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Overview
▶ Holography + metals: apply AdS/CFT to Condensed Matter physics (AdS/CMT)

▶ What do I mean by AdS/CFT here?

gravity in (asymptotical) AdSd+1 (BULK) ⇔ QFT in Rd−1,1 (BOUNDARY)

weakly/strongly coupled duality

radial coordinate z ⇔ energy scale

▶ How do I want to apply AdS/CFT to CMT?

- as an effective theory,
- in the large N limit and when the QFT is strongly coupled:

L2

κ2
∼ N# >> 1

where L =AdS curvature radius and κ2 = 8πGN = Newton’s constant

▶ Why?

- strongly coupled QFT and “traditional” perturbative methods fail here

- AdS/CFT can give a geometrical picture of these systems
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Outline

▶ Introductions and Motivations

▶ Friedel oscillations

▶ Introductions to electron star and AdS hard wall geometry

▶ Electron star vs AdS hard wall: ...bad and good!

▶ Conclusions +Future
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Intro and Motivations: The “broad” picture

▶ Goal?

- Holographic description of (2+1) strongly correlated charged fermions at finite density (µ)
and at very low temperature (or zero T) (T ≪ µ)

- breakdown of Landau-Fermi theory: Non-Fermi Liquid (NFL)

▶ Why?

- FL can be tuned to a Quantum Critical Point (QCP)

- and develop “strange” metallic behaviour (NFL : r ∼ T )

- Non-Fermi Liquid:

- central role of FERMI SURFACE (FS) (but no quasi-particles)

- anisotropic scaling properties: ω → λω , k → λsk,

with s = critical dynamical exponent
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Intro and Motivations: Our work

▶ Goal:

- Which are the “good” ingredients in bulk? Test holographic models on the market!

- Fermi surface is our key but how is it encoded in a holographic geometry?

- When do bulk Fermi features (FS) induce boundary Fermi features (FS)?

▶ How to study?

- probe fermion approximation: spectral function shows poles (= Fermi Surfaces) in
holographic models [Liu,McGreevy,Vegh ’09],[Hartnoll, Hofman, Tavanfar ’11],[Cubrovic, Liu, Schalm, Sun, Zaanen ’11];

- the notion of Fermi surface must be consistently encoded in all the observables!

- use the “internal” d.o.f. to study the low-energy dynamics ( ̸= probe approx): Friedel
oscillations as diagnostic!

▶ Strategy:

- search for Friedel oscillations in the response function for two holographic models (electron
star and hard wall AdS)
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Friedel oscillations

▶ What?

- oscillations in configuration space present in static response functions, like current current
correlation functions, at very low temperature (also T = 0);

- due to the presence of a sharp Fermi surface: this is why we use them as a diagnostic!

- present in FL and NFL

▶ Example: Non relativistic degenerate fermions in (2+1) dimensions:

ρ = the density current

⟨δρ(k)⟩ = χ(k)δAt(k) , χ(k) ∼ ⟨ρ(−k)ρ(k)⟩
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▶ Example: Non relativistic degenerate fermions in (2+1) dimensions:

ρ = the density current

⟨δρ(k)⟩ = χ(k)δAt(k) , χ(k) ∼ ⟨ρ(−k)ρ(k)⟩

χ(k) ≡ ⟨ρ(−k)ρ(k)⟩R = −ΠR(k) = −
e2

2π2
P

∫
dp dθ θ(kf − p)

p

Ep+k − Ep

= −
e2m

2π

1−

√
1−

(
2kf
k

)2

θ(k− 2kf)

 .
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Intro to Electron Star (ES) [Hartnoll et al. ’09] [Arsiwala et al. ’10] [Hartnoll&Tavanfar’10]

▶ Ingredients in the bulk:

- Maxwell gauge field: At = eL
κ
h(z) limz→0 At = µ|∂

- high density of fermions (Thomas-Fermi approx):

- T = 0 perfect fluid of free charged fermions in the bulk
- fermions are in a local Lorentz frame (LL) at each value of z: µloc(z) =

At√
−gtt

- fluid thermodynamic variables: p(z), ρ(z) and σ(z) with µloc(z)

