Deforming Gravity

L. Pilo ${ }^{1}$
${ }^{1}$ Department of Physics
University of L'Aquila

Cortona 2012

Comelli-Crisostomi-Nesti-LP arXiv:1204.1027 [hep-th]

Einstein's GR

A 95 year-long successful theory a single free parameter and it works great

- Weak Equivalence principle $\left(10^{-13}\right)$
- Solar system tests (weak field) $\left(10^{-3}-10^{-5}\right)$
- Binary pulsar (nonlinear) $\left(10^{-3}\right)$
- Newton's Law tested between $10^{-1} \mathrm{~mm}$ and $10^{16} \mathrm{~mm}$ however
- CMB + Supernovae data require Dark energy $p=w \rho, w<0 . \quad$ Expanded acceleration
Perhaps just a tiny (??) cosmological constant, $w=-1$, $\Lambda \sim\left(10^{-4} \mathrm{eV}\right)^{4}$ or a bizarre fluid?
- Is GR an isolated theory ?

Can we modify GR at large distances?

Massive Deformed GR

- Add to GR an extra piece such that when $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

$$
\left(\sqrt{g} R+\mathcal{L}_{\text {def }}\right)=\mathcal{L}_{\text {spin } 2}+m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- To build a mass term we need an extra tensor field: with $g_{\mu \nu}$ and $g^{\mu \nu}$ there is no polynomial of g
- Introduce a new tensor field $G_{\mu \nu}$, then scalar objects can be constructed from the metric using

- Example: $G_{\alpha \nu}=\eta_{\alpha \nu}$

$$
\begin{aligned}
& g^{\mu \nu} \mathbf{G}_{\mu \nu}=4-h^{\mu \nu_{\eta_{\mu}}+h^{\mu \nu} h_{\mu \nu}+\cdots} \\
& a\left(\tau_{1}-4\right)^{2}+b\left(\tau_{2}-2 \tau_{1}+4\right)=\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)
\end{aligned}
$$

- The metric $G_{\mu \nu}$ can be dynamical or a priori given: two different formulations of massive gravity

Massive Deformed GR

- Add to GR an extra piece such that when $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

$$
\left(\sqrt{g} R+\mathcal{L}_{d e f}\right)=\mathcal{L}_{\text {spin } 2}+m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- To build a mass term we need an extra tensor field: with $g_{\mu \nu}$ and $g^{\mu \nu}$ there is no polynomial of g
- Introduce a new tensor field $G_{\mu \nu}$, then scalar objects can be constructed from the metric using
- Example: $G_{\alpha \nu}=\eta_{\alpha \nu}$

- The metric $G_{\mu \nu}$ can be dynamical or a priori given: two different formulations of massive gravity

Massive Deformed GR

- Add to GR an extra piece such that when $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

$$
\left(\sqrt{g} R+\mathcal{L}_{\text {def }}\right)=\mathcal{L}_{\text {spin } 2}+m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- To build a mass term we need an extra tensor field: with $g_{\mu \nu}$ and $g^{\mu \nu}$ there is no polynomial of g
- Introduce a new tensor field $G_{\mu \nu}$, then scalar objects can be constructed from the metric using

$$
X_{\nu}^{\mu}=g^{\mu \alpha} G_{\alpha \nu} \quad \tau_{n}=\operatorname{Tr}\left(X^{n}\right)
$$

- Example: $G_{\alpha \nu}=\eta_{\alpha \nu}$

$$
\begin{aligned}
& g^{\mu \nu} G_{\mu \nu}=4-h^{\mu \nu} \eta_{\mu \nu}+h^{\mu \nu} h_{\mu \nu}+\cdots \\
& a\left(\tau_{1}-4\right)^{2}+b\left(\tau_{2}-2 \tau_{1}+4\right)=\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)
\end{aligned}
$$

- The metric $G_{\mu \nu}$ can be dynamical or a priori given: two different formulations of massive gravity

Massive Deformed GR

- Add to GR an extra piece such that when $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

$$
\left(\sqrt{g} R+\mathcal{L}_{\text {def }}\right)=\mathcal{L}_{\text {spin } 2}+m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- To build a mass term we need an extra tensor field: with $g_{\mu \nu}$ and $g^{\mu \nu}$ there is no polynomial of g
- Introduce a new tensor field $G_{\mu \nu}$, then scalar objects can be constructed from the metric using

$$
X_{\nu}^{\mu}=g^{\mu \alpha} G_{\alpha \nu} \quad \tau_{n}=\operatorname{Tr}\left(X^{n}\right)
$$

- Example: $G_{\alpha \nu}=\eta_{\alpha \nu}$

$$
\begin{aligned}
& g^{\mu \nu} G_{\mu \nu}=4-h^{\mu \nu} \eta_{\mu \nu}+h^{\mu \nu} h_{\mu \nu}+\cdots \\
& a\left(\tau_{1}-4\right)^{2}+b\left(\tau_{2}-2 \tau_{1}+4\right)=\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
\end{aligned}
$$

