

With the total cross-section: Saturation of the Froissart bound and other checks

Giulia Pancheri-INFN Frascati with

With A. Grau, S. Pacetti and Y.N. Srivastava Cortona 2012

Total cross section data before 2011

G. Antchev et al.Eur.Phys.Lett. 2011

Achilli, GP, et al, PRD84(2011)

How can one define asymptotia?

• Saturation of the Froissart bound ?

$$\sigma_{total} \lesssim rac{\pi}{m_\pi^2} [\log rac{s}{s_0}]^2$$

- With or without the constant (Froissart-Martin-Lukazsku)?
- What is s₀?anyway?
- Black disk limit? $\mathcal{R}_{el} = \frac{\sigma_{el}}{\sigma_{total}} \longrightarrow \frac{1/2}{5}$

Has asymptotia been reached?

(with dire consequences for hidden extra dimensions according to Srivastava et al., arXiv:1104.2553, Block and Halzen ArXiv:1201.0960))

Experimental Confirmation that the Proton is Asymptotically a Black Disk, Martin M. Block, Francis Halzen, Phys.Rev.Lett. 107 (2011) 212002

Checks for asymptotia al LHC, A. Grau. G. P.,

S. Pacetti and Y.N. Srivastava, May 2012, Submitted to PLB

Interesting?

[many people are turned off by claims of victory anytime a new measurement appears, ISR, CERN $Sp\bar{p}S$, TeVatron and now LHC7]

- Is asymptotia reached? i.e. is the Froissart bound (FB) for sigma total saturated? Why would this be interesting?
- 1. Because saturation of FB could exclude power-like behaviour as from hidden extra dimensions [Block Halzen 2012, Srivastava et al, 2011]
- 2. Or data could hint to **new baryonic** interactions at 10-100 TeV and thus solve problems with cosmic rays composition based on current σ_{total} extrapolations [Piran, april 2012]
- 3. Because there is a connection between **Froissart** bound and **confinement** which the total cross-section can investigate
- * Why the **dip in pp elastic differential cross-section**?

The total cross-section: confinement and deconfinement at work

Different, not necessarily conflicting descriptions

Regge-Pomeron

with 1-2-3....pomerons + Regge trajectories

$$\mathcal{A}_{P/R}(s,t) = i\beta(t)(rac{s}{s_0})^{lpha_{P/R}(t)-1}$$

$$\sigma_{total} = X s^{-\eta} + Y s^{\epsilon}$$

$$\epsilon = \alpha_P(0) - 1 > 1$$

And we are not yet in asymptotia if this is true

Eikonal formulation

$$F(s,t) = i \int d^2 \mathbf{b} e^{i\mathbf{q}\cdot\mathbf{b}} [1 - e^{i\chi(b,s)}]$$

Asymptotic Black disk limit

$$\begin{aligned} \Re e \chi &\simeq 0 \\ \Im m \ \chi &= \ \theta(R(s)-b) \\ R(s) &\to \ \log s/s_0 \end{aligned}$$

$$\sigma_{total} \sim \log^2(s/s_0)$$

 $\mathcal{R}_{el} = 1/2$

Both descriptions have a point but

- With QCD at hand, one should look for a microspic description connected to the most interesting QCD question, now, infrared gluons and confinement
- We have developed a model (1996-2012 ...) to connect IR gluons to the asymptotic behaviour of the total cross-section
- Interesting results for sigma_{tot}, sigma_{el}, sig_{inel}
- Still under progress A. Grau, R.M. Godbole, GP, Y.N.Srivastava

In our model, the emission of singular infrared gluons tames low-x gluon-gluon scattering (mini-jets) and restores the Froissart bound

$$\sigma_{tot}(s) \approx 2\pi \int_0^\infty db^2 [1 - e^{-C(s)e^{-(b\bar{\Lambda})^{2p}}}]$$

$$\sigma_{tot}(s) \rightarrow [\varepsilon \ln(s)]^{(1/p)} \qquad \frac{1}{2}$$

12

 $s^{arepsilon}$

Issues in a QCD mini-jet description

What generates the rise? Low-x parton collisions

$$s^{\epsilon} \epsilon \sim 0.3$$

Cline,Halzen &Luthe 1973 Gaisser, Halzen,Stanev 1985 G.P., Y.N. Srivastava 1986 Durand,Pi 1987 Sjostrand, van Zijl 1987

. . .

