Corrections to Navier-Stokes equations from bulk fermionic bilinears

Lorenzo Giulio Celso Gentile

Università degli studi di Padova

$$
11 \text { maggio } 2012
$$

Contents

(1) The AdS/CFT correspondence

- Non-linear fluid dynamics from gravity
(2) Black hole superpartners
- Gravitino Variations
- Correction to metric
- Correction to Navier-Stokes equations
(3) Future development

4 Conclusion

The AdS/CFT correspondence

The AdS/CFT correspondence relates the type IIB string on $A d S_{5} \times \mathcal{S}^{5}$ with a stack of N D3-brane to a dual to an $S U(N)$ gauge theory, $3+1$-dimensional on $A d S$ boundary. Such a theory will be an $\mathscr{N}=4$ CFT.

Minkowski

Parameters

String theory

- String lenght $\ell=\sqrt{\alpha^{\prime}}$
- String coupling g_{s}
- AdS radius R
- $\alpha^{\prime} \rightarrow 0$ or $R \rightarrow \infty$
$\Rightarrow \frac{R^{4}}{\alpha^{\prime 2}}=4 \pi g_{s} N=\lambda \rightarrow \infty$
- Pure supergravity

Gauge theory

- Gauge group $S U(N)$
- 't Hooft coupling constant

$$
\lambda=g_{Y M}^{2} N
$$

- $\lambda \rightarrow \infty$

Parameters

String theory

- String lenght $\ell=\sqrt{\alpha^{\prime}}$
- String coupling g_{s}
- AdS radius R
- $\alpha^{\prime} \rightarrow 0$ or $R \rightarrow \infty$
$\Rightarrow \frac{R^{4}}{\alpha^{\prime 2}}=4 \pi g_{s} N=\lambda \rightarrow \infty$
- Pure supergravity

Gauge theory

- Gauge group $S U(N)$
- 't Hooft coupling constant $\lambda=g_{Y M}^{2} N$
- $\lambda \rightarrow \infty$
- Strongly coupled

Parameters

String theory

- String lenght $\ell=\sqrt{\alpha^{\prime}}$
- String coupling g_{s}
- AdS radius R
- $\alpha^{\prime} \rightarrow 0$ or $R \rightarrow \infty$

$$
\Rightarrow \frac{R^{4}}{\alpha^{\prime 2}}=4 \pi g_{s} N=\lambda \rightarrow \infty
$$

- Pure supergravity
- $\lambda \rightarrow \infty$
- Strongly coupled

Gauge theory

- Gauge group $S U(N)$
- 't Hooft coupling constant

$$
\lambda=g_{Y M}^{2} N
$$

$Z_{S}\left[\phi_{0}(x)\right]=\left\langle\mathrm{e}^{\int_{\partial A d S_{d+1}} \phi_{0}(x) \mathcal{O}(x)}\right\rangle_{\mathrm{CFT}}$
partition function
\uparrow
generating functional of the correlator

Parameters

String theory

- String lenght $\ell=\sqrt{\alpha^{\prime}}$
- String coupling g_{s}
- AdS radius R
- $\alpha^{\prime} \rightarrow 0$ or $R \rightarrow \infty$

$$
\Rightarrow \frac{R^{4}}{\alpha^{\prime 2}}=4 \pi g_{s} N=\lambda \rightarrow \infty
$$

- Pure supergravity
- $\lambda \rightarrow \infty$
- Strongly coupled

Gauge theory

- Gauge group $S U(N)$
- 't Hooft coupling constant

$$
\lambda=g_{Y M}^{2} N
$$

$$
\begin{aligned}
& Z_{S}\left[\phi_{0}(x)\right]=\left\langle\mathrm{e}^{\int_{\partial A d S_{d+1}} \phi_{0}(x) \mathcal{O}(x)}\right\rangle_{\mathrm{CFT}} \\
& \uparrow \uparrow \\
& \text { partition function } \\
& \text { generating functional } \\
& \text { of the correlator } \Rightarrow Z_{\text {string }} \approx e^{-S_{\text {supra }}}
\end{aligned}
$$

