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Equilibrium

Equilibrium: all microstates of a system consistent with the same macroscopic  
                        state are equally probable.

Statistical ensembles (1901) 
. 
.

Mean field theory

. 

. 

. 

Renormalization group (1971)



H = �
�
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Universality

Don’t need to describe all the details  !!! 

Physics at low energies, long distances ... 

Effective models



Equilibrium: is that all ?



Consequences of non-equilibrium behavior

Important Ingredients: 

Non-equilibrium  
              

+ 

Non-linearity 
(interactions) 

J. P. Gollub and J. S. Langer,  
“Pattern formation in nonequilibrium physics”  

Rev. Mod. Phys. 71, S396 (1999)  



Questions

1) - Fundamental description: entropy, work, heat, fluctuations, effective ensembles ?  

2) - Universal predictions ? 

3) - Generic connections (e.g. integrability thermalization) ? 

                    

                  UP TO 10 YEARS AGO 


                in quantum systems 

                ACADEMIC QUESTIONS


 



Quantum Systems

Nonequilibrium + Nonlinearity             +                    Quantum Coherence 
                           

Transport 

non-equilibrium boundary 
conditions

Time dependent 

response to variation of system 
parameters

    



highly isolated = little decoherence  

highly tunable = dimensionality, geometry, interactions. 

highly versatile = equilibrium + non-equilibrium experiments. 

Cold Atoms

 “Many-body physics  
with ultracold gases” 

I. Bloch, J. Dalibard, and W. Zwerger 
Rev. Mod. Phys. 80, 885 (2008)



J

V

http://www.phys.uu.nl/~stoof From: Fisher et al, Phys Rev B 40, 546 (1989).  

Quantum Phase Transitions

http://www.phys.uu.nl/~stoof


Superfluid

Mott

Experiments

M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and 
I. Bloch, Nature 415, 39 (2002)



High degree of coherence despite of many body interactions

From: Fisher et al, Phys Rev B 40, 546 (1989).  

Superfluid Mott

Superfluid

From: Greiner et al, Nature 419, 51 (2002)

Out of equilibrium



Theory



g0gcg1

H(g0)�� H(g1)

A paradigm: the quantum quench

Example:

“Time Dependence of Correlation Functions Following a Quantum Quench” 
P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801 (2006) 

h�xi 6= 0 h�xi = 0



Theory

1) - Fundamental description: entropy, work, heat, fluctuations, effective ensembles ?  

Polkovnikov (’08) 
Silva (’08) 
Barankov and Polkovnikov (’09) 
Kehrein (’09-’10) 
. 

2) - Universal predictions ? 

Igloi and Riegel (’01) 
Altman and Auebarch (’02) 
Sengupta, Powell, Sachdev (’04) 
Polkovnikov (’05) 
Zurek, Dorner and Zoller (’05) 
Calabrese and Cardy (’06) 
Gritsev and Polkovnikov (’07) 
Patane’, Silva, Amico, Fazio, Santoro (’08-’09) 
. 

3) - Generic connections  
      (e.g. integrability thermalization) ? 

Rigol et al (’06-’08) 
Kollath et al. (’07) 
Cazalilla (’07) 
Gangardt and Pustilnik (’08) 
Barthel and Schollwock (’08) 
Rossini,Mussardo, Santoro, Silva (’09) 
Fioretto and Mussardo (’10) 
Canovi, Rossini, fazio, Santoro, Silva (’10) 

. 
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Fundamental characterizations and universality

g0gcg1

No matter how slow you are 

EXCITATIONS

HOW MANY ??

Zurek, Nature 317, 505 (1985) 
Zurek, Dorner, Zoller, Phys. Rev. Lett. 95, 105701 (2005) 
Polkovnikov, Phys. Rev. B 72, 161201 (2005)



A statistical characterization

A

B

g3

g2

g1

A,B = points in parameters space 

γ

γ = path

Thermodynamic transformation

                           
Work                              
Entropy                    
Heat

A.Silva, Phys. Rev. Lett. 101, 120603 (2008) 

Closed systems

Think thermodynamics !!!!



W = �F

P (W )

Nonequilibrium=Statistics

Quasistatic transformation 

Out of equilibrium

Statistics depends on path, time dependence, etc…

Classical systems: Jarzynski (’97), Crooks (’99)

A

B

g3

g2

g1

γ

g



The simplest possible quench



ON

Quantum Switches

OFF

Deep level = Quantum Switch 

Energy of photon = Work needed to turn the switch !!!! 