What tames the rise into to a Froissart-like behavior?

A cut off obtained by [embedding into the eikonal] the acollinearity induces by IR ktemission

[OUR model, G.P. et al. Phys.Lett.B382, 1996]]

Our model: eikonal+minijets+soft gluon resummation in the IR

- Start with eikonal representation
- Low and high energy component

$$egin{aligned} \sigma_{tot}(s) &= 2 \int (d^2b) [1-e^{-ar{n}(b,s)/2}] \ \Re e\chi pprox 0 \ ar{n}(b,s) &= ar{n}_{low}(b,s) + ar{n}_{high}(b,s) \end{aligned}$$

- Low energy component is parametrized with No rising term
- **High** energy (rising) component is from **PQCD**

Minijets to get the rise

$$\bar{n}_{high} = A(b,s)\sigma_{jet}(s)$$

$$p_t^{parton-out} \ge p_{tmin} \simeq 1 \ GeV$$

• To tame the rise A(b,s) is obtained from $K_t - resummation$ with integration down into the infrared with an ansatz for infrared behaviour

$$\alpha_{eff}(k_t \to 0) \sim k_t^{-2p}$$

5/30/12

Soft gluon emission introduces acollinearity

Acollinearity reduces the collision cross-section as partons do not scatter head-on any more, i.e. the gluon cloud is too thick for partons to see each other : gluon saturation

Cartoon view of the model for σ_{total}

- QCD minijets with LOPDFs from CERNLIB to drive the rise
- Soft Gluon k_t-resummation (ISR) in the infrared main original ingredient of our model
- Multiple scattering (in Eikonal representation to implement unitarity)

We model the impact parameter distribution as the Fourier-transform of ISR soft k_t distribution and thus obtain a cut-off at large distances : Froissart bound?

$$A_{BN}(b,s) = N \int d^{2}\mathbf{K}_{\perp} \ e^{-i\mathbf{K}_{\perp} \cdot \mathbf{b}} \underbrace{\frac{d^{2}P(\mathbf{K}_{\perp})}{d^{2}\mathbf{K}_{\perp}}}_{d^{2}\mathbf{K}_{\perp}} = \frac{e^{-h(b,q_{max})}}{\int d^{2}\mathbf{b} \ e^{-h(b,q_{max})}}$$

$$h(b,E) = \frac{16}{3\pi} \int_{0}^{qmax} \frac{dk_{t}}{k_{t}} \alpha_{eff}(k_{t}) \ln(\frac{2q_{max}}{k_{t}})[1 - J_{0}(bk_{t})]$$

$$\alpha_{eff}(k_{t} \rightarrow 0) \sim k_{t}^{-2p}$$

$$f = \frac{16}{3\pi} \int_{0}^{\pi} \frac{dk_{t}}{k_{t}} \alpha_{eff}(k_{t}, h) \ln(\frac{2q_{max}}{k_{t}})[1 - J_{0}(bk_{t})]$$

$$A_{BN}(b,s) \sim e^{-(b\bar{\Lambda})^{2p}}$$

$$f = \frac{16}{3\pi} \int_{0}^{\pi} \frac{dk_{t}}{k_{t}} \alpha_{eff}(k_{t}, h) \ln(\frac{2q_{max}}{k_{t}})[1 - J_{0}(bk_{t})]$$

$$\alpha_{eff}(k_{t} \rightarrow 0) \sim k_{t}^{-2p}$$

$$A_{BN}(b,s) \sim e^{-(b\bar{\Lambda})^{2p}}$$

$$f = \frac{16}{3\pi} \int_{0}^{\pi} \frac{q_{tmax}}{q_{tmax}} \frac{q_{tmax}}{q_{tmax}} \frac{q_{tmax}}{q_{tmax}} \frac{q_{tmax}}{q_{tmax}} \frac{q_{tmax}}{q_{tmax}}$$