- asymptotically AdS metric: ds2 = L2

z2
(−f(z)dt2 + g(z)dz2 + dx2 + dy2)
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Intro to Electron Star (ES) [Hartnoll et al. ’09] [Arsiwala et al. ’10] [Hartnoll&Tavanfar’10]

▶ The action

S = SHE + SM + Sfluid =

=
1

2κ2

∫
d4x

√
−G

(
R+

6

L2

)
−

1

4e2

∫
d4x

√
−G Fµν Fµν +

∫
d4x

√
−G p
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Intro to Electron Star (ES) [Hartnoll et al. ’09] [Arsiwala et al. ’10] [Hartnoll&Tavanfar’10]
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Intro to Electron Star (ES) [Hartnoll et al. ’09] [Arsiwala et al. ’10] [Hartnoll&Tavanfar’10]
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▶ Properties of ES: Why this model?

- back-reaction of the metric w.r.t. fluid in a controlled approximation

- In the interior IR emergent Lifshitz geom ⇒ in the boundary emergent critical exponent s!

f = z−2s+2 , g = g∞ , h = h∞ ⇒ (z, x, y) → λ(z, x, y) , t → λst

- promising geometry to characterise metallic quantum criticality!
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Intro to AdS Hard Wall (AdS-HW) [Sachdev’11]

▶ Ingredients in the bulk:

- the gauge field At = eL
κ
h(z)

- the metric is frozen: AdS4 truncated at z = zm (hard wall boundary cond at zm)

ds2 = L2

z2
(−dt2 + dz2 + dx2 + dy2)

- fermions of charge q and mass m: Ψ = bulk single-particle wave function
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Intro to AdS Hard Wall (AdS-HW) [Sachdev’11]

▶ The action:

S = SM + SD

= −
1

4e2

∫
d4x

√
−G Fµν Fµν +

∫
d4x

√
−G i

(
Ψ̄ΓµDµΨ+ mΨ̄Ψ

)
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Intro to AdS Hard Wall (AdS-HW) [Sachdev’11]

▶ Bulk Fermion Spectrum

Picture from [Sachdev’11]

▶ Properties

- it is a confining geometry: confinement scale sets the spacing

- different role for the fermions: here are really treated QM

- discrete number of bulk Fermi surfaces
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Go ahead!

▶ Summary so far

- Friedel oscillations as a diagnostic in order to detect signals of Fermi Surface in ES and
AdS-HW.

- Compute static current-current correlation functions, which are bosonic observables

- but we want to detect a fermionic structure... 1-loop diagrams!
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Go ahead!

▶ Summary so far

- Friedel oscillations as a diagnostic in order to detect signals of Fermi Surface in ES and
AdS-HW.

- Compute static current-current correlation functions, which are bosonic observables

- but we want to detect a fermionic structure... 1-loop diagrams!

▶ How do we proceed?

- Insert a “disturbance” in the system

- AdS-HW: δAt a perturbation in the gauge sector

- ES: δAx, δgtx, δgyx, δux, shear modes

- Compute the correlators:

- AdS HW: ⟨ρ(−k)ρ(k)⟩ with 1/N corrections (density-density correlator)

- ES: ⟨Jx(−k)Jx(k)⟩ with 1/N corrections (induced magnetic effect correlator)
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Friedel oscillations in AdS Hard Wall

▶ Set-up

- introduce an effective term in the action

SPol =
e2

2

∫
dzdz′d⃗x Aµ(z,−k⃗)Πµν(z, z′, k⃗)Aν(z′, k⃗) .

- with the 1-loop vacuum polarization tensor

Πµν(z, z′, ν, k⃗) = −
∫

dωd2p

(2π)3
Tr

[
MµG(ω, p, z, z′)MνG(ω + ν, k+ p, z′, z)

]
,

where Mµ = −qΓ0Γµ. We want to compute it for ν = 0.

- G is the fermionic Green’s function (in Lemhann representation):

G(ω, k, z, z′) =
∑
ℓ ̸=0

(
1

ω − Eℓ(k) + i η sign(Eℓ(k))

)
χℓ,k(z)χ

†
ℓ,k(z

′) ,
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where Mµ = −qΓ0Γµ. We want to compute it for ν = 0.