Non-linear fluid dynamics from gravity

We start with a black brane in $A d S_{5}$

$$
\begin{aligned}
d s^{2} & =-r^{2} f(b r) d t^{2}+\frac{d r^{2}}{r^{2} f(b r)}+r^{2} \delta_{i j} d x^{i} d x^{j} \\
f(r) & =1-\frac{\mu}{r^{4}}
\end{aligned}
$$

Performing a boost and a dilatation we get a "boosted black brane"

Non-linear fluid dynamics from gravity

We start with a black brane in $A d S_{5}$

$$
\begin{aligned}
d s^{2} & =-r^{2} f(b r) d t^{2}+\frac{d r^{2}}{r^{2} f(b r)}+r^{2} \delta_{i j} d x^{i} d x^{j} \\
f(r) & =1-\frac{\mu}{r^{4}}
\end{aligned}
$$

Performing a boost and a dilatation we get a "boosted black brane"

$$
\begin{aligned}
d s^{2} & =\frac{d r^{2}}{r^{2} f(b r)}+r^{2}\left[-f(b r) u_{\mu} u_{\nu}+P_{\mu \nu}\right] d x^{\mu} d x^{\nu} \\
u^{t} & =\left(1-\beta^{2}\right)^{-\frac{1}{2}} u^{i}=\beta^{i}\left(1-\beta^{2}\right)^{-\frac{1}{2}}
\end{aligned}
$$

It was shown that promoting b and β to local function

$$
\begin{array}{r}
b \rightarrow b\left(x^{\mu}\right) \\
\beta_{i} \rightarrow \beta_{i}\left(x^{\mu}\right)
\end{array}
$$

It was shown that promoting b and β to local function

$$
\begin{array}{r}
b \rightarrow b\left(x^{\mu}\right) \\
\beta_{i} \rightarrow \beta_{i}\left(x^{\mu}\right)
\end{array}
$$

and imposing Einstein's equation for the new metric you get exactly the linearized Navier-Stokes equation for a perfect fluid [Minwalla et al., 08]

$$
\begin{aligned}
\partial_{i} b & =\partial_{0} \beta_{i} \\
\partial_{i} \beta^{i} & =3 \partial_{0} b
\end{aligned}
$$

It is possible to work a more general frame, promoting Killing vectors parameters to local ${ }_{[L . G . C . G ., ~ P . A . ~ G r a s s i, ~ A . ~ M e z z a l i r a, ~ 11] ~}$.

Calculation technology

Perturbative expansion

Coefficients computation

Calculation technology

Perturbative expansion

Coefficients computation

- B.H. metric $g\left(x^{\mu}\right)$

Calculation technology

Perturbative expansion

Coefficients computation

- B.H. metric $g\left(x^{\mu}\right)$
- $b \rightarrow b\left(x^{\mu}\right), \beta \rightarrow \beta\left(x^{\mu}\right)$

Calculation technology

Perturbative expansion

Coefficients computation

- B.H. metric $g\left(x^{\mu}\right)$
- $b \rightarrow b\left(x^{\mu}\right), \beta \rightarrow \beta\left(x^{\mu}\right)$
- Impose Einstein's eqs. $G_{\mu \nu}=0$

Calculation technology

Perturbative expansion

Coefficients computation

- B.H. metric $g\left(x^{\mu}\right)$
- $b \rightarrow b\left(x^{\mu}\right), \beta \rightarrow \beta\left(x^{\mu}\right)$
- Impose Einstein's eqs. $G_{\mu \nu}=0$
- Constraints on b e β

Calculation technology

Perturbative expansion

- B.H. metric $g\left(x^{\mu}\right)$
- $b \rightarrow b\left(x^{\mu}\right), \beta \rightarrow \beta\left(x^{\mu}\right)$
- Impose Einstein's eqs. $G_{\mu \nu}=0$
- Constraints on b e β

Coefficients computation

- Metric "corrections"