- The metric $G_{\mu \nu}$ can be dynamical or a priori given: two different formulations of massive gravity

Massive Deformed GR

- Add to GR an extra piece such that when $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}$

$$
\left(\sqrt{g} R+\mathcal{L}_{\text {def }}\right)=\mathcal{L}_{\text {spin } 2}+m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
$$

- To build a mass term we need an extra tensor field: with $g_{\mu \nu}$ and $g^{\mu \nu}$ there is no polynomial of g
- Introduce a new tensor field $G_{\mu \nu}$, then scalar objects can be constructed from the metric using

$$
X_{\nu}^{\mu}=g^{\mu \alpha} G_{\alpha \nu} \quad \tau_{n}=\operatorname{Tr}\left(X^{n}\right)
$$

- Example: $G_{\alpha \nu}=\eta_{\alpha \nu}$

$$
\begin{aligned}
& g^{\mu \nu} G_{\mu \nu}=4-h^{\mu \nu} \eta_{\mu \nu}+h^{\mu \nu} h_{\mu \nu}+\cdots \\
& a\left(\tau_{1}-4\right)^{2}+b\left(\tau_{2}-2 \tau_{1}+4\right)=\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)+\cdots
\end{aligned}
$$

- The metric $G_{\mu \nu}$ can be dynamical or a priori given: two different formulations of massive gravity

The Stuckelberg Trick in Massive GR

The extra metric is non-dynamical flat given metric

- To recover diff (gauge) invariance: 4 Stuckelberg fields to recast

$$
G_{\mu \nu}=\frac{\partial \Phi^{A}}{\partial x^{\mu}} \frac{\partial \Phi^{B}}{\partial x^{\nu}} \eta_{A B}
$$

$G_{\mu \nu}$ and $X=g^{-1} G$ are tensors and $\tau_{n}=\operatorname{Tr}\left(X^{n}\right)$ scalars

- Φ^{A} : coordinates of a fictitious flat space \mathcal{M} point-wise identified with spacetime with a tetrad basis $e^{A}=d \Phi^{A}$
- One can chose coordinates such that (Unitary gauge)

$$
\frac{\partial \phi^{A}}{\partial x^{\mu}}=\delta_{\mu}^{A} \Rightarrow G_{\mu \nu}=\eta_{\mu \nu}
$$

- $G_{\mu \nu}$ can be also dynamical \rightarrow bigravity, not in this talk !

The Stuckelberg Trick in Massive GR

The extra metric is non-dynamical flat given metric

- To recover diff (gauge) invariance: 4 Stuckelberg fields to recast

$$
G_{\mu \nu}=\frac{\partial \Phi^{A}}{\partial x^{\mu}} \frac{\partial \Phi^{B}}{\partial x^{\nu}} \eta_{A B}
$$

$G_{\mu \nu}$ and $X=g^{-1} G$ are tensors and $\tau_{n}=\operatorname{Tr}\left(X^{n}\right)$ scalars

- Φ^{A} : coordinates of a fictitious flat space \mathcal{M} point-wise identified
with spacetime with a tetrad basis $e^{A}=d \Phi^{A}$
- One can chose coordinates such that (Unitary gauge)

- $G_{\mu \nu}$ can be also dynamical \rightarrow bigravity, not in this talk!

The Stuckelberg Trick in Massive GR

The extra metric is non-dynamical flat given metric

- To recover diff (gauge) invariance: 4 Stuckelberg fields to recast

$$
G_{\mu \nu}=\frac{\partial \Phi^{A}}{\partial x^{\mu}} \frac{\partial \Phi^{B}}{\partial x^{\nu}} \eta_{A B}
$$

$G_{\mu \nu}$ and $X=g^{-1} G$ are tensors and $\tau_{n}=\operatorname{Tr}\left(X^{n}\right)$ scalars

- Φ^{A} : coordinates of a fictitious flat space \mathcal{M} point-wise identified with spacetime with a tetrad basis $e^{A}=d \Phi^{A}$
- One can chose coordinates such that (Unitary gauge)

- $G_{\mu \nu}$ can be also dynamical \rightarrow bigravity, not in this talk!

The Stuckelberg Trick in Massive GR

The extra metric is non-dynamical flat given metric

- To recover diff (gauge) invariance: 4 Stuckelberg fields to recast

$$
G_{\mu \nu}=\frac{\partial \Phi^{A}}{\partial x^{\mu}} \frac{\partial \Phi^{B}}{\partial x^{\nu}} \eta_{A B}
$$

$G_{\mu \nu}$ and $X=g^{-1} G$ are tensors and $\tau_{n}=\operatorname{Tr}\left(X^{n}\right)$ scalars

- Φ^{A} : coordinates of a fictitious flat space \mathcal{M} point-wise identified with spacetime with a tetrad basis $e^{A}=d \Phi^{A}$
- One can chose coordinates such that (Unitary gauge)

$$
\frac{\partial \Phi^{A}}{\partial x^{\mu}}=\delta_{\mu}^{A} \Rightarrow \boldsymbol{G}_{\mu \nu}=\eta_{\mu \nu}
$$