Michele Campisi, Peter Hänggi, Peter Talkner, Rev. Mod. Phys. 83, 771-791 (2011)

G(u) =
�
eiH0ue�iH1u

⇥

G(u) =
�
eiH0uU †(�(t))e�iH1uU(�(t))

⇥

Absorbtion spectra

P (W ) =
�

n

| ⇥⇥n(g1) | ⇥0(g0)⇤ |2 �(W � (En(g1) � E0(g0)))

=  absorbtion spectrum of photons

Characteristic function Loschmidt echo  

http://arxiv.org/find/cond-mat/1/au:+Campisi_M/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Hanggi_P/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Talkner_P/0/1/0/all/0/1


Global Quenches and Universality



g0g1 gc

P (w) w = W/V

1/
�

V

G(t) = eiE(g0)t��(g0) | e�iH(g1)t | �(g0)⇥

Global quantum quench

Global Quench                       Small Fluctuations

Work per unit volume

Fluctuations



Loschmidt echo for global quench

Difference in ground state energies

System size

Expand and get all cumulants

A. Gambassi and A.Silva, arxiv (’11) 



P (W )

W

gi = 101
gf = 2.2

L = 50, 100, 200, 400

How does it look like ?

Broad Peak !!

Edge singularity !!



P (w) ⇥ F2�(w) + C �(w � qm) (w � qm)� + . . .

Low W part and universality



Z = Tr
�
T N

⇥

T = e�H

Z = ��0 | T N | �0⇥

Quantum to classical correspondence ...

N

M

Periodic Boundary Conditions

Other Boundary Conditions

T

       quantum        to           Classical     correspondence    



= eiE0t
�
�0 | e�iH1t | �0

⇥

.... at work !!

Partition function of a 2 dimensional Ising model 
with boundaries 

G(t) =
�
eiH0te�iH1t

⇥

| �0�

R = it

| �0�

       quantum ising model 



| �0�

G(R) = e�(L R fb+L fs+L fc(R))

R
��0 | (e�H)R | �0⇥

Statistics of the work and boundary stat. mech.

| �0�

Bulk

Surface Casimir

A. Silva and A. Gambassi, arxiv (2011)



G(t) = e�L⇥(it)⇥fb � ....

G(t) = e�L⇥(it)⇥fb � ....

�E = L� fb

The threshold ....

P (W )



G(t) = e�L⇥(it)⇥fb � ....

G(t) = e�L⇥(it)⇥fb � e�L⇥fs � . . .

The overall prefactor ....

P (W )
Strenght of peaks .... 



G(t) = e�L⇥(it)⇥fb � e�L⇥fs � e�Lfc(R)

.... and the singularity ....

G(t) = e�L⇥(it)⇥fb � ....
P (W )

Power law at 
threshold ...



fc(R) = R�dF (R/�+)

F (x) =
C
xa

e�qx

� = d + a� 1

.... and the singularity ....

P (w) ⇥ F2�(w) + C �(w � qm) (w � qm)� + . . .

| �0�

R

| �0�

Analytically continue ...



g0g1

B(k) � k B(k) � 1/k

E.g.: quantum Ising chain .....

Within same phase Across critical point
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Local Quenches and Generic Protocols



quasi-particle emission)
“light-cone” effect

vv

~�0 ! ~�1Ganahl, Rabel, Essler, Evertz Observing complex bound states

as a generalization of the X-ray edge problem. In the fol-
lowing we first consider the simpler, spin-polarized case
as this allows us to establish the role played by bound
states.

Spin Polarized Case: In this case the ground state of
H(�, 0) is the ferromagnetic state with all spins down
| #i. Excitations with N" spin-flips (particles) can be
constructed by Bethe’s Ansatz and are parametrized by
N" momenta kj

|N",ki =
X

x1<···<xN"

 
�
{kj}|{xl}

� N"Y

n=1

S
+
xn
| #i. (3)

Here the wave function  has the characteristic Bethe
Ansatz form and the momenta {kj} are subject to quan-
tization conditions, which for a ring geometry read

e
iNkj =

N"Y

l=1
l 6=j

�
2�e

ikj � 1� e
ikj+ikl

2�eikl � 1� eikj+ikl
, j = 1, . . . , N". (4)