Calculation technology

Perturbative expansion

- B.H. metric $g\left(x^{\mu}\right)$
- $b \rightarrow b\left(x^{\mu}\right), \beta \rightarrow \beta\left(x^{\mu}\right)$
- Impose Einstein's eqs.
$G_{\mu \nu}=0$
- Constraints on b e β

Coefficients computation

- Metric "corrections"
- Extrinsic curvature

Calculation technology

Perturbative expansion

- B.H. metric $g\left(x^{\mu}\right)$
- $b \rightarrow b\left(x^{\mu}\right), \beta \rightarrow \beta\left(x^{\mu}\right)$
- Impose Einstein's eqs.

$$
G_{\mu \nu}=0
$$

- Constraints on b e β

Coefficients computation

- Metric "corrections"
- Extrinsic curvature
- Boundary stress-energy tensor

Calculation technology

Perturbative expansion

- B.H. metric $g\left(x^{\mu}\right)$
- $b \rightarrow b\left(x^{\mu}\right), \beta \rightarrow \beta\left(x^{\mu}\right)$
- Impose Einstein's eqs.
$G_{\mu \nu}=0$
- Constraints on b e β

Coefficients computation

- Metric "corrections"
- Extrinsic curvature
- Boundary stress-energy tensor
- Exact fluid-dynamics coefficients

Dictionary

(Super) Gravity

Fluid dynamics

Dictionary

(Super) Gravity

- $b \rightarrow$ B.H. temperature

Fluid dynamics

- Fluid temperature

Dictionary

(Super) Gravity

- $b \rightarrow$ B.H. temperature
- $\beta \rightarrow$ Black hole boost velocity

Fluid dynamics

- Fluid temperature
- Fluid velocity

Note that both b and β_{i} are obtained promoting Killing vectors parameters to local.

Dictionary

(Super) Gravity

- $b \rightarrow$ B.H. temperature
- $\beta \rightarrow$ Black hole boost velocity
- Einstein's eqs. (weakly coupled)

Fluid dynamics

- Fluid temperature
- Fluid velocity
- Navier-Stokes eqs (strongly coupled)

Note that both b and β_{i} are obtained promoting Killing vectors parameters to local.

Dictionary

(Super) Gravity

- $b \rightarrow$ B.H. temperature
- $\beta \rightarrow$ Black hole boost velocity
- Einstein's eqs. (weakly coupled)
- Other zero modes

Fluid dynamics

- Fluid temperature
- Fluid velocity
- Navier-Stokes eqs (strongly coupled)
- Other conserved q.ty

Note that both b and β_{i} are obtained promoting Killing vectors parameters to local.

Black hole superpartners

$A d S_{5}$ is provided with 8 Killing spinors that solve the Killing spinors equation

$$
\mathrm{d} \epsilon_{0}+\frac{1}{4} \omega_{A d S}^{a b} \Gamma_{a b} \epsilon_{0}+\frac{1}{2} e_{A d S}^{a} \Gamma_{a} \epsilon_{0}=0
$$

If we insert this ϵ_{0} into the same equation with $\omega_{b . h .}$. and $e_{b . h \text {. }}^{a}$ we get gravitino's variation ${ }_{[S a b r a}$ et al. 98, Sabra et al. 99, Sabra et al. 05]

$$
\mathrm{d} \epsilon_{0}+\frac{1}{4} \omega_{b . h .}^{a b} \Gamma_{a b} \epsilon_{0}+\frac{1}{2} e_{b . h .}^{a} \Gamma_{a} \epsilon_{0} \neq 0
$$

Black hole superpartners

$A d S_{5}$ is provided with 8 Killing spinors that solve the Killing spinors equation

$$
\mathrm{d} \epsilon_{0}+\frac{1}{4} \omega_{A d S}^{a b} \Gamma_{a b} \epsilon_{0}+\frac{1}{2} e_{A d S}^{a} \Gamma_{a} \epsilon_{0}=0
$$

If we insert this ϵ_{0} into the same equation with $\omega_{b . h .}$. and $e_{b . h \text {. }}^{a}$ we get gravitino's variation ${ }_{[S a b r a}$ et al. 98, Sabra et al. 99, Sabra et al. 05]

$$
\mathrm{d} \epsilon_{0}+\frac{1}{4} \omega_{b . h .}^{a b} \Gamma_{a b} \epsilon_{0}+\frac{1}{2} e_{b . h .}^{a} \Gamma_{a} \epsilon_{0}=\delta \psi
$$