- $G_{\mu \nu}$ can be also dynamical \rightarrow bigravity, not in this talk

The Stuckelberg Trick in Massive GR

The extra metric is non-dynamical flat given metric

- To recover diff (gauge) invariance: 4 Stuckelberg fields to recast

$$
G_{\mu \nu}=\frac{\partial \Phi^{A}}{\partial x^{\mu}} \frac{\partial \Phi^{B}}{\partial x^{\nu}} \eta_{A B}
$$

$G_{\mu \nu}$ and $X=g^{-1} G$ are tensors and $\tau_{n}=\operatorname{Tr}\left(X^{n}\right)$ scalars

- Φ^{A} : coordinates of a fictitious flat space \mathcal{M} point-wise identified with spacetime with a tetrad basis $e^{A}=d \Phi^{A}$
- One can chose coordinates such that (Unitary gauge)

$$
\frac{\partial \Phi^{A}}{\partial x^{\mu}}=\delta_{\mu}^{A} \Rightarrow \boldsymbol{G}_{\mu \nu}=\eta_{\mu \nu}
$$

- $G_{\mu \nu}$ can be also dynamical \rightarrow bigravity, not in this talk !

Degrees of Freedom: Linearized Level

$$
S_{m G R}=\int d^{4} x \sqrt{g} M_{p l}^{2}\left[R(g)-4 m^{2} V(X)\right]
$$

- GR

$$
M_{p l}^{2} E_{\mu \nu}^{(1)}=T_{\mu \nu}^{(1)}, \quad g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

DOF $10-2 \times 4=2 \quad 4$ gauge modes $\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$

- Linearized massive GR (unitary gauge) Fierz-Pauli theory (1939) $\mathcal{L}_{F P}=M_{p l}^{2} \mathcal{L}_{\text {spin2 }}^{(2)}+M_{p l}^{2} m^{2}\left(a h h_{\mu \nu}^{\mu \nu}+b h^{2}\right)$ $E_{\mu \nu}^{(1)}-\frac{1}{4} m^{2}\left(a h_{\mu \nu}+b h \eta_{\mu \nu}\right)=M_{p l}^{-2} T_{\mu \nu}^{(1)} \quad \partial^{\nu} E_{\mu \nu}^{(1)}=0$ 4 constraints

$$
\text { DOF } 10-4=6=5+1
$$

- The sixth mode is a ghost (Boulware-Deser), Absent in flat space when $a+b=0$ (FP theory)
- When the ghost is projected out, light bending badly contradicts experiments van Dam, Veltman, Zakharov discontinuity

Degrees of Freedom: Linearized Level

$$
S_{m G R}=\int d^{4} x \sqrt{g} M_{p l}^{2}\left[R(g)-4 m^{2} V(X)\right]
$$

- GR

$$
M_{p l}^{2} E_{\mu \nu}^{(1)}=T_{\mu \nu}^{(1)}, \quad g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

DOF $10-2 \times 4=2 \quad 4$ gauge modes $\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$

- Linearized massive GR (unitary gauge) Fierz-Pauli theory (1939) $\mathcal{L}_{F P}=M_{p l}^{2} \mathcal{L}_{\text {spin2 }}^{(2)}+M_{p l}^{2} m^{2}\left(a h h_{\mu \nu}^{\mu \nu}+b h^{2}\right)$ $E_{\mu \nu}^{(1)}-\frac{1}{4} m^{2}\left(a h_{\mu \nu}+b h \eta_{\mu \nu}\right)=M_{p l}^{-2} T_{\mu \nu}^{(1)} \quad \partial^{\nu} E_{\mu \nu}^{(1)}=0$ 4 constraints

$$
\text { DOF } 10-4=6=5+1
$$

- The sixth mode is a ghost (Boulware-Deser), Absent in flat space when $a+b=0$ (FP theory)
- When the ghost is projected out, light bending badly contradicts experiments van Dam, Veltman, Zakharov discontinuity

Degrees of Freedom: Linearized Level

$$
S_{m G R}=\int d^{4} x \sqrt{g} M_{p l}^{2}\left[R(g)-4 m^{2} V(X)\right]
$$

- GR

$$
M_{p l}^{2} E_{\mu \nu}^{(1)}=T_{\mu \nu}^{(1)}, \quad g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

DOF $10-2 \times 4=2 \quad 4$ gauge modes $\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$

- Linearized massive GR (unitary gauge) Fierz-Pauli theory (1939)
$\mathcal{L}_{F P}=M_{p l}^{2} \mathcal{L}_{\text {spin2 }}^{(2)}+M_{p l}^{2} m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)$
$E_{\mu \nu}^{(1)}-\frac{1}{4} m^{2}\left(a h_{\mu \nu}+b h \eta_{\mu \nu}\right)=M_{p l}^{-2} T_{\mu \nu}^{(1)} \quad \partial^{\nu} E_{\mu \nu}^{(1)}=0$
4 constraints
DOF $10-4=6=5+1$
- The sixth mode is a ghost (Boulware-Deser).