The model at work

the large-s limit

$$\sigma_{total} \to 2\pi \int db^2 [1 - e^{-C(s)e^{-(bq)^{2p}}}]$$

 $C(s) = (s/s_0)^{\varepsilon} \sigma_1$ $A(b,s) \propto e^{-(bq)^{2p}}$ Mini-jetsUltra-soft gluons effects

$$\sigma_T \approx \frac{2\pi}{\bar{\Lambda}^2} [\varepsilon \ln \frac{s}{s_0}]^{1/p} \qquad \sim \ln^2 s \quad p = 1/2$$

$$\sim \ln s \quad p = 1$$
5/30/12 19

Application to LHC7 data: ATLAS, CMS, TOTEM GP et al, PRD2011

The eikonal 2-component formulation has problems

• Ok for the sigma total but

Sigma elastic and sigma inelastic get mixed up: diffraction, single and double, goes into the elastic [GP et al PRD84]

- Need for a different formalism [e.g. Lipari&Lusignoli 2009]
- And anyway further understanding
- Turn to the elastic differential to see what happens

Many predictions before 2011

TOTEM : the forward peak

$$\frac{d\sigma}{dt} = \frac{d\sigma}{dt}|_{t=0} \ e^{B_{exp}t}$$

- The slope actually changes as one measures away from t=0 to the dip region
- ~ 20 GeV⁻² at small 0.02<-t<0.33
- ~23 GeV⁻² at -t before the dip

Fig. 3: The measured differential cross-section $d\sigma/dt$. The superimposed fits and their parameter values are discussed in the text.

5/30/12

How do models fare with the TOTEM data for elastic differential x-section?

Donnachie and Landshoff 2011

without and with hard Pomeron

- Many other attempts, with modification of previous parametrizations have now appeared
- Menon et al., Block and Halzen,

Turn to something old and simple toy-like: two exponential and a phase from Barger and Phillips in 1973

$$\mathcal{A}(s,t) = i[\sqrt{A(s)}e^{\frac{1}{2}B(s)t} + \sqrt{C(s)}e^{i\phi(s)}e^{\frac{1}{2}D(s)t}]$$

$$\begin{aligned} \frac{d\sigma}{dt} &= A(s)e^{B(s)t} + C(s)e^{D(s)t} + \\ 2\sqrt{A(s)}\sqrt{C(s)}e^{\frac{(B(s)+D(s))t}{2}}\cos\phi \end{aligned}$$

five s-dependent real parameters, A B C D ϕ

How does it work with LHC TOTEM data?

How to describe both the diffraction peak and the tail of TOTEM data : models for the tail

Two exponentials and a phase vs ISR and LHC7 data

- A model not so much ...model dependent : two exponentials and a phase (Barger and Phillips 1973)
- Good description of TOTEM data and reasonable for ISR (both pp)

With A. Grau, S. Pacetti, Y.N. Srivastava Submitted to PLB, May 2012

Eikonal (vs Regge-Pomeron): how to reconcile minijets with exponential shrinking?

- What is wrong with the minijets + IR resummation + eikonal picture through which the elastic amplitude is built in this model (ours)?
- My guess (work in progress): a global condition on the amplitude that at t=0 no gluons, soft, IR, or otherwise escape needs to be enforced ~
- ~form factor as a further resummation effect forcing all the single subprocess distributions to $\sqrt{-t}$ to an overall momentum K~

reabsorption and compensation of the change of momentum

Conclusion

- A model with minijets and soft gluon resummation is able to describe the total cross-section from 5 GeV to cosmic rays energies
- A model with two exponential and a phase is well suited to describe the dip structure at LHC as well as the forward diffraction peak and shoud be used to parametrize future data at 8 TeV or beyond
- The connections between these two models is still under study

How to check asymptotia?

$$egin{aligned} \mathcal{F}(s,t) &= i \int_{o}^{\infty} (bdb) J_{o}(b\sqrt{-t}) [1-e^{2i\delta_{R}(b,s)}e^{-2\delta_{I}(b,s)}] \ \sigma_{total}(s) &= 4\pi \Im m \mathcal{F}(s,0) \end{aligned}$$

