θ -dependence of the deconfinement temperature in Yang-Mills theories

Francesco Negro

30 May 2012 Convegno Informale di Fisica Teorica

Cortona 2012

INFN

In collaboration with: Massimo D'Elia

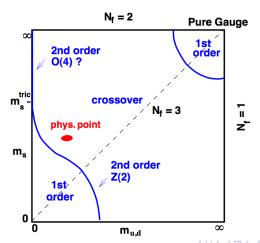
Based on: hep-lat/1205.0538v1

Outline

- ▶ 1) Introduction to the problem.
- \triangleright 2) Topological θ -term and sign problem.
- The lattice discretization.
- ▶ 4) Numerical results from LGT.
- \triangleright 5) Large N_c estimate.
- ▶ 6) Conclusions.

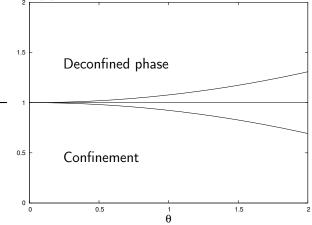
1) Introduction.

QCD phase diagram with $N_f = 2 + 1$. Gauge group: SU(3) [Laermann and Philipsen; hep-ph/0303042; '03]



1) Introduction.

This work: SU(3) gauge theory phase diagram in the $T-\theta$ plane.



1) Introduction.

Our aim:

1) Study if and how the deconfinement transition temperature depends on the topological θ -term.

$$rac{T_c(heta)}{T_c(0)} = 1 - extstyle{\mathsf{R}}_ heta heta^2 + O(heta^4)$$

- 2) Perform a large-N estimation of this dependence.
- 3) Compare these calculations.

We consider the following continuum action in euclidean metric:

$$S = S_{YM} + S_{\theta}$$

The pure gauge term:

$$S_{YM} = -\frac{1}{4} \int \! d^4x \; F^a_{\mu\nu}(x) F^a_{\mu\nu}(x)$$

and the topological θ -term:

$$S_{ heta} = -i heta rac{g_0^2}{64\pi^2} \int \!\! d^4x \; \epsilon_{\mu
u
ho\sigma} F^a_{\mu
u}(x) F^a_{
ho\sigma}(x) \equiv -i heta \int \!\! d^4x \; q(x)$$

We consider the following continuum action in euclidean metric:

$$S = S_{YM} + S_{\theta}$$

The pure gauge term:

$$S_{YM} = -\frac{1}{4} \int \! d^4x \; F^a_{\mu\nu}(x) F^a_{\mu\nu}(x)$$

and the topological θ -term:

$$S_{\theta} = -i\theta \frac{g_0^2}{64\pi^2} \int \!\! d^4x \; \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x) \equiv -i\theta \int \!\! d^4x \; q(x)$$

We consider the following continuum action in euclidean metric:

$$S = S_{YM} + S_{\theta}$$

The pure gauge term:

$$S_{YM} = -\frac{1}{4} \int \! d^4x \; F^a_{\mu\nu}(x) F^a_{\mu\nu}(x)$$

and the topological θ -term:

$$S_{\theta} = -i\theta \frac{g_0^2}{64\pi^2} \int d^4x \; \epsilon_{\mu\nu\rho\sigma} F^{a}_{\mu\nu}(x) F^{a}_{\rho\sigma}(x) \equiv -i\theta Q[A]$$

LGT techniques are based on the possibility to interpret the partition function integrand

$$Z(T,\theta) = \int D[A] e^{-S_{YM} + i\theta Q[A]}$$

as a probability distribution for the fields A^a_μ .

But it is complex! Bad news... sign problem!

Anyhow LGT are preferred ways to probe the non-perturbative properties of YM theories.

Can we somehow arrange things so that we can apply LGT techniques to such a model?

Via an imaginary $\theta=i\theta_I$ term we can "solve" the sign problem. [Azcoiti et al., PRL 2002; Alles and Papa, PRD 2008; Panagopoulos and Vicari, JHEP 2011]

Analyticity around $\theta=0$ is supported by the current knowledge of the vacuum free energy derivatives with respect to θ evaluated at $\theta=0$.