Absent in flat space when $a+b=0$ (FP theory)

- When the ghost is projected out, light bending badly contradicts experiments van Dam, Veltman, Zakharov discontinuity

Degrees of Freedom: Linearized Level

$$
S_{m G R}=\int d^{4} x \sqrt{g} M_{p l}^{2}\left[R(g)-4 m^{2} V(X)\right]
$$

- GR

$$
M_{p l}^{2} E_{\mu \nu}^{(1)}=T_{\mu \nu}^{(1)}, \quad g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

DOF $10-2 \times 4=2 \quad 4$ gauge modes $\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$

- Linearized massive GR (unitary gauge) Fierz-Pauli theory (1939)
$\mathcal{L}_{F P}=M_{p l}^{2} \mathcal{L}_{\text {spin2 }}^{(2)}+M_{p l}^{2} m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)$
$E_{\mu \nu}^{(1)}-\frac{1}{4} m^{2}\left(a h_{\mu \nu}+b h \eta_{\mu \nu}\right)=M_{p l}^{-2} T_{\mu \nu}^{(1)} \quad \partial^{\nu} E_{\mu \nu}^{(1)}=0$
4 constraints \quad DOF $10-4=6=5+1$
- The sixth mode is a ghost (Boulware-Deser). Absent in flat space when $a+b=0$ (FP theory)
- When the ghost is projected out, light bending badly contradicts experiments van Dam, Veltman, Zakharov discontinuity

Degrees of Freedom: Linearized Level

$$
S_{m G R}=\int d^{4} x \sqrt{g} M_{p l}^{2}\left[R(g)-4 m^{2} V(X)\right]
$$

- GR

$$
M_{p l}^{2} E_{\mu \nu}^{(1)}=T_{\mu \nu}^{(1)}, \quad g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

DOF $10-2 \times 4=2 \quad 4$ gauge modes $\delta h_{\mu \nu}=\partial_{\mu} \xi_{\nu}+\partial_{\nu} \xi_{\mu}$

- Linearized massive GR (unitary gauge) Fierz-Pauli theory (1939)
$\mathcal{L}_{F P}=M_{p l}^{2} \mathcal{L}_{\text {spin2 }}^{(2)}+M_{p l}^{2} m^{2}\left(a h_{\mu \nu} h^{\mu \nu}+b h^{2}\right)$
$E_{\mu \nu}^{(1)}-\frac{1}{4} m^{2}\left(a h_{\mu \nu}+b h \eta_{\mu \nu}\right)=M_{p l}^{-2} T_{\mu \nu}^{(1)} \quad \partial^{\nu} E_{\mu \nu}^{(1)}=0$
4 constraints \quad DOF $10-4=6=5+1$
- The sixth mode is a ghost (Boulware-Deser). Absent in flat space when $a+b=0$ (FP theory)
- When the ghost is projected out, light bending badly contradicts experiments van Dam, Veltman, Zakharov discontinuity

Hamiltonian Analysis

ADM decompositions

$$
g_{\mu \nu}=\left(\begin{array}{cc}
-N^{2}+N_{i} N_{j} h^{i j} & N_{i} \\
N_{i} & \gamma_{i j}
\end{array}\right)
$$

Hamiltonian of GR and mGR in the unitary gauge

$$
H=M_{\mathrm{pl}}^{2} \int d^{3} x\left[N^{A} \mathcal{H}_{A}+m^{2} N \sqrt{\gamma} V\right] \quad \mathcal{H}_{A}=\left(\mathcal{H}, \mathcal{H}_{i}\right)
$$

$\Pi^{i j} \rightarrow$ Conj. momenta of $\gamma_{i j}$
$P^{A}=\left(P^{0}, P^{i}\right)$ Conjugate momenta of $N^{A}=\left(N, N^{i}\right)$
$\mathcal{H}_{i}=-2 \gamma_{i j} D_{k} \Pi^{j k}, \quad \mathcal{H}=-\gamma^{1 / 2} R^{(3)}+\gamma^{-1 / 2}\left(\Pi_{i j} \Pi^{i j}-\frac{1}{2}\left(\Pi_{i}^{i}\right)^{2}\right)$
No time derivatives of $N^{A} \rightarrow P_{A}=0$ Constrained theory !