Energy and momentum are E =
PN"

j=1 ✏(kj) and P =
PN"

j=1 kj respectively, where ✏(k) = J
�
cos k � �

�
. The

solutions kj of (4) can be either real or complex [12]. The
former describe scattering states of “magnons”, while the
latter correspond to bound states. Bound states involv-
ing ` particles are known as “`-strings” and have wave
functions that exhibit exponential decay (which can be
slow) with respect to the distances between particles.
Their dispersion relations in the thermodynamic limit
are [12, 13] ✏`(k) = �J

sin(⌫)
sin(`⌫)

�
cos(`⌫) � (�1)` cos(k)

�
,

where � = cos(⌫). Here the total momentum k of `-
strings is constrained, e.g. for |�| < 1 and ` = 2 we have
|k| > 2⌫. For a given value of � there generally exists a
hierarchy of allowed strings, which was first identified in
a seminal work by Suzuki and Takahashi [12]. We note
that the energy di↵erence between bound states and scat-
tering continua can generally be very small. Using the
exact eigenstates of H(�, 0) we can derive a Lehmann
representation for the observables (2) after our quench

hOi(j, t) =
X

{kl},{pr}

h0|m0,kihm0,k|O1|m0,pihm0,p|0i

⇥ e
�i

Pm0
n=1 t[✏(pn)�✏(kn)]�(j�1)[pn�kn]] , (5)

where the sums are over all Bethe Ansatz states with m0

momenta. In the case m0 = 1 an elementary calculation
gives hS

z
i(j, t) = �

1
2 + J

2
j�1(Jt), where Jn is a Bessel

function. For large, fixed j this increases exponentially
for Jt . j, shows a maximum for Jt ⇡ j and exhibits
an oscillatory power-law decay for Jt & j. A stationary
phase approximation shows that the dominant contribu-
tion in the Lehmann representation (5) for Jt ⇡ j arises
from states with k ⇡

⇡
2 ,

3⇡
2 , which propagate with the

highest possible velocity vmax = maxk
�� ✏(k)

dk

�� = J . The

FIG. 1: Time evolution in the spin polarized case after prepar-

ing the system in a initial state with three spin flips in the

centre of a 101 site chain for di↵erent values of �. Top row:

Spacetime plot of hSzi (x, t); middle row: hP""i (x, t), which
projects a bond onto |""i h""|; bottom row: hP"""i (x, t),
which projects three adjacent sites onto |"""i h"""|.

fact that hS
z
i(j, t) has a maximum at Jt ⇡ j can be

understood qualitatively by noting that the density of
states (DOS) ⇢1(v) =

R
�(v � d✏/dk)dk = N

2⇡
1p

J2�v2 has

singularities at the maximum speed v = ±J . The expo-
nential supression of hSz

i(j, t) for t . (j/vmax) gives rise
to a horizon e↵ect and is described by the Lieb-Robinson
bound [14].

In all other cases m0 > 1, string states ` � 2 will con-
tribute to the time evolution of observables and in order
to study their influence we have carried out numerical
computations using the TEBD [6]. Results for m0 = 3
(three neighbouring sites with spin up in the initial state)
are shown in Fig. 1. As a function of the anisotropy � we
observe three distinct regimes, which are fully consistent
with expectations from the Bethe ansatz: (i) for small
values of � we observe a single wave front in hS

z
i(x, t),

propagating with the maximal magnon velocity v = J

(them0 = 1 case discussed above looks quite similar). (ii)
At � = 0.8, a second, slower branch of propagating wave
packets emerges both in hS

z
i(x, t) and in P""(x, t) [23].

Its propagation velocity is equal to the maximal 2-string
velocity. We have verified by direct evaluation of (5)
that the second front is associated with 2-strings. Inter-
estingly there is a threshold in � for observing this phe-
nomenon (�c ⇡ �0 = 1/

p
2), while 2-strings exist at any

� 6= 0. The reason is that the maximal 2-string velocity
is vmax,2 = J

p
1��2 for 0 < � < �0 and vmax,2 = J

2�
for �0 < � < 1. On the other hand, the density of
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Ganahl, Rabel, Essler, Evertz, 2012

Local Protocols

Measuring entanglement 
entropies ... 

J. Cardy, PRL.106, 150404 (2011). 
I. Klich and L. Levitov, PRL. 102, 100502 (2009).  
D. Abanin, E. Demler, arxiv (2012) 

Spectrum of Excitations ? 

Dependence on Protocol ?



