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Einstein’s GR

A 95 year-long successful theory
a single free parameter and it works great

Weak Equivalence principle (10−13 )
Solar system tests (weak field) (10−3 − 10−5 )
Binary pulsar (nonlinear) (10−3)
Newton’s Law tested between 10−1mm and 1016mm

however .....
CMB + Supernovae data require Dark energy
p = wρ , w < 0. Expanded acceleration

Perhaps just a tiny (??) cosmological constant, w = −1,
Λ ∼ (10−4 eV)4 or a bizarre fluid?
Is GR an isolated theory ?
Can we modify GR at large distances?
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Massive Deformed GR

Add to GR an extra piece such that when gµν = ηµν + hµν

(
√

g R + Ldef ) = Lspin 2 + m2
(

a hµνhµν + b h2
)

+ · · ·

To build a mass term we need an extra tensor field: with gµν and
gµν there is no polynomial of g
Introduce a new tensor field Gµν , then scalar objects can be
constructed from the metric using

Xµ
ν = gµαGαν τn = Tr(X n)

Example: Gαν = ηαν

gµνGµν = 4− hµνηµν + hµνhµν + · · ·

a (τ1 − 4)2 + b (τ2 − 2τ1 + 4) =
(

a hµνhµν + b h2
)

+ · · ·

The metric Gµν can be dynamical or a priori given: two different
formulations of massive gravity
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The Stuckelberg Trick in Massive GR

The extra metric is non-dynamical flat given metric

To recover diff (gauge) invariance: 4 Stuckelberg fields to recast

Gµν =
∂ΦA

∂xµ
∂ΦB

∂xν
ηAB

Gµν and X = g−1G are tensors and τn = Tr(X n) scalars
ΦA: coordinates of a fictitious flat spaceM point-wise identified
with spacetime with a tetrad basis eA = dΦA

One can chose coordinates such that (Unitary gauge)

∂ΦA

∂xµ
= δA

µ ⇒ Gµν = ηµν

Gµν can be also dynamical→ bigravity, not in this talk !
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Degrees of Freedom: Linearized Level

SmGR =

∫
d4x
√

g M2
pl

[
R(g)− 4m2 V (X )

]
GR M2

pl E (1)
µν = T (1)

µν , gµν = ηµν + hµν

DOF 10− 2× 4 = 2 4 gauge modes δhµν = ∂µξν + ∂νξµ

Linearized massive GR (unitary gauge) Fierz-Pauli theory (1939)

LFP = M2
pl L

(2)
spin2 + M2

plm
2 (a hµνhµν + b h2)

E (1)
µν − 1

4m2 (a hµν + b h ηµν) = M−2
pl T (1)

µν ∂νE (1)
µν = 0

4 constraints DOF 10− 4 = 6 = 5 + 1
The sixth mode is a ghost (Boulware-Deser).
Absent in flat space when a + b = 0 (FP theory)
When the ghost is projected out, light bending badly contradicts
experiments van Dam, Veltman, Zakharov discontinuity
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Hamiltonian Analysis

ADM decompositions

gµν =

(
−N2 + NiNjhij Ni

Ni γij

)
Hamiltonian of GR and mGR in the unitary gauge

H = M2
pl

∫
d3x

[
NAHA + m2 N

√
γ V
]

HA = (H, Hi)

Πij → Conj. momenta of γij

PA = (P0,P i) Conjugate momenta of NA = (N,N i)

Hi = −2γijDk Πjk , H = −γ1/2 R(3) + γ−1/2
(

ΠijΠ
ij − 1

2
(Πi

i)
2
)

No time derivatives of NA → PA = 0 Constrained theory !