Constrained Theory: Dirac treatment in a nutshell

(1) Momenta are not all independent \rightarrow introduce Lagrange multipliers (LMs) to enforce the constraints
(3) Time evolution us generated by the the total Hamiltonian: canonical + constraints + LMs

EoMs: dynamical + time evolution of primary $\left(P^{A}=0\right)$ constraints
(3) enforcing the consistency of constrs with time evolution produces new constraints or determine some of the LMs

The a set of constraints $\left\{\mathcal{C}_{s}, i=1,2, \cdots c\right\}$ is conserved in time that reduces the number of DoF from 10 down to $(10+10-c) / 2$ If some of the LMs are not determined \rightarrow gauge invariance

Constrained Theory: Dirac treatment in a nutshell

(1) Momenta are not all independent \rightarrow introduce Lagrange multipliers (LMs) to enforce the constraints
(2) Time evolution us generated by the the total Hamiltonian: canonical + constraints + LMs

$$
H_{T}=H+\int d^{3} x \lambda^{A} \Pi_{A},
$$

EoMs: dynamical + time evolution of primary $\left(P^{A}=0\right)$ constraints

enforcing the consistency of constrs. with time evolution produces new constraints or determine some of the LMs

The a set of constraints $\left\{\mathcal{C}_{s}, i=1,2, \cdots c\right\}$ is conserved in time that reduces the number of DoF from 10 down to $(10+10-c) / 2$ If some of the LMs are not determined \rightarrow gauge invariance

Constrained Theory: Dirac treatment in a nutshell

(1) Momenta are not all independent \rightarrow introduce Lagrange multipliers (LMs) to enforce the constraints
(2) Time evolution us generated by the the total Hamiltonian: canonical + constraints + LMs

$$
H_{T}=H+\int d^{3} x \lambda^{A} \Pi_{A},
$$

EoMs: dynamical + time evolution of primary ($P^{A}=0$) constraints
(3) enforcing the consistency of constrs. with time evolution produces new constraints or determine some of the LMs

The a set of constraints $\left\{\mathcal{C}_{s}, i=1,2, \cdots c\right\}$ is conserved in time that reduces the number of DoF from 10 down to $(10+10-c) / 2$ If some of the LMs are not determined \rightarrow gauge invariance

Example: GR

- Time evolution of $P_{A}=0$ via Poisson brackets are just the Eqs. of N^{A}, being H linear in N^{A}

$$
\left\{P^{A}(t, x), H_{T}(t)\right\}=\left\{P^{A}(t, x), H\right\}=\mathcal{H}_{A}=0
$$

- Thanks to the GR algebra the four secondary constraints are conserved and no LM is determined (Diff invariance)

In GR four diffs have to be gauge fixed adding 4 additional constraints

DoF $=[20-(2 \times 4+2 \times 4)] / 2=2$
The analysis is nonpertutbative and background independent

Example: GR

- Time evolution of $P_{A}=0$ via Poisson brackets are just the Eqs. of N^{A}, being H linear in N^{A}

$$
\left\{P^{A}(t, x), H_{T}(t)\right\}=\left\{P^{A}(t, x), H\right\}=\mathcal{H}_{A}=0
$$

- Thanks to the GR algebra the four secondary constraints are conserved and no LM is determined (Diff invariance)

$$
\begin{aligned}
& \left\{\mathcal{H}(x), \mathcal{H}(y)=\mathcal{H}^{i}(x) \partial_{i}^{(x)} \delta^{(3)}(x-y)-\mathcal{H}^{i}(y) \partial_{i}^{(y)} \delta^{(3)}(x-y)\right. \\
& \left\{\mathcal{H}(x), \mathcal{H}_{j}(y)\right\}=\mathcal{H}(y) \partial_{j}^{(x)} \delta^{(3)}(x-y) \\
& \left\{\mathcal{H}_{i}(x), \mathcal{H}_{j}(y)\right\}=\mathcal{H}_{j}(x) \partial_{i}^{(x)} \delta^{(3)}(x-y)-\mathcal{H}_{i}(y) \partial_{j}^{(x)} \delta^{(3)}(x-y)
\end{aligned}
$$

In GR four diffs have to be gauge fixed adding 4 additional constraints

DoF $=[20-(2 \times 4+2 \times 4)] / 2=2$
The analysis is nonpertutbative and background independent

mGR

- When V deforming potential is turned on, the time evolution of $P_{A}=0$ still gives N^{A} Eqs
$\left\{P_{A}(t, x), H_{T}(t)\right\}=\mathcal{S}_{A}=\mathcal{H}_{A}+\mathcal{V}_{A} \quad 4$ new secondary constraints
$\mathcal{V}=m^{2} N \gamma^{1 / 2} V \quad \frac{\partial \mathcal{V}}{\partial N^{A}}=\mathcal{V}_{A}$
- Is time evolution consistent with \mathcal{S}_{A} ?