V = ��g⇥z(0)

H0 = H(g)

Local Quenches

H0 + V

Scaling

Limit
Ht = � i

2

Z
dx ['@x'� '̄@x'̄] + im(t)'̄'|x=0

Majorana fermion

Pietro Smacchia and A.S. ,(2012)



Magnetization

hM(x, t)i = � 2|x|
⇡(4x2 + ↵2)

sin (m(t� |x|))
ultraviolet cutoff

symmetric “emission” of a  
signal from the origin

magnetization goes 
⇠ 1/xdown

Ex:

m(t) = ✓(t) t

↵ = 1



Correlations

Correlation between opposite point

Ex:

m(t) = ✓(t) t

↵ = 1

C(x, t) = 1

2⇡2(4x2 + ↵2)
(cos (2m(t� |x|))� 1)

excess correlation
down ⇠ 1/x2



Gi(u) = exp


1

4⇡2

Z T

�1
dt

Z T

�1
dt0@tm(t)@t0m(t0) log

↵� i(t� t0)

↵� i(t� t0 + u)

�

Expanding 
for large u:

m(T ) 6= 0

Gi(u) ⇠ (�iu)�
m(T )2

4⇡2 P (w)
w!0⇠ w

m(T )2

4⇡2 �1)

Edge singularity Exponent dependent only on the 
final value of m! Not on the path

Edge Singularity



Example 2

interested in studying the physics of a local change of the
transverse field away from g = 1. In order to analyze this
problem, we describe the system in the scaling limit by
its corresponding CFT [? ], locally perturbed by a mass
term

Ht = − i

2

∫
dx [ϕ∂xϕ − ϕ̄∂xϕ̄] + im(t)ϕ̄ϕ|x=0 , (1)

where ϕ and ϕ̄ are two Majorana fermionic operators,
so that {ϕ(x),ϕ(x′)} = {ϕ̄(x), ϕ̄(x′)} = δ(x − x′), and
m(t) = 0 for all t ≤ t0, with t0 arbitrary initial time, in
such a way as to have the system in its ground state until
t = t0. Let us start by characterizing, for a generic time-
dependent protocol, the energy distribution of quasi-
particle emitted. In order to do so, imagine performing
two measurements of energy, one before and one after
the quench. The resulting energy difference is the so-
called inclusive work w done on the system [? ], which,
for a system out of equilibrium, is a stochastic quan-
tity characterized by a probability distribution Pi(w) [?
? ? ]. We have computed its characteristic function
Gi(u) =

∫
dw eiuwPi(w) for a generic quench protocol,

obtaining

Gi(u) = exp
[

1
4π2

∫ τ

−∞
dt

∫ τ

−∞
dt′∂tm(t)∂t′m(t′)

log
α − i(t − t′)

α − i(t − t′ + u)

]
,

(2)

where τ is the time at which the final energy measure-
ment is performed and α is the ultraviolet cut-off of the
theory. The work done on the system depends on the
derivative with respect to time of the protocol m(t) cho-
sen, matching with the expectation that this quantity
should be related to speed at which the quench is per-
formed.

Let us now show that the form of Pi(w) for small w,
giving us information of the energy transmitted to the
system, is independent on the specifics of the protocol
employed, i.e. universal. For this sake, we have to ana-
lyze the asymptotics of Gi for large u (much larger than
the time scale of the protocol) . When m(τ) #= 0 we get
Gi(u) ∼ (−iu)−m(τ)2/4π2

, corresponding to

Pi(w) w→0∼ w
m(τ)2

4π2 −1. (3)

As anticipated, the distribution Pi(w) displays an edge
singularity at small w with an exponent independent on
the details of the protocol m(t) chosen but just on its
amplitude. In particular for small quenches (m(τ) < 2π)
there is a power law divergence, while for large quenches
Pi(w) vanishes with a cusp. This matches with the natu-
ral physical expectation that the more the parameter in
the Hamiltonian is changed, the smaller the probability
of doing very small work on the system is.