- G is the fermionic Green’s function (in Lemhann representation):

G(ω, k, z, z′) =
∑
ℓ ̸=0

(
1
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)
χℓ,k(z)χ

†
ℓ,k(z

′) ,

▶ Concrete computations

- The gap discretizes the spectrum: we can isolate one single bulk Fermi surface

- approximate the dispersion relation Eℓ(k) with a non-relativistic fermion

- use for the Π the expression for the 2+1 non-relativistic fermions

Π
µν
rel (z, z

′
, p⃗) ∼ #Tr

(
Γ
µ
χχ

†
|kΓ

ν
χχ

†
|k+p

)
|z,z′

× P
∫

d2k

(2π)2

(
θ(|k + p| − kf)θ(kf − |k|)

E1(k + p) − E1(k)

)
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Friedel oscillations in AdS Hard Wall

▶ Results: we do have a boundary FS! :)
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▶ Key-points

- factorization of the radius w.r.t. the boundary coordinates ⇒ factorization of the radius and
the boundary momentum!

- discreteness of the bulk FS (due to the gapped spectrum)

- delocalization of bulk FS: the wave functions fill all the way the space-time, they know all the
geometry!
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(Absence of!) Friedel oscillations in Electron Star

▶ Set-up

- the effective action

SPol =
e2

2

∫
dzdz′d2k

√
|g(z)||g(z′)|δAµ(z,−k)Πµν

CG,EC(z, z
′, k)δAν(z′, k)

where Πµν
CG,EC is the coarse grained polarization tensor in flat space.

- The fermionic loop: Recall the fermions live in a local Lorentz frame!

Πµν
CG,flat(z, z

′, kL.L.) = δ(z− z′)Πµν(0, kL.L.)

- We need to project in the LL all the quantities entering in Π: kL.L. =
k√
gyy

= k z

- Use for Π the expression for (3+1) QED.

Singular part: Πµν(0, kL.L.) ∼ Nµν(kL.L.) ln
(

kL.L. − 2kf
kL.L. + 2kf

)
+ ... ,

the crucial point are the quantities entering here:

kL.L. = z k , kF(z) =
√

µloc(z)2 − m2 =

√
(z At(z))2

f(z)
− m2

⇒ the Fermi momentum depends on z: there is a different bulk FS for each point in the
radial direction!
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(Absence of!) Friedel oscillations in Electron Star

▶ Results: we do NOT have a boundary FS! :(
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▶ Key-points

- continuum of bulk FS, each at each point in z

- each bulk FS is different: set by different value of the local µloc

- the bulk FS are very localized:... this is the ultimate meaning of the Thomas-Fermi approx!

▶ Lesson:

each different FS at a different radius will not act coherently ⇒ summing from the deep
interior (IR) to the boundary (UV) they are just smeared out!
cf. [Kulaxizi, Parnachev ’08] for D4 − D8 − D̄8
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Summary and Future

▶ Summary:

- Review of the electron star and AdS hard wall geometry;

- Brief intro to Friedel oscillations;

- Strategy to compute current-current correlators including 1-loop effect (effective action
with Π);

- Results: static current-current correlations show boundary FS in hard wall geometries but
NOT in the electron star geometry

- Lesson: In order that bulk FS induces boundary FS in all correlation functions, it is necessary
for the bulk FS to be non-local and discrete

▶ Future:

- Better “stringy” embedding for AdS Hard wall geometry? Yes: AdS soliton! It works the
same!

- Gravitational back-reaction in AdS Hard wall?

- What about the RG flow?

- Non-Fermi liquid?
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▶ Thanks!
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Bonus Track I:

▶ Classical: Bulk-to Boundary propagator in AdS hard wall

- The classical eom for the gauge field in AdS hard wall geom:(
∂2
z − k2x

)
A0(kx, z) = 0 .

- the classical bulk to boundary Green’s function (i.e. the solution which goes to one at the
boundary):

GB∂
0 (kx, z) = cosh(kxz)− tanh(kxzm) sinh(kxz) ⇒ ⟨ρ(−kx)ρ(kx)⟩0 = −kx tanh(kxzm)

▶ One-loop:

- the one-loop corrected eom for the gauge field:(
∂2
z − k2x

)
A0(kx, z) = −e2

∫
dz′

[
Π00

rel (z, z
′, kx)A0(kx, z′) + Π0x

rel (z, z
′, kx)Ax(k, z′)