[Alles, D'Elia and Di Giacomo, PRD 2005; Vicari and Panagopoulos, Physics Reports 2008]

Studying the dependence on θ_I will have access to a (small) range of real θ via analytic continuation. (no $\theta=\pi$ at all)

The continuum partition function to be put on the lattice is:

$$Z(T,\theta) = \int D[A] e^{-S_{YM}-\theta_I Q[A]}$$

3) The lattice discretization.

Moving to the lattice with a finite spacing a:

$$\mathbb{R}^4 o \mathsf{Lattice}(\mathit{N}_x, \mathit{N}_y, \mathit{N}_z, \mathit{N}_t) \quad \mathsf{and} \quad \mathit{T} = \frac{1}{\mathit{N}_t \mathit{a}}$$

On the lattice we use the link variables as fundamental objects:

$$U_{\mu}(n) = e^{igaA_{\mu}(n)} \in SU(N_c)$$

We use the Wilson action for S_{YM}^L is, using $\beta \equiv 2N_c/g^2$:

$$S_{YM}^L = \beta \sum_{n}^{\text{Lattice}} \sum_{\mu > \nu} \left(1 - \frac{1}{N_c} \mathbb{R} e \operatorname{Tr} \left(\Pi_{\mu \nu}(n) \right) \right)$$

where $\Pi_{\mu\nu}(n)$ is the *plaquette*, a closed loop of links:

$$\Pi_{\mu\nu}(n) = U_{\mu}(n)U_{\nu}(n+\hat{\mu})U_{\mu}^{\dagger}(n+\hat{\nu})U_{\nu}^{\dagger}(n) \simeq Id + iga^2F_{\mu\nu} - \frac{g^2a^2}{2}F_{\mu\nu}^2 + \dots$$

3) The lattice discretization.

The topological charge operator can be discretized as:

$$Q_{L}[U] = \frac{-1}{2^{9}\pi^{2}} \sum_{n}^{\text{Lattice}} \sum_{\mu\nu\rho\sigma=\pm 1}^{\pm 4} \tilde{\epsilon}_{\mu\nu\rho\sigma} \text{Tr} \left(\Pi_{\mu\nu}(n) \Pi_{\rho\sigma}(n) \right)$$

So we have a lattice partition function of the form:

$$Z(T,\theta) = \int D[U] e^{-S_{YM}^{L}[U] - \theta_{L}Q_{L}[U]}$$

Due to a finite multiplicative renormalization Q_L is related to the continuum Q by :

$$Q_L = Z(\beta)Q + O(a^2)$$

[Campostrini, Di Giacomo and Panagopoulos, Phys Lett B 1988] So the θ -term is also

$$S_{\theta} \equiv -\theta_L Q_L = -\theta_L Z(\beta) Q = -\theta_I Q$$

3) The lattice discretization.

Using this simple action each link appears linearly in the action.

 \Downarrow

We can exploit standard Heatbath and Overrelaxation algorithms.

With more complicated topological charge definitions on the lattice such standard algorithms wouldn't have been applicable.

4) Numerical results from LGT.

Deconfinement \rightarrow spontaneous breaking of \mathbb{Z}_3 center symmetry.

Center symmetry holds also when we introduce the topological term in the action.

Order parameter: Polyakov loop

$$L(\beta, \theta) = \langle L \rangle_{\beta, \theta} = \left\langle \frac{1}{V_s} \sum_{n_x, n_y, n_z} \operatorname{Tr} \left(\prod_{i=0}^{N_t - 1} U_t(n_x, n_y, n_z, i) \right) \right\rangle_{\beta, \theta}$$

At a fixed θ we find the transition in correspondence of the susceptibility peak:

$$\chi_L(\beta, \theta) = V_s \left(\left\langle L^2 \right\rangle_{\beta, \theta} - \left\langle L \right\rangle_{\beta, \theta}^2 \right)$$

4) Numerical results from LGT: ingredients for R_{θ} .

1) $Z(\beta)$ in order to determine $\theta_I = Z(\beta)\theta_L$.

Compute Q_L via the operator previously defined.

Compute Q via cooling algorithm.

Evaluate:

$$Z(\beta) = \frac{\langle Q_L Q \rangle_{\beta}}{\langle Q^2 \rangle_{\beta}}$$

as proposed in [Panagopoulos and Vicari, JHEP 2011]

Simulations were performed on a symmetric 16^4 lattice for 8 values of β spanning in 5.7-6.3.

4) Numerical results from LGT: ingredients for R_{θ} .