On one hand the independence of the low energy be-
havior of the distribution of the work from the details of

1 2 3 4
w
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FIG. 1: (Color online) (a) Probability distributions Pi(w) for a
non monotonic protocol (Blue,Full), i.e. a series of sudden

quenches and a sudden quench (Red, Dashed) ending at the same
value of m and shown in the inset. (b) Logarithmic plot of
Pi(1/w) for the same protocols as before. We take α = 1.

the protocol can be a natural expectation in the case of
monotonic protocols, since when u is large they all look
like sudden quenches, making the details of how the final
value of m is reached irrelevant. The result we obtained
is however more general: it holds independently on the
shape of the protocol, no matter what happens before
the end, therefore even in cases of non monotonic pro-
tocols, where the former similarity is not true any more.
We also note that, in contrast with the case of global
quenches, where in the thermodynamic limit the spectral
weight of the distribution is concentrated in a peak at
high energies, the low energy part of the distribution of
the work can retain a considerable spectral weigth. This
means that the power law behavior can be observable.
The example of Fig. ?? clarifies both the issue of non
monotonicity and observability. In Fig. (??) is shown
Pi(w) for a non monotonic protocol and a sudden quench
to the same final value of m (see the inset). One can see
that in both cases the low energy part has a considerable
spectral weight. From Fig. (??) instead one can see that
the two protocols at low energy indeed behave as a power
law with the same exponent.

An exception to the scenario above are cyclic protocols
with m(τ) = 0, since in this case the asymptotic behavior
becomes Gi(u) ∼ exp

[
k − i k′

u2

]
, where k and k′ are two

constants depending on the specific form of m(t). In this
case Pi(w) will have a delta-function peak, δ(w) with a
non universal amplitude, plus a regular part vanishing
linearly. This means that for each cyclic protocol there is
a non-zero probability of not doing work on the system.
The absence of the delta function for finite m(τ) is in turn
a consequence of the Anderson orthogonality catastrophe
[? ].

The possibility to infer the behavior of physical quan-
tities from some gross features of the protocol m(t) is
observed also for the transverse magnetization and its
correlation function. The result for the average value of
the transverse magnetization M(x, t), represented in the



Thermalization ....



Kinoshita et al, Nature 440, 900 (2006)

Lack of thermalization in 
1D condensates

Generic features
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Thermalization should not occur:  
steady states remembers the  
initial conditions (as in classical physics)

Rigol, Dunjko, Yurovsky, & Olshanii, PRL (2007) 
Rigol, Muramatsu, & Olshanii, PRA (2006) 
Cazalilla, PRL (2006) 
Calabrese & Cardy, PRL (2006), JSTAT (2007) 
Gangardt & Pustilnik, PRA (2008) 
Eckstein & Kollar, PRL (2008), PRA (2008) 
Iucci & Cazalilla, arXiv (2009) 
Barther, Schollwoeck, PRL (2008) 



�
dp2dp3 . . . �| ��(p,p2, . . . ) |⇥2 =
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                                                  .... ergodicity ? S

Gas of N particles in a box ....  eigenstates = pseudo-random superpositions of 
plane waves (Berry’s conjecture) ....  (Srednicki ’94)

Deutsch, PRA (1991) 
Srednicki, PRE (1994) 
Rigol, Dunjko, & Olshanii, Nature (2008) 
Kollath, Lauchli & Altman, PRL (2007) 
Manmana, Wessel, Noack, & Muramatsu, PRL (2007) 
Rigol PRL (2009), PRA (2009) 
Biroli et al. arXiv 0907.3731 
.....

Eigenstate thermalization  
hypothesis

Breaking Integrability



Thermalization and Pre-Thermalization

A. Prethermalization (some observables look thermal, qp distribution is not thermal) 
     
    Prethermalized state of weakly non-integrable QFT = GGE. 

B. Thermalization sets in at later times (qp distribution becomes thermal as well).

Wetterich and Berges, 2004, Kehrein 2010, Kitagawa et al 2011



Is that true ?

Not really: things are more complex .... and interesting
D. Rossini, A. Silva, G. Mussardo and G. Santoro, PRL (2009) 
P. Calabrese, F. Essler, and M. Fagotti, PRL (2011)   

H(�) = �J
X

j

⇥
�x

j �x
j+1 + ��z

j

⇤
Integrable !!

Should not thermalize�xx
Q (t) = �⇤(�0)|⇥x

j (t)⇥x
j (0)|⇤(�0)⇥

�xx
Q ⇠ e�t/��

Q

�xx
T ⇠ e�t/��

T

Always exponential!

like in equilibrium with T>0... 



Effective temperature ...

Generalized Gibbs

Effective T



What is going on ???

......

Thermalization and Localization    
Pal and Huse (’10), Rigol Santos (’10),                                                                     
Canovi et al. (’10),   Neuenhahn Marquardt (’10)

Quantum Quasiparticles are NOT simple objects
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