If the $r=\operatorname{Rank}\left(\mathcal{V}_{A B}\right)=4: \mathcal{V}$ non degenerate Hessian
all LMs λ^{A} are determined and we are done
DoF=10- $(4+4) / 2=6=5+1$
Around Minkowski: massive spin 2 (5) plus a ghost scalar (1)

mGR

- When V deforming potential is turned on, the time evolution of $P_{A}=0$ still gives N^{A} Eqs
$\left\{P_{A}(t, x), H_{T}(t)\right\}=\mathcal{S}_{A}=\mathcal{H}_{A}+\mathcal{V}_{A} \quad 4$ new secondary constraints

$$
\mathcal{V}=m^{2} N \gamma^{1 / 2} V \quad \frac{\partial \mathcal{V}}{\partial N^{A}}=\mathcal{V}_{A}
$$

- Is time evolution consistent with \mathcal{S}_{A} ?

$$
\begin{aligned}
& \mathcal{V}_{A B} \equiv \mathcal{V}_{, A B}= \\
& \partial^{2} \mathcal{V} / \partial N^{A} \partial N^{B}
\end{aligned}
$$

$$
\mathcal{T}_{A} \equiv\left\{\mathcal{S}_{A}, H_{T}\right\}=\left\{\mathcal{S}_{A}, H\right\}-\mathcal{V}_{A B} \lambda^{B}=0
$$

If the $r=\operatorname{Rank}\left(\mathcal{V}_{A B}\right)=4: \mathcal{V}$ non degenerate Hessian all LMs λ^{A} are determined and we are done
DoF=10- $(4+4) / 2=6=5+1$
Around Minkowski: massive spin 2 (5) plus a ghost scalar (1)
Boulware-Deser mode

mGR

The Hessian $\mathcal{V}_{A B}$ of \mathcal{V} has a single zero mode $\chi^{A}, r=3$

$$
\begin{aligned}
& \mathcal{V}_{A B} \chi^{B}=0, \quad \mathcal{V}_{A B} E_{n}^{B}=\kappa_{n} E_{n}^{A} \\
& \lambda^{A}=z \chi^{A}+\sum_{n=1}^{3} d_{n} E_{n}^{A} \stackrel{\text { def }}{=} z \chi^{A}+\bar{\lambda}^{A} .
\end{aligned}
$$

If $\operatorname{det}\left(\mathcal{V}_{i j}\right) \neq 0$, then $\chi^{A}=\left(1,-\mathcal{V}_{i j}^{-1} \mathcal{V}_{0 j}\right)$
Projection of $\dot{T}_{A}=0$ along χ^{A} is a single new constraint
Projection on the remaining eigenvectors gives Three out $\left(\bar{\lambda}^{A}\right)$ of the four LMs

$$
\begin{aligned}
& \chi^{A}\left\{\mathcal{S}_{A}, H\right\}=\mathcal{T}_{A} \chi^{A}=\mathcal{T}=0 \\
& E_{n}^{A}\left\{\mathcal{S}_{A}, H\right\}-d_{n} \kappa_{n} z=0 \quad \text { No sum in } n
\end{aligned}
$$

mGR

Time evolution of \mathcal{T}

$$
\begin{aligned}
\mathcal{Q}(x) & =\left\{\mathcal{T}(x), H_{T}\right\} \\
& =\{\mathcal{T}(x), H\}+\int d^{3} y\left\{\mathcal{T}(x), \lambda^{A}(y) \Pi_{A}(y)\right\}=0
\end{aligned}
$$

(1) If \mathcal{Q} does not depend on z, the last LM, we have a new constraint z is determinate by the time evolution of 2 . We are done. Total \# of constraints $4\left(P_{A}\right)+4\left(\mathcal{S}_{A}\right)+1(\mathcal{T})+1(\mathcal{Q})=10$ DOF: $10-10 / 2=5$
(2) If $\mathcal{Q}=0$ determines z we are done and there is no additional constraints
Total \# of constraints $4\left(P_{A}\right)+4\left(S_{A}\right)+1(I)=8+1$ DoF: $10-9 / 2=5+\mathbf{1} / \mathbf{2}$

mGR

Time evolution of \mathcal{T}

$$
\begin{aligned}
\mathcal{Q}(x) & =\left\{\mathcal{T}(x), H_{T}\right\} \\
& =\{\mathcal{T}(x), H\}+\int d^{3} y\left\{\mathcal{T}(x), \lambda^{A}(y) \Pi_{A}(y)\right\}=0
\end{aligned}
$$

(1) If \mathcal{Q} does not depend on z, the last LM, we have a new constraint z is determinate by the time evolution of \mathcal{Q}. We are done. Total \# of constraints $4\left(P_{A}\right)+4\left(\mathcal{S}_{A}\right)+1(\mathcal{T})+1(\mathcal{Q})=10$ DoF: $10-10 / 2=5$
(2) If $\mathcal{Q}=0$ determines z we are done and there is no additional constraints Total \# of constraints $4\left(P_{A}\right)+4\left(S_{A}\right)+1(T)=8+1$ DoF: $10-9 / 2=5+1 / 2$

mGR

Time evolution of \mathcal{T}

$$
\begin{aligned}
\mathcal{Q}(x) & =\left\{\mathcal{T}(x), H_{T}\right\} \\
& =\{\mathcal{T}(x), H\}+\int d^{3} y\left\{\mathcal{T}(x), \lambda^{A}(y) \Pi_{A}(y)\right\}=0
\end{aligned}
$$

(1) If \mathcal{Q} does not depend on z, the last LM, we have a new constraint z is determinate by the time evolution of \mathcal{Q}. We are done.