2) $\beta_c(\theta_I)$ in order to measure $T_c(\theta_I)/T_c(0)$.

For various θ we search β_c .

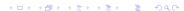
Using the non-perturbative determination of $a(\beta)$ in [Boyd et al., Nucl Phys B 1996] we have:

$$\frac{T_c(\theta_I)}{T_c(0)} = \frac{a(\beta_c(\theta=0))}{a(\beta_c(\theta_I))}$$

Simulations have been performed for various lattice spacings in order to approach the continuum limit.

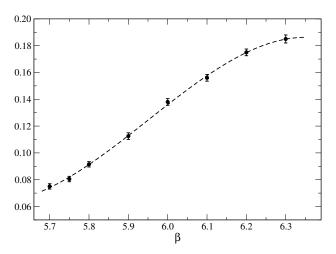
We choose $a \simeq 1/(4T_c(0))$, $a \simeq 1/(6T_c(0))$ and $a \simeq 1/(8T_c(0))$.

The lattices we have used are $16^3 \times 4$, $24^3 \times 6$ and $32^3 \times 8$.



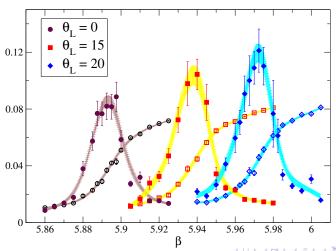
4) Numerical results from LGT: $Z(\beta)$.

Simulation on 16⁴ lattice and polinomial cubic interpolation.



4) Numerical results from LGT: $\beta_c(\theta_I)$.

Determination of β_c e.g. on the 24³ × 6 lattice. L and χ_L data and β -reweighting analysis.



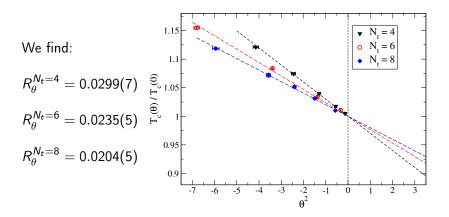
4) Numerical results from LGT: $\beta_c(\theta_I)$.

lattice	θ_L	eta_c	θ_I	$T_c(\theta_I)/T_c(0)$
$16^3 \times 4$	0	5.6911(4)	0	1
$16^3 \times 4$	5	5.6934(6)	0.370(10)	1.0049(11)
$16^3 \times 4$	10	5.6990(7)	0.747(15)	1.0171(12)
$16^3 \times 4$	15	5.7092(7)	1.141(20)	1.0395(11)
$16^3 \times 4$	20	5.7248(6)	1.566(30)	1.0746(10)
$16^3 \times 4$	25	5.7447(7)	2.035(30)	1.1209(10)
$24^3 \times 6$	0	5.8929(8)	0	1
$24^3 \times 6$	5	5.8985(10)	0.5705(60)	1.0105(24)
$24^3 \times 6$	10	5.9105(5)	1.168(12)	1.0335(18)
$24^3 \times 6$	15	5.9364(8)	1.836(18)	1.0834(23)
$24^3 \times 6$	20	5.9717(8)	2.600(24)	1.1534(24)
$32^3 \times 8$	0	6.0622(6)	0	1
$32^3 \times 8$	5	6.0684(3)	0.753(8)	1.0100(11)
$32^3 \times 8$	8	6.0813(6)	1.224(15)	1.0312(14)
$32^3 \times 8$	10	6.0935(11)	1.551(20)	1.0515(21)
$32^3 \times 8$	12	6.1059(21)	1.890(24)	1.0719(34)
$32^3 \times 8$	15	6.1332(7)	2.437(30)	1.1201(17)

Typical statistics for each size and for each θ_L :

$$\sim 10^5-10^6$$

4) Numerical results from LGT: R_{θ} .





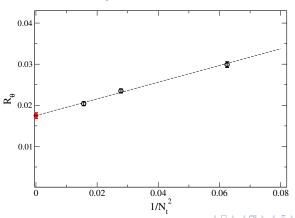
Numerical results from LGT: continuum extrapolation.

