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Overview

» Holography + metals: apply AdS/CFT to Condensed Matter physics (AdS/CMT)

» What do | mean by AdS/CFT here?

gravity in (asymptotical) AdSq; 1 (BULK) < QFT in RY~11 (BOUNDARY)
weakly/strongly coupled duality

radial coordinate z < energy scale

» How do | want to apply AdS/CFT to CMT?

- as an effective theory,
- in the large N limit and when the QFT is strongly coupled:

L2
— ~N#>>1
/{2

where L =AdS curvature radius and k2 = 8mGn = Newton’s constant
> Why!

- strongly coupled QFT and “traditional” perturbative methods fail here

- AdS/CFT can give a geometrical picture of these systems



Outline

Introductions and Motivations

v
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Friedel oscillations
» Introductions to electron star and AdS hard wall geometry
» Electron star vs AdS hard wall: ...bad and good!

» Conclusions +Future



Intro and Motivations: The “broad” picture

» Goal?

- Holographic description of (2+1) strongly correlated charged fermions at finite density (1)
and at very low temperature (or zero T) (T < p)

- breakdown of Landau-Fermi theory: Non-Fermi Liquid (NFL)

> Why?

- FL can be tuned to a Quantum Critical Point (QCP)

- and develop “strange” metallic behaviour (NFL:r ~ T)

- Non-Fermi Liquid:
- central role of FERMI SURFACE (FS) (but no quasi-particles)
- anisotropic scaling properties: w — Aw, k = X°k,

with s = critical dynamical exponent
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Intro and Motivations: Our work

» Goal:

- Which are the “good” ingredients in bulk? Test holographic models on the market!
- Fermi surface is our key but how is it encoded in a holographic geometry?

- When do bulk Fermi features (FS) induce boundary Fermi features (FS)?

» How to study?

- probe fermion approximation: spectral function shows poles (= Fermi Surfaces) in
holographic models [LiuMcGreevyVegh 09],[Hartnoll, Hofman, Tavanfar *11],[Cubrovic, Liu, Schalm, Sun, Zaanen *11];

- the notion of Fermi surface must be consistently encoded in all the observables!

- use the “internal” d.of. to study the low-energy dynamics (# probe approx): Friedel
oscillations as diagnostic!

» Strategy:

- search for Friedel oscillations in the response function for two holographic models (electron
star and hard wall AdS)



Friedel oscillations

» What!

- oscillations in configuration space present in static response functions, like current current
correlation functions, at very low temperature (also T = 0);

- due to the presence of a sharp Fermi surface: this is why we use them as a diagnostic!

- present in FL and NFL

» Example: Non relativistic degenerate fermions in (2+1) dimensions:
p = the density current
(Op(k)) = x(k)6Ai(k),  x(k) ~ (p(=k)p(Kk))
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Intro to Electron Star (ES) [Hartnoll et al. '09] [Arsiwala et al. *10] [Hartnoll&Tavanfar’10]

IR Lifshitz
region

Bulk Boundary
0

» Ingredients in the bulk:

- Maxwell gauge field: A; = %h(z) limz—0 At = 1115
- high density of fermions (Thomas-Fermi approx):
- T = 0 perfect fluid of free charged fermions in the bulk
- fermions are in a local Lorentz frame (LL) at each value of z: pijc(z) = T

- fluid thermodynamic variables: p(z), p(z) and o(z) with poc(2)

- asymptotically AdS metric: ds? = i—z(—f(z)dt2 + g(z)dz% + dx® + dy?)



Intro to Electron Star (ES) [Hartnoll et al. '09] [Arsiwala et al. *10] [Hartnoll&Tavanfar’10]

IR Lifshitz
region

Bulk Boundary
0 z 0
» The action
S = SHE+ SM+ Spuid =

1 6 1
— [ d*xv—=G (R+ F) —/d‘lxx/fGFW Frv +/d4xx/pr

2K2 T 4e?



Intro to Electron Star (ES) [Hartnoll et al. '09] [Arsiwala et al. *10] [Hartnoll&Tavanfar’10]

TP P

» The action
S = SHE+Sm+ Spuid =

_ 1 4 6 1 4 "z 4
= ﬁ/d xvV—G (R+L—2) _E/d xV—GF,u F +/d xV—Gp



Intro to Electron Star (ES) [Hartnoll et al. '09] [Arsiwala et al. *10] [Hartnoll&Tavanfar’10]

» Properties of ES: Why this model?

- back-reaction of the metric w.r.t. fluid in a controlled approximation

- In the interior IR emergent Lifshitz gecom => in the boundary emergent critical exponent s!
f:z_gs""Q,gzgoo,h:hoo = (z,%Yy) = Mz, x,y),t = Xt

- promising geometry to characterise metallic quantum criticality!