6 / 18
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Constrained Theory: Dirac treatment in a nutshell

1 Momenta are not all independent→ introduce Lagrange
multipliers (LMs) to enforce the constraints

2 Time evolution us generated by the the total Hamiltonian:
canonical + constraints + LMs

HT = H +

∫
d3x λAΠA ,

EoMs: dynamical + time evolution of primary (PA = 0) constraints
3 enforcing the consistency of constrs. with time evolution produces

new constraints or determine some of the LMs

The a set of constraints {Cs , i = 1,2, · · · c} is conserved in time that
reduces the number of DoF from 10 down to (10 + 10− c)/2
If some of the LMs are not determined→ gauge invariance
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Example: GR

Time evolution of PA = 0 via Poisson brackets are just the Eqs. of
NA, being H linear in NA

{PA(t , x), HT (t)} = {PA(t , x), H} = HA = 0

Thanks to the GR algebra the four secondary constraints are
conserved and no LM is determined (Diff invariance)

{H(x), H(y) = Hi (x) ∂
(x)
i δ

(3)(x − y)−Hi (y) ∂
(y)
i δ

(3)(x − y)

{H(x), Hj (y)} = H(y) ∂
(x)
j δ

(3)(x − y)

{Hi (x), Hj (y)} = Hj (x) ∂
(x)
i δ

(3)(x − y)−Hi (y) ∂
(x)
j δ

(3)(x − y)

In GR four diffs have to be gauge fixed adding 4 additional
constraints

DoF = [20− (2× 4 + 2× 4)]/2 = 2

The analysis is nonpertutbative and background independent

8 / 18
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mGR

When V deforming potential is turned on, the time evolution of
PA = 0 still gives NA Eqs

{PA(t , x), HT (t)} = SA = HA + VA 4 new secondary constraints

V = m2 N γ1/2 V
∂V
∂NA = VA

Is time evolution consistent with SA ?
VAB ≡ V,AB =

∂2V/∂NA∂NB

TA ≡ {SA, HT} = {SA, H} − VAB λ
B = 0

If the r = Rank(VAB) = 4: V non degenerate Hessian
all LMs λA are determined and we are done
DoF=10 - (4 + 4)/2 = 6 = 5 + 1
Around Minkowski: massive spin 2 (5) plus a ghost scalar (1)
Boulware-Deser mode
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mGR

The Hessian VAB of V has a single zero mode χA, r = 3

VAB χ
B = 0 , VAB EB

n = κn EA
n

λA = z χA +
3∑

n=1

dn EA
n

def≡ z χA + λ̄A .

If det(Vij) 6= 0, then χA = (1,−V−1
ij V0j)

Projection of ṪA = 0 along χA is a single new constraint
Projection on the remaining eigenvectors gives Three out (λ̄A) of the
four LMs

χA{SA, H} = TA χ
A = T = 0

EA
n {SA, H} − dn κn z = 0 No sum in n

10 / 18
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mGR

Time evolution of T

Q(x) = {T (x),HT}

= {T (x),H}+

∫
d3y {T (x), λA(y)ΠA(y)} = 0

1 If Q does not depend on z, the last LM, we have a new constraint

z is determinate by the time evolution of Q. We are done.

Total # of constraints 4 (PA) + 4 (SA) + 1 (T ) + 1 (Q) = 10

DoF: 10− 10/2 = 5

2 If Q = 0 determines z we are done and there is no additional
constraints
Total # of constraints 4 (PA) + 4 (SA) + 1 (T ) = 8 + 1

DoF: 10− 9/2 = 5 + 1/2
11 / 18
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mGR

{T , λA · ΠA} = terms z indep.−
∫

d3y Θ(x , y) z(y) = · · · − I[z]

Θ(x , y) = χA(x) {SA(x),SB(y)}χA(y) = Ai(x , y)∂iδ
(3)(x − y)

A(x , y) = A(y , x)

Only in field theory Θ can be non zero !