Total \# of constraints $4\left(P_{A}\right)+4\left(\mathcal{S}_{A}\right)+1(\mathcal{T})+1(\mathcal{Q})=10$
DoF: $10-10 / 2=5$
(2) If $\mathcal{Q}=0$ determines z we are done and there is no additional constraints
Total \# of constraints $4\left(P_{A}\right)+4\left(\mathcal{S}_{A}\right)+1(\mathcal{T})=8+1$
DoF: $10-9 / 2=5+\mathbf{1} / \mathbf{2}$

mGR

$$
\begin{aligned}
\left\{\mathcal{T}, \lambda^{A} \cdot \Pi_{A}\right\} & =\text { terms } z \text { indep. }-\int d^{3} y \Theta(x, y) z(y)=\cdots-I[z] \\
\Theta(x, y) & =\chi^{A}(x)\left\{S_{A}(x), S_{B}(y)\right\} \chi^{A}(y)=A^{i}(x, y) \partial_{i} \delta^{(3)}(x-y) \\
A(x, y) & =A(y, x)
\end{aligned}
$$

Only in field theory Θ can be non zero !

$$
I[z]=-\frac{1}{2 z(x)} \partial_{i}\left[z(x)^{2} A^{i}(x, x)\right]
$$

Q is free from z if $A^{i}(x, x)=0$, which consists in the following condition

$$
\chi^{0^{2}} \tilde{\mathcal{V}}_{i}+2 \chi^{A} \chi^{j} \frac{\partial \tilde{\mathcal{V}}_{A}}{\partial \gamma^{i j}}=0, \quad \mathcal{V}=\gamma^{1 / 2} \tilde{\mathcal{V}}
$$

mGR: Summary of the Canonical Analysis

Necessary and sufficient conditions for having 5 DoF in mGR

$$
\begin{align*}
& \operatorname{Rank}\left(\tilde{\mathcal{V}}_{A B}\right)=3 \Rightarrow \tilde{\mathcal{V}}_{00}-\tilde{\mathcal{V}}_{0 i}\left(\tilde{\mathcal{V}}_{i j}\right)^{-1} \tilde{\mathcal{V}}_{j 0}=0 \tag{1}\\
& \chi^{0^{2}} \tilde{\mathcal{V}}_{i}+2 \chi^{A} \chi^{j} \frac{\partial \tilde{\mathcal{V}}_{A}}{\partial \gamma^{i j}}=0 \quad \chi^{A}=\left(1,-\tilde{\mathcal{V}}_{i j}^{-1} \tilde{\mathcal{V}}_{0 j}\right) \tag{2}
\end{align*}
$$

Notice: If only (1) holds $5+1 / 2$ DoF propagate
A theory with $5+1 / 2 \mathrm{DoF}$ is physically acceptable ?
$5+1 / 2$ DoF found also in a class of Horava-Lifshitz modified gravity theory
(1) is a homogeneous Monge-Ampere equation many solutions are know
(2) is much more restrictive

Solutions

Strategy

(1) Find a solution of Monge-Ampere equation $(\operatorname{rank}(\mathcal{V})=3$
(2) Check that the candidate satisfies the additional equation to get rid of $1 / 2$ DoF

$$
\begin{aligned}
& \operatorname{Rank}\left(\tilde{\mathcal{V}}_{A B}\right)=3 \Rightarrow \tilde{\mathcal{V}}_{00}-\tilde{\mathcal{V}}_{0 i}\left(\tilde{\mathcal{V}}_{i j}\right)^{-1} \tilde{\mathcal{V}}_{j 0}=0 \\
& \chi^{0^{2}} \tilde{\mathcal{V}}_{i}+2 \chi^{A} \chi^{j} \frac{\partial \tilde{\mathcal{V}}_{A}}{\partial \gamma^{j j}}=0 \quad \chi^{A}=\left(1,-\tilde{\mathcal{V}}_{i j}^{-1} \tilde{\mathcal{V}}_{0 j}\right)
\end{aligned}
$$

2D Lorentz Invariant case

To simplify things: Eqs in 2D where $\tilde{\mathcal{V}}\left(N, N^{1}, \gamma\right)$ and $\gamma_{11} \equiv \gamma$
Lorentz Invariant case: V depends on the eiegenvalues $\lambda_{1}, \lambda_{2}, \cdots$ of $X=g^{-1} \eta$

After expressing N, N^{1} in terms of $\lambda_{1 / 2}$, det $\tilde{\mathcal{V}}_{A B}$ must hold for any γ ! The resulting equation is cubic and splits into two branches of three differential equations

$$
\begin{gathered}
\tilde{\mathcal{V}}^{(2,0)}=-\frac{3}{2 \lambda_{1}} \tilde{\mathcal{V}}^{(1,0)}, \quad \tilde{\mathcal{V}}^{(0,2)}=-\frac{3}{2 \lambda_{2}} \tilde{\mathcal{V}}^{(0,1)} \\
\tilde{\mathcal{V}}^{(1,1)}=-\frac{\lambda_{1}^{3 / 2} \tilde{\mathcal{V}}^{(1,0)} \pm \lambda_{2}^{3 / 2} \tilde{\mathcal{V}}^{(0,1)}}{2 \lambda_{1} \lambda_{2}\left(\lambda_{1}^{1 / 2} \pm \lambda_{2}^{1 / 2}\right)}
\end{gathered}
$$