Intro to AdS Hard Wall (AdS-HW) [Sachdev'1 1]

Boundary
0

» Ingredients in the bulk:

- the gauge field A; = %h(z)

- the metric is frozen: AdS,4 truncated at z = z, (hard wall boundary cond at zy,)
ds? = 5 (—di? + dz2 + & + dy?)

- fermions of charge g and mass m: W = bulk single-particle wave function

N



Intro to AdS Hard Wall (AdS-HW) [Sachdev'1 1]

Bulk [ | Boundary
Zm P 0
Sm+Sp

1 - _
—4—2/d4x —GF,WF“”-i-/d4xx/—Gi(\I!F“DM\II+m\IJ\IJ)

» The action:

S



Intro to AdS Hard Wall (AdS-HW) [Sachdev'1 1]

» Bulk Fermion Spectrum

Picture from [Sachdev'l 1]

» Properties

- it is a confining geometry: confinement scale sets the spacing
- different role for the fermions: here are really treated QM

- discrete number of bulk Fermi surfaces



Go ahead!

» Summary so far

- Friedel oscillations as a diagnostic in order to detect signals of Fermi Surface in ES and
AdS-HW.

- Compute static current-current correlation functions, which are bosonic observables

- but we want to detect a fermionic structure... 1-loop diagrams!
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Go ahead!

» Summary so far

- Friedel oscillations as a diagnostic in order to detect signals of Fermi Surface in ES and
AdS-HW.

- Compute static current-current correlation functions, which are bosonic observables

- but we want to detect a fermionic structure... 1-loop diagrams!

» How do we proceed?

- Insert a “disturbance” in the system
- AdS-HW: §A; a perturbation in the gauge sector
- ES: 0A, dgy,, 6gyx, duy, shear modes
- Compute the correlators:
- AdS HW: (p(—k)p(k)) with 1/N corrections (density-density correlator)

-ES: (J,(—k)J,(k)) with 1/N corrections (induced magnetic effect correlator)



Friedel oscillations in AdS Hard Wall

» Set-up
- introduce an effective term in the action

— — —,

2
Spor = %/dzdz’d)?Au(z, R (2,2, )AL (2, K) .

- with the 1-loop vacuum polarization tensor

~ dwd?p
v ’ _
1" (z,2',v,k) = f/ on)?

where M# = —qI'OT'*, We want to compute it for v = 0.

Tr [M“G(w,p,z,z/)M”G(w + v,k + p,z/,z)} ,

- G is the fermionic Green’s function (in Lemhann representation):

z,7) = ! 2%} (2
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» Concrete computations

- The gap discretizes the spectrum: we can isolate one single bulk Fermi surface
- approximate the dispersion relation E, (k) with a non-relativistic fermion
- use for the II the expression for the 2+ 1 non-relativistic fermions

d*k_ (0(Ik +p| — kO (kr — [k])
e (27r)2< E1(k+p) — Ex(k) >

Y (2,2, B) ~ #Tr (T3 0 xxiy, )



Friedel oscillations in AdS Hard Wall

» Results: we do have a boundary FS! :)

(p(=kap(d)Ta (p(-kdp(kdcor
—-2.005
—-0.002
-2035 ~0.0035
) -0.005
~2.065 | - . Koks | > — Kk

» Key-points

- factorization of the radius w.r.t. the boundary coordinates = factorization of the radius and
the boundary momentum!

- discreteness of the bulk FS (due to the gapped spectrum)

- delocalization of bulk FS: the wave functions fill all the way the space-time, they know all the
geometry!



(Absence of!) Friedel oscillations in Electron Star

» Set-up

- the effective action
2
Sra= 55 [ dadt Pk TEIGE A 2. 1L (2,7 K)o (2 )

nz . . . . .
where HCG,EC is the coarse grained polarization tensor in flat space.
- The fermionic loop: Recall the fermions live in a local Lorentz frame!

A (22 k) = 8z — 2)T1#(0, k1)

- Use for II the expression for (3+1) QED.
L.L. Zkf

- We need to project in the LL all the quantities entering in II: k; ;| = T
.+ Zkf>

Singular part:  ITI#" (0, kp.1.) ~ N*” (ki) In <
the crucial point are the quantities entering here:

ki =zk, ke(z) = \/m: % —m?

= the Fermi momentum depends on z: there is a different bulk FS for each point in the
radial direction!



(Absence of!) Friedel oscillations in Electron Star

» Results: we do NOT have a boundary FS! :(
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» Key-points
- continuum of bulk FS, each at each point in z
- each bulk FS is different: set by different value of the local p0¢

- the bulk FS are very localized:... this is the ultimate meaning of the Thomas-Fermi approx!