]
- with a high confinement scale and a small Fermi surface volume, the diffeo-integral equation

can be solved perturbatively in λ ∼ 1
m2
⋆

for the bulk to boundary Green’s functions

GB∂(kx, z) = GB∂
0 (kx, z) + λGB∂

1 (kx, z) + .... (t− component)

0 =
(
∂2
z − k2x

)
GB∂
0 (kx, z) ,

0 =
(
∂2
z − k2x

)
GB∂
1 (kx, z) +

e2

λ

∫
dz′Π00

rel (z, z
′, kx)GB∂

0 (kx, z′)
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Bonus Track II: Polarization tensor in AdS hard wall

- What we are computing:
Π

µν
= Π

µν |vac + Π
µν
rel .

Π
µν
rel (z, z

′
, k⃗) = −

∫
dω d2p

(2π)3
Tr

[
MµG(ω, p⃗, z, z′)MνG(ω, k⃗ + p⃗, z′, z)

]
− Tr

[
MµG0

(ω, p⃗, z, z′)MνG0
(ω, k⃗ + p⃗, z′, z)

]
.

G(ω, k, z, z′) =
∑
ℓ̸=0

(
1

ω − Eℓ(k) + i η sign(Eℓ(k))

)
χℓ,k(z)χ

†
ℓ,k(z

′
) ,

- Isolating one-single Fermi surface:

Π
µν
rel (z, z

′
, p⃗) = Π

µν
analytic + Tr Mµ

χ1,k(z)χ
†
1,k(z

′
)Mν

χ1,k+p(z
′
)χ

†
1,k+p(z) ×∫

d2k

(2π)2

(
θ(|k + p| − kf)θ(kf − |k|)

E1(k + p) − E1(k) + iηs(E1(k))
−

θ(kf − |k + p|)θ(|k| − kf)

E1(k + p) − E1(k) − iηs(E1(k))

)
- Non-relativistic approximation: E1(k) ∼ a1 + b1k

2

Π
µν
rel (z, z

′
, p⃗) =

=
1

pb1

∫
d2k

(2π)2

[ θ(E1(k + p))θ(−E1(k))

p + 2 cos(θ)k + iηs(E1(k))
× Tr

(
Mµ

χ1,k(z)χ
†
1,k(z

′
)Mν

χ1,k+p(z
′
)χ

†
1,k+p(z)

)
−

θ(E1(k − p))θ(−E1(k))

p − 2 cos(θ)k − iηs(E1(k))
Tr

(
Mµ

χ1,k−p(z)χ
†
1,k−p(z

′
)Mν

χ1,k(z
′
)χ

†
1,k(z)

) ]
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Bonus Track II: Polarization tensor in AdS hard wall

- The static polarization is purely real:

Π
µν
rel (z, z

′
, p⃗) =

1

4b1π2p
P

∫
dkdθ

k θ(kf − k)

p/2 + k cos(θ)
Tr

(
Mµ

χ1,k(z)χ
†
1,k(z

′
)Mν

χ1,k+p(z
′
)χ

†
1,k+p(z)

)
- further approx: kf is small which means that the magnitude of the loop momentum is never large and that
the wave functions are slowly varying functions of the momenta:

Tr
(
M0

χ1,k(z)χ
†
1,k(z

′
)M0

χ1,k+p(z
′
)χ

†
1,k+p(z)

)
∼ Tr

(
M0

χ1,0(z)χ
†
1,0(z

′
)M0

χ1,p(z
′
)χ

†
1,p(z)

)
.

This approximation loses some of the angular information in the wave-functions, but is sufficient to display
the essential features.

- The result:

Π
µν
rel (z, z

′
, p⃗) =

1

4b1π2p
Tr

(
Mµ

χ1,0(z)χ
†
1,0(z

′
)Mν

χ1,p(z
′
)χ

†
1,p(z)

)
P

∫
dkdθ

k θ(kf − k)

p/2 + k cos(θ)

- Introducing the effective expansion parameter, λ ≡ 1
4πb1

,

Π
µν
rel (z, z

′
, p⃗) = −λTr

(
Mµ

χ1,0(z)χ
†
1,0(z

′
)Mν

χ1,p(z
′
)χ

†
1,p(z)

)1 −

√
1 −

(
2kf
p

)2

θ(p − 2kf)


This is the form of the polarization used in the numerics.