I[z] = − 1
2z(x)

∂i

[
z(x)2Ai(x , x)

]
Q is free from z if Ai(x , x) = 0, which consists in the following condition

χ02 Ṽi + 2χAχj ∂ṼA

∂γ ij = 0 , V = γ1/2Ṽ

12 / 18
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mGR: Summary of the Canonical Analysis

Necessary and sufficient conditions for having 5 DoF in mGR

Rank(ṼAB) = 3⇒ Ṽ00 − Ṽ0i(Ṽij)
−1Ṽj0 = 0 (1)

χ02 Ṽi + 2χAχj ∂ṼA

∂γ ij = 0 χA = (1,−Ṽ−1
ij Ṽ0j) (2)

Notice: If only (1) holds 5+1/2 DoF propagate

A theory with 5+1/2 DoF is physically acceptable ?

5+1/2 DoF found also in a class of Horava-Lifshitz modified gravity
theory
(1) is a homogeneous Monge-Ampere equation
many solutions are know
(2) is much more restrictive

13 / 18
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Solutions

Strategy

1 Find a solution of Monge-Ampere equation (rank(V) = 3

2 Check that the candidate satisfies the additional equation to get
rid of 1/2 DoF

Rank(ṼAB) = 3⇒ Ṽ00 − Ṽ0i(Ṽij)
−1Ṽj0 = 0

χ02 Ṽi + 2χAχj ∂ṼA

∂γ ij = 0 χA = (1,−Ṽ−1
ij Ṽ0j)

14 / 18
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2D Lorentz Invariant case

To simplify things: Eqs in 2D where Ṽ(N,N1, γ) and γ11 ≡ γ
Lorentz Invariant case: V depends on the eiegenvalues λ1, λ2, · · · of
X = g−1η

After expressing N, N1 in terms of λ1/2, det ṼAB must hold for any γ !
The resulting equation is cubic and splits into two branches of three
differential equations

Ṽ(2,0) = − 3
2λ1

Ṽ(1,0) , Ṽ(0,2) = − 3
2λ2

Ṽ(0,1) ,

Ṽ(1,1) = −
λ

3/2
1 Ṽ(1,0) ± λ3/2

2 Ṽ(0,1)

2λ1 λ2 (λ
1/2
1 ± λ1/2

2 )
.

Solutions, (all !)

VI,II =
α1
√
λ1λ2 + α2 (

√
λ1 ±

√
λ2) + α3√

λ1λ2
,

with α1,2,3 integration constants.
15 / 18
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2D: Lorentz Invariant case

Both I and II satisfies also the second equation that kills 1/2 DoF
In terms of X

VI = α1 + α2
Tr(X 1/2)√

det X
+

α3√
det X

,

2D version of the ghost free potential found by de
Rham-Gabadadze-Tolley
The second solution is different but does not admits Minkowski as
a background

VII = α1 + α2

√
Tr(X )− 2

√
det X

√
det X

+
α3√
det X

.

16 / 18
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Both I and II satisfies also the second equation that kills 1/2 DoF
In terms of X

VI = α1 + α2
Tr(X 1/2)√

det X
+

α3√
det X

,

2D version of the ghost free potential found by de
Rham-Gabadadze-Tolley
The second solution is different but does not admits Minkowski as
a background
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+
α3√
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2D: Loentz Breaking Case

One can generalize the previous solutions to the case of Lorentz
breaking solutions

A class of potential singular Hessian

V = β1

[
(x + β2)2 − (y1/2 + β3)2

]1/2
+ β4 x ,

y = N iN jγij and βn=1,...,4 scalar functions of γij

Also the second equation is satisfied when

β2 = constant β4 = γ1/2β̄4

Unfortunately the previous solutions does not generalizes to 4D
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Conclusions

Deforming GR is very difficult
A randomly picked deforming potential propagates 5+1 DOF;
one is a ghost around Minkowski space
The condition for having 5 DoF can can be encoded in a set
differential equations
In 2D, for the the Lorentz invariant case the solutions is unique
There is no known underlying symmetry to get the very special
form of V required for having 5 DoF
V is likely to be destabilized by matter’s quantum corrections
Phenomenology (original motivation) is difficult
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