized
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Scale choice at NLO

Otften a “good scale” 1s determined a povteriort, either by requiring
NLO corrections to be small, or by looking where the sensitivity to the
scale 1s minimized
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Scale choice at NLO

Otften a “good scale” 1s determined a povsteriori, either by requiring
NLO corrections to be small, or by looking where the sensitivity to the
scale 1s minimized

Reason: bad scale ™ large logs ™ large NLO and large scale dependence
But we also know that large NLO K bad scale choice, since NLO

corrections can have a “genuine” physical origin (new channels opening

up, Sudakov lugs., color factors, ]arge glunn flux ... )

Furthermore, double logarithmic corrections can never be absorbed by
a choice of scale (single ]ng). So a Hstabﬂity criterion” can be misleading.

On the other hand, LO calculations in matrix elements generators are
quite snphisﬁcated: they use nptilnized scales and Sudakov form factors




Recap of CKKW

A brea]«r.thruugh in LO calculations came about
with the CKKW prescriptiun:

¥ use the kt a.]gnrithm to reconstruct a
branching histnry

& evaluate each a. at the local transverse
momentum of the sphttlng

€ for each internal line include a Sudakov * *

(k-
form factor A=D(Q0,Q:)/D(Q0,Q;) that 7o)
EIICDC[E t]’lE pfﬂbﬂblllw ﬂf EVﬂlﬂﬂg fI"D]Il

scale Q; to scale Q; without emitting. For
external lines include A=D(Qo,Q;)

¥ match to a parl:ﬂn shower to include

radiation below Qg

Catani, Krauss, Kuebn, Webber "01

extension to hh collisions Krawuss ‘02




Aim of this work

& At LO we have a sensible prescription to include Sudakov
effects and a solid presciption for choosing the scales. This
means we are getting the most out of LO calculations

NLO calculations are very hard (not so much conceptually
challenging today, but technically dithicult/computer intensive)

So, once you do a hard NLO calculation, you should try to

exploit it as much as possible (i.e. not spoil your result with a
bad scale choice)

i The goal: formulate a procedure to compute the actual NLO
correction to matrix element style LO calculations with Sudakov
form factors, such that the procedure to choose the scale 1s
unbiased and choosen a priori

\_




Two observations

1. A generic NLO cross-section has the form

b ) (v (Q) + nbolog 15 Hz (Q)) + ot (up) R

Adopting CKKW scales at LO, this becomes naturally

as(p1) - .- as(pn) B + af T (up) (V(Q) + b log Qz i B) +ay T (up)R

and the scale choices }IR’ and ]lR” are irrelevant for the scale cancelation

2. Sudakov corrections included at O via the CKKW prm:edure lead
to NLO corrections that need to be subtracted to preserve NLO
accuracy




Arbitrariness

When trying to extend the CKKW procedure to NLO there 1s

arbitrariness 1n
l.the arguments of o, in the real and virtual term

2.the exact definition of the subtraction terms of the NLO terms in the
Born Sudakovs

3.whether or not to include Sudakovs in the real and virtual

Our guiding principle is that the virtues of the CKKW result at

leading order are maintained once radiative corrections are included




The SINLLO method

. Find the clustering scales qi< ... < qn (and qo for the real term). Set
Qo =q1, since radiation is inclusive below qi and the hard scale Q
to the invariant mass after clustering

. Evaluate n coupling constants at the scales q;, and the (n+1) o 1n
the virtual and real term at the arithmetic average of the as(q;)

. Set pF to the soft scale q1, and PR to the geometric average of the di
. Include Sudakov form factors for all Born and NLO terms

. Subtract the NLO bit present in the CKKW Sudakov of the Born




Properties of SINLO

SINLO satisfies the fﬂﬂnwing requirements

€ the result 1s accurate at NLO, i.e. the scale dependence 1s NNLO

€ the accuracy in the Sudakov region 1s Leading Log (LL) or better,
a.r.::c:c:rding to the form of the Sudakov used

¥ the smooth behaviour of the CKKW scheme in the singula.r reginns

18 preserved

® X+n-jet cross-sections are hnite even without jet cuts (do not need
generation cuts or Born suppression factors)

3 X+n—j et cross-sections reprnduce the inclusive cross-section
accurate to LO

¥ the procedure is simple to implement in any NLO calculation, i.e.
the ijnprnvement requires nnl:,r a very modest amount of work

It is then interesting to see how the method fares in practice




Phenomenology

To asses how the method fares in practice, we considered the following
PIT_'IEEESEE

$ H+ljet, H+2jets, W+1jet, W+2jets (we implemented the latter
ourself in POWHEG using automated MadGraph4 interface and

taking virtual corrections from MCFM)
¢ we compare the SINLO Predictions to standard NLO results with

c I]'lll'ﬂbEI' ﬂf cCoInmon EEEI.IEE USEE] EDI" these PFDEESSEE

¢ we compare the SINLO predictions with POWHEG results with
(n-1) jets

We use a standard LHC setup, but since SINLO includes Sudakov form

factors, we do not need to impose any jet cut. We generated hundreds
of distributions, I'll just show 3 Exa.mples here.




H+1jet
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e SINLO mimics POWHEG all the way down to very small prx

where standard H+1 ) order results diverge
e SINLO uncertainty band compatible with POWHEG all the way

down to low transverse momenta

e SINLO more compatible with fixed rather than running scales
(surprising? No, running scale misses Sudakov)




H+2jets
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e without cuts impossible to compare to Standard NLO
e again, SINLO uncertainty band compatible with POWHEG all

the way down to low transverse momenta




H+2jets
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running scale (Hrt) outside the band of SINLO

using H1/2 leads to much better agreement

H1/2 has becomes the preferred scale because it leads to an
improved scale stability

the SINLO result confirms, independently, this choice




Conclusions

The choice of scale in NLO calculation has since a while being a
debated 1ssue

Matrix element calculations have a natural choice via the CKKW
procedure, but they also include double logs from Sudakov form factors

SINLO is a simple procedure to extend the CKKW method to NLO
¢ the result is accurate at NLLO, i.e. the scale dependence 1s NNLO

¥ the accuracy in the Sudakov region i1s Leading Log (LL) or better,
according to the form of the Sudakov used

¥ the smooth behaviour of the CKKW scheme in the singular regions

1S preserved (X+n-jet cross-sections are finite even without jet cuts,

and reproduce inclusive cross-section accurate to LO)

¥ the procedure 1s simple to implement in any NLO calculation, 1.e.

the ilnprervemeﬂt requiree -:111]:;.;r a very modest amount of work