• Two asymptotic sum rules in impact parameter space [EPJC 2005]

$$\frac{(\frac{1}{2})\int_{-\infty}^{0}(dt)\Im \mathcal{F}(s,t) \rightarrow 1; \ as \ s \rightarrow \infty}{\int_{-\infty}^{0}(dt)\Re \mathcal{F}(s,t) \rightarrow 0; \ as \ s \rightarrow \infty} \quad S_{0}$$

5/

BP model allows easy check of the sum rules

• With parameters from fit

$$s_1 = \sqrt{\frac{A}{1+\hat{
ho}^2} \frac{1}{\sqrt{\pi}B}} + \frac{\sqrt{C}}{\sqrt{\pi}D} \cos \phi = 0.94$$
 at LHC7

• At ISR 53 GeV $s_1 = 0.75$

To satisfy both sum rules, add a real part to the first term

 $s \leftrightarrow u$ Use our minijet model with soft gluon resummation with 0.66<p<0.77 PLB08

$$\mathcal{A}(s,0) \rightarrow i \left[ln(s/s_o e^{-i\pi/2}) \right]^{1/p}$$
$$= i \left(\left(ln(s/s_o) - i\pi/2 \right) \right)^{1/p}$$
$$\frac{\Re e \mathcal{A}(s,0)}{\Im m \mathcal{A}(s,0)} \rightarrow \frac{\pi}{2p ln(s/s_o)} = 0.134 \div 0.115$$
$$s_0 \sim 0.05 \ LHC7$$

5/30/12

Ryskin 2012 : log²s behaviour?

Dip or no dip?

- Before and after the dip the two processes pp and $p\bar{p}$ should be described by the same physics
- At the dip the basic amplitude is almost zero (5 orders of magnitude lower in the cross-section) so the *leftovers* from Regge exchange, present only in $p\bar{p}$, fill the dip

$pp \ and \ \bar{p}p$

R.M.Godbole, A. Grau, G.P. Y.N. Srivastava, +A. Achilli, +A.Corsetti + O. Shekhovtsova

- Phys. Rev D 2011
- Phys. Lett. 2010
- Eur.Phys.J.C63:69-85,2009. e-Print: arXiv:0812.1065 [hep-ph]
- Phys.Lett.B659:137-143,2008. e-Print: arXiv:0708.3626 [hep-ph]
- Phys.Rev.D72:076001,2005. e-Print: hep-ph/0408355
- Phys.Rev.D60:114020,1999. e-Print: hep-ph/9905228
- Phys.Lett.B382:282-288,1996. e-Print: hep-ph/9605314

5/30/12

Some details

$$\begin{array}{l} \mbox{Mini-jets} \end{array} \left\{ \begin{array}{l} \sigma_{\rm jet}^{AB}(s;p_{tmin}) = \int_{p_{tmin}}^{\sqrt{s}/2} dp_t \int_{4p_t^2/s}^1 dx_1 \int_{4p_t^2/(x_1s)}^1 dx_2 \\ & \sum_{i,j,k,l} f_{i|A}(x_1,p_t^2) f_{j|B}(x_2,p_t^2) \quad \frac{d\hat{\sigma}_{ij}^{kl}(\hat{s})}{dp_t}. \end{array} \right. \\ \\ \mbox{DGLAP evolved} \\ \mbox{Which value of p_{tmin}?} \\ \mbox{Which densities?} \end{array} \right\} \quad \begin{array}{l} \mbox{Parametrize data choosing} \\ \mbox{PDF and p_{tmin} to catch} \\ \mbox{the early rise of \mathcal{T}_{total}} \end{array} \right.$$