Assuming quadratic finite lattice spacing corrections to R_{θ} :

$$R_{\theta}^{N_t} = R_{\theta}^{\infty} + c/N_t^2$$

we can extrapolate to the continuum limit to get

$$R_{\theta}^{\infty}=0.0175(7)$$



 $\boxed{1^{\textit{st}}\text{-order transition}} \longrightarrow$

2 phases with different free energy densities crossing at T_c . $f_c(T) \neq f_d(T)$ $f_c(T_c) = f_d(T_c)$

Close to T_c the free energies takes the form

$$\frac{f_c(t)}{T} = A_c t + O(t^2) \quad \frac{f_d(t)}{T} = A_d t + O(t^2)$$

From the usual relations:

$$Z = e^{-\frac{V_s f(T)}{T}}$$
 $\epsilon(T) = \frac{T^2}{V_s} \partial_T \log Z$

we easily find that the slope difference is related to the latent heat

$$\Delta \epsilon = \epsilon_d(T_c) - \epsilon_c(T_c) = T_c(A_c - A_d)$$

When we have $\theta \neq 0$ the free energy density is modified by

$$f(T,\theta) = f(T,\theta=0) + \frac{\chi(T)\theta^2}{2} + O(\theta^2)$$

In the large N_c limit $\chi(T)$ is a step function:

$$\chi(T < T_c) = \chi(T = 0) \neq 0 \qquad \qquad \chi(T > T_c) = 0$$

[Alles, D'Elia and Di Giacomo, Phys Lett B '96-'97-'00; Del Debbio, Vicari and Panagopoulos, JHEP 2004; Lucini, Teper and Wenger, Nucl Phys B 2005] This modifies the free energies in:

$$\frac{f_c(t)}{T} = A_c t + \frac{\chi \theta^2}{2T} \qquad \qquad \frac{f_d(t)}{T} = A_d t$$

$$T_c$$
 is found when $f_c = f_d \longrightarrow rac{T_c(heta)}{T_c(0)} = 1 - rac{\chi}{2\Delta\epsilon} heta^2$

When we have $\theta \neq 0$ the free energy density is modified by

$$f(T,\theta) = f(T,\theta=0) + \frac{\chi(T)\theta^2}{2} + O(\theta^2)$$

In the large N_c limit $\chi(T)$ is a step function:

$$\chi(T < T_c) = \chi(T = 0) \neq 0 \qquad \qquad \chi(T > T_c) = 0$$

[Alles, D'Elia and Di Giacomo, Phys Lett B '96-'97-'00; Del Debbio, Vicari and Panagopoulos, JHEP 2004; Lucini, Teper and Wenger, Nucl Phys B 2005] This modifies the free energies in:

$$\frac{f_c(t)}{T} = A_c t + \frac{\chi \theta^2}{2T} \qquad \qquad \frac{f_d(t)}{T} = A_d t$$

$$T_c$$
 is found when $f_c = f_d \longrightarrow \frac{T_c(\theta)}{T_c(0)} = 1 - R_{\theta}^{large N_c} \theta^2$

From the large N_c estimates in [Lucini, Teper and Wenger, JHEP 2005]:

$$\frac{\chi}{\sigma^2} = 0.0221(14)$$
 $\frac{\Delta \epsilon}{N_c^2 T_c^4} = 0.344(72)$ $\frac{T_c}{\sqrt{\sigma}} = 0.5978(38)$

we can evaluate $R_{\theta}^{large N_c}$:

$$R_{\theta}^{large N_c} = \frac{\chi}{2\Delta\epsilon} = \frac{0.253(56)}{N_c^2} + O(\frac{1}{N_c^4})$$

The argument in [Witten, PRL 1998] supports this dependence on N_c . Large- N_c limit \to expansion variable $\frac{\theta}{N_c} \to R_\theta \theta^2 \to R_\theta \propto \frac{1}{N_c^2}$ Let's recall both our results and compare them in the case $N_c=3$.

$$R_{\theta}^{\infty} = 0.0175(7)$$
 $R_{\theta}^{large N_c}(N_c = 3) = 0.0281(62)$

6) Conclusions

- ▶ Use of imaginary θ_I parameter to cure sign problem for LGT.
- **Deconfinement transition temperature dependence on** θ_I .
- ▶ Determination of the quadratic coefficient R_{θ}^{∞} .
- ▶ Large N_c estimate and comparison.

Perspectives:

- ▶ Finer lattice spacings to improve continuum limit approach.
- ▶ Weaker transition? Finite size scaling study.
- ▶ Extend the analysis to SU(2) and SU(4).