Solutions, (all !)

$$
\mathcal{V}_{l, I l}=\frac{\alpha_{1} \sqrt{\lambda_{1} \lambda_{2}}+\alpha_{2}\left(\sqrt{\lambda_{1}} \pm \sqrt{\lambda_{2}}\right)+\alpha_{3}}{\sqrt{\lambda_{1} \lambda_{2}}}
$$

with $\alpha_{1,2,3}$ integration constants.

2D: Lorentz Invariant case

- Both I and II satisfies also the second equation that kills $1 / 2$ DoF
- In terms of X

2D version of the ghost free potential found by de Rham-Gabadadze-Tolley

- The second solution is different but does not admits Minkowski as a background

2D: Lorentz Invariant case

- Both I and II satisfies also the second equation that kills $1 / 2$ DoF
- In terms of X

$$
\mathcal{V}_{l}=\alpha_{1}+\alpha_{2} \frac{\operatorname{Tr}\left(X^{1 / 2}\right)}{\sqrt{\operatorname{det} X}}+\frac{\alpha_{3}}{\sqrt{\operatorname{det} X}}
$$

2D version of the ghost free potential found by de Rham-Gabadadze-Tolley
The second solution is different but does not admits Minkowski as
a background

2D: Lorentz Invariant case

- Both I and II satisfies also the second equation that kills $1 / 2$ DoF
- In terms of X

$$
\mathcal{V}_{l}=\alpha_{1}+\alpha_{2} \frac{\operatorname{Tr}\left(X^{1 / 2}\right)}{\sqrt{\operatorname{det} X}}+\frac{\alpha_{3}}{\sqrt{\operatorname{det} X}}
$$

2D version of the ghost free potential found by de Rham-Gabadadze-Tolley

- The second solution is different but does not admits Minkowski as a background

$$
\mathcal{V}_{\| l}=\alpha_{1}+\alpha_{2} \frac{\sqrt{\operatorname{Tr}(X)-2 \sqrt{\operatorname{det} X}}}{\sqrt{\operatorname{det} X}}+\frac{\alpha_{3}}{\sqrt{\operatorname{det} X}}
$$

2D: Loentz Breaking Case

One can generalize the previous solutions to the case of Lorentz breaking solutions

A class of potential singular Hessian

$y=N^{i} N^{j} \gamma_{i j}$ and $\beta_{n=1, \ldots, 4}$ scalar functions of $\gamma_{i j}$

- Also the second equation is satisfied when

$$
\beta_{2}=\text { constant } \beta_{4}=\gamma^{1 / 2} \bar{\beta}_{4}
$$

Unfortunately the previous solutions does not generalizes to 4D

2D: Loentz Breaking Case

One can generalize the previous solutions to the case of Lorentz breaking solutions

- A class of potential singular Hessian

$$
\mathcal{V}=\beta_{1}\left[\left(x+\beta_{2}\right)^{2}-\left(y^{1 / 2}+\beta_{3}\right)^{2}\right]^{1 / 2}+\beta_{4} x,
$$

$y=N^{i} N^{j} \gamma_{i j}$ and $\beta_{n=1, \ldots, 4}$ scalar functions of $\gamma_{i j}$

- Also the second equation is satisfied when $\beta_{2}=$ constant $\beta_{4}=\gamma^{1 / 2} \bar{\beta}_{4}$

Unfortunately the provious solutions does not generalizes to 4D

2D: Loentz Breaking Case

One can generalize the previous solutions to the case of Lorentz breaking solutions

- A class of potential singular Hessian

$$
\mathcal{V}=\beta_{1}\left[\left(x+\beta_{2}\right)^{2}-\left(y^{1 / 2}+\beta_{3}\right)^{2}\right]^{1 / 2}+\beta_{4} x,
$$

$y=N^{i} N^{j} \gamma_{i j}$ and $\beta_{n=1, \ldots, 4}$ scalar functions of $\gamma_{i j}$

- Also the second equation is satisfied when

$$
\beta_{2}=\text { constant } \quad \beta_{4}=\gamma^{1 / 2} \bar{\beta}_{4}
$$

Unfortunately the previous solutions does not generalizes to 4D

Conclusions

- Deforming GR is very difficult
- A randomly picked deforming potential propagates 5+1 DOF; one is a ghost around Minkowski space
- The condition for having 5 DoF can can be encoded in a set differential equations
- In 2D, for the the Lorentz invariant case the solutions is unique
- There is no known underlying symmetry to get the very special form of V required for having 5 DoF
- V is likely to be destabilized by matter's quantum corrections
- Phenomenology (original motivation) is difficult