» Lesson:

each different FS at a different radius will not act coherently = summing from the deep
interior (IR) to the boundary (UV) they are just smeared out!
cf. [Kulaxizi, Parnachev '08] for D4 — D8 — D8



Summary and Future

» Summary:

Review of the electron star and AdS hard wall geometry;
Brief intro to Friedel oscillations;

Strategy to compute current-current correlators including 1-loop effect (effective action
with 1I);

Results: static current-current correlations show boundary FS in hard wall geometries but
NOT in the electron star geometry

Lesson: In order that bulk FS induces boundary FS in all correlation functions, it is necessary
for the bulk FS to be non-local and discrete

» Future:

Better “stringy” embedding for AdS Hard wall geometry? Yes: AdS soliton! It works the
same!

Gravitational back-reaction in AdS Hard wall?
What about the RG flow?

Non-Fermi liquid?



» Thanks!



Bonus Track [:

» Classical: Bulk-to Boundary propagator in AdS hard wall
- The classical eom for the gauge field in AdS hard wall geom:
(02 —Kk2) Ao(k,2) = 0.

- the classical bulk to boundary Green’s function (i.e. the solution which goes to one at the
boundary):

GB2 (ky, ) = cosh(kyz) — tanh(kyzm) sinh(kez) = (p(—ke)p(kx))o = —ky tanh(kxzm)
» One-loop:
- the one-loop corrected eom for the gauge field:
rel rel

(822 - kf) Ao(ke,z) = _eQ/dZ/ [HOO (z, Z/: ke)Ao (kx, Z/) + HOX(Z) Z/, ke )Ax (k, Z/)}

- with a high confinement scale and a small Fermi surface volume, the diffeo-integral equation
can be solved perturbatively in A ~ m% for the bulk to boundary Green’s functions
*

GP? (ky, z) = GE? (ky, 2) + AGE® (ke, 2) + ... (t — component)
0 = (9 —K)G (k7).

0

rel

2
(92 — k2) GB9(ky, 2) + % / dz'T1% (2, 2/, ky) GB2 (ky, 2')



Bonus Track Il: Polarization tensor in AdS hard wall

- What we are computing:

v

w "
M = T* |yge + 111

= dw d® . S
) (2,2 ,k) = — (;ﬂ_):Tr [M“G(w,p,z,z/)MVG(w,k + p,z/,z)]

B [M"’Go(w, B.2,2)M" G (w,K + B, z’,z)] )

1

G(w, k,z,7') =
( ) ; (w — Eg(k) + insign(Ee(k))

) Xew@x) (),

- Isolating one-single Fermi surface:

Y (2,2, B) = Ty + Tr MY x1 k(@2)X] (2 )M X1 i ()X 4 (2) X
d2k< O(k+pl —k)O(ke — k) B(ke— [k + p)O(IK| — k) )
(2m)2 \ Ei(

k+p) — Ex(k) +ins(Ex(k))  Ei(k+p) — Ex(k) — ins(Ex(k))

- Non-relativistic approximation: E; (k) ~ a3 + b1k?
" (z,2',p) =

_ 1 d’k 1 0(E1(k+p))0(—E1(k)) " N ot
~ pby J (27m)2 [p + 2 cos()k + ins(E1 (k)) x T (M X1,k(2)x7 4 (2 )M” X1 k(2 )Xl,k+P(z))

O(Ex(k — p))O(—E1(K)) n , N /
b~ 2cos(O)k —ims(Er (k) (M 3@ oy (M 31 sl x4 |




Bonus Track Il: Polarization tensor in AdS hard wall

- The static polarization is purely real:

v / k 6 (k
00 ) = P f 0 ey T (W X a1 a2)

- further approx: kf is small which means that the magnitude of the loop momentum is never large and that
the wave functions are slowly varying functions of the momenta:

Tr (M x14@x] @M X115 @ 4y @)) ~ Tr (M0 x1,0@)x] 0 G WM X1, )X ,(2)) -
This approximation loses some of the angular information in the wave-functions, but is sufficient to display

the essential features.

- The result:

k 6 (ks — k)

(MM Xl,o(Z)XI,o(Z/)Mu Xl,P(Z,)XI,p(Z)) P / dkdf 52 + keos(0)

rel ZZ P) = 4b17r2p

. . . _ 1
- Introducing the effective expansion parameter, A\ = Trby

I (2,2, p) = —ATr (M“ X1, O(Z)X1 O(z MY x1,(2" )Xl P(Z)) 1—4/1— (2:f> 0(p — 2kr)

This is the form of the polarization used in the numerics.