Mini-jets drive the rise of σ_{total}

$$\sigma_{\rm jet}^{AB}(s, p_{tmin}) = \int_{p_{tmin}}^{\sqrt{s}/2} dp_t \int_{4p_t^2/s}^{1} dx_1 \int_{4p_t^2/(x_1s)}^{1} dx_2 \times \sum_{i,j,k,l} f_{i|A}(x_1, p_t^2) f_{j|B}(x_2, p_t^2) \frac{d\hat{\sigma}_{ij}^{kl}(\hat{s})}{dp_t}$$

$$p_{tmin} \sim 1 \div 2 \ GeV$$

$$\mathsf{DGLAP \ evoluted \ PDF}$$

Parton-parton x-sections: $parton_i + parton_j \rightarrow parton_k(p_t) + parton_l(-p_t)$

Building sigma_{total}

$$\sigma_{total} = 2 \int d^{2}\mathbf{b}[1 - e^{-\Im m\chi(b,s)} \cos \Re e\chi(b,s)]$$

$$\bar{n}(b,s) = 2\Im m\chi(b,s) \simeq A(b)\sigma(s) \qquad \qquad \Re e\chi(b,s) \simeq 0$$

Two component simplest model

5/30/12

$$\bar{n}(b,s) = \bar{n}_{soft}(b,s) + \bar{n}_{hard}(b,s)$$

- -

$$\bar{n}_{soft/hard}(b,s) = A_{soft/hard}(b,s)\sigma_{soft/hard}(s)$$

Overlap function

Mini-jets are responsible for the rise of the total cross-section Cline, Halzen, Luthe 1972- Gaisser, Halzen 1985- G.P., Srivastava 1985

One component missing in the mini-jet picture is soft gluon emission from the initial state to break the collinearity and reduce the parton-

Eikonal models: b-distribution can quench the rise

 $n_{hard-minijets}(b) \approx A(b,s)\sigma_{jet}(s,p_{tmin})$ How to choose it:

Form factors?

Choice of densities for mini-jet x-section

Because we use resummation to access large distance behaviour

- LO PDFs are used, to avoid double counting the most important contribution (small kt) to observables like σ_{tot}
- LO: GRV, MRST, CTEQ
- For illustration purposes: GRV
- Bands are also presented with GRV and MRST
- We are working to include other densities

The single soft gluon Integration limit can be obtained from kinematics

$$q_{max} = \frac{\sqrt{\hat{s}}}{2} \left(1 - \frac{Q^2}{\hat{s}}\right)$$

σ_{total} and the large-s limit

$$2\Im m\chi = n_{soft} + n_{hard-minijets} \qquad Re\chi \approx 0$$

$$\sigma_{total} = 2 \int d^2 \vec{b} [1 - e^{-n_{soft} - n_{hard-minijets}}]$$

 $n_{hard-minijets}(b) \approx A(b,s)\sigma_{jet}(s, p_{tmin}) \implies > n_{soft}$

$$\sigma_{total} \rightarrow 2\pi \int db^2 [1 - e^{-C(s)e^{-(bq)^{2p}}}]$$

$$C(s) = (s/s_0)^{\varepsilon} \sigma_1$$
Minimize Ultra-soft gluons effect

5/30/12

S

$$\sigma_T(s) \approx \frac{2\pi}{p} \frac{1}{\Lambda^2} \int_0^\infty du u^{1/p-1} [1 - e^{-C(s)e^{-u}}]$$

$$u = (\bar{\Lambda}b)^{2p} \qquad I(u,s) = 1 - e^{-C(s)e^{-u}} \text{ has the limits}$$

$$I(u,s) \to 1 \text{ at } u = 0$$

$$I(u,s) \to 0 \text{ as } u = \infty$$

$$\sigma_T \approx \frac{2\pi}{\bar{\Lambda}^2} [\varepsilon \ln \frac{s}{s_0}]^{1/p} \qquad \sim \ln^2 s \quad p = 1/2$$

5/30/12

A general scheme for various processes

- Start with PDF for the chosen process
 - Proton-proton, pion-proton, pion-pion, photons (nuclear matter, heavy ions)
 - Calculate mini-jet basic cross-section, quark-antiquark, gluon-gluon (dominant), quark-gluon
 - Calculate qmax (s) for soft emission
- Fix p (singularity) for one process, say proton-proton
- Calculate A(b.amax(s))
- Parametrize $\bar{n}_{soft}(b,s)$
- Eikonalize and integrate