Once we decompose in components the Killing spinor equation we obtain

$$
\begin{aligned}
& \delta \psi_{r}=\partial_{r} \epsilon+\frac{1}{2 \sqrt{f^{2}+\frac{\mu}{r^{2}}}} \Gamma_{r} \epsilon \\
& \delta \psi_{t}=\partial_{t} \epsilon+\frac{1}{2} \Gamma_{t}\left[\left(r-\frac{\mu}{r^{3}}\right) \Gamma_{r}+\sqrt{f^{2}+\frac{\mu}{r^{2}}}\right] \epsilon \\
& \delta \psi_{i}=\nabla_{i} \epsilon+\frac{1}{2} e_{i}^{b} \Gamma_{b}\left[\frac{1}{r} \sqrt{f^{2}+\frac{\mu}{r^{2}}} \Gamma_{r}+1\right] \epsilon
\end{aligned}
$$

that can be simplified using the identity for $A d S$ spinor and expanding over $\mu=0$

Once we decompose in components the Killing spinor equation we obtain

$$
\begin{aligned}
& \delta \psi_{r}=\partial_{r} \epsilon+\frac{1}{2 \sqrt{f^{2}+\frac{\mu}{r^{2}}}} \Gamma_{r} \epsilon \\
& \delta \psi_{t}=\partial_{t} \epsilon+\frac{1}{2} \Gamma_{t}\left[\left(r-\frac{\mu}{r^{3}}\right) \Gamma_{r}+\sqrt{f^{2}+\frac{\mu}{r^{2}}}\right] \epsilon \\
& \delta \psi_{i}=\nabla_{i} \epsilon+\frac{1}{2} e_{i}^{b} \Gamma_{b}\left[\frac{1}{r} \sqrt{f^{2}+\frac{\mu}{r^{2}}} \Gamma_{r}+1\right] \epsilon
\end{aligned}
$$

that can be simplified using the identity for $A d S$ spinor and expanding over $\mu=0$

$$
\begin{aligned}
& \delta \psi_{r}=-\frac{1}{4 f^{3}} \frac{\mu}{r^{2}} \Gamma_{r} \epsilon \quad \delta \psi_{t}=\frac{1}{2} \Gamma_{t}\left(-\frac{1}{r} \Gamma_{r}+\frac{1}{2 f}\right) \frac{\mu}{r^{2}} \epsilon \\
& \delta \psi_{i}=\frac{r}{4 f} \hat{\Gamma}_{i} \Gamma_{r} \frac{\mu}{r^{2}} \epsilon
\end{aligned}
$$

Correction to metric

In this way we can work out

$$
\delta_{\epsilon}^{2} g_{\mu \nu}=\operatorname{Re}\left(\bar{\epsilon} \Gamma_{(\mu} \delta \psi_{\nu)}\right)
$$

That reads

Correction to metric

In this way we can work out

$$
\delta_{\epsilon}^{2} g_{\mu \nu}=\operatorname{Re}\left(\bar{\epsilon} \Gamma_{(\mu} \delta \psi_{\nu)}\right)
$$

That reads

$$
\delta_{\epsilon}^{2} g_{r r}=\frac{1}{f^{2}} \frac{2 \mu}{r^{2} f^{2}} \lambda N \xrightarrow[\delta_{\epsilon}^{2} g_{t i}=\frac{3 \mu}{r^{2}} \lambda \hat{K}_{i}]{ } \delta_{\epsilon}^{2} g_{t t}=f^{2} \frac{2 \mu}{r^{2} f^{2}} \lambda N
$$

and all other zero, where we have defined
$\lambda=\varepsilon^{\dagger} \varepsilon, N=\eta^{\dagger} \eta, \hat{K}_{i}=\eta^{\dagger} \frac{\sigma_{j} e_{i}^{j}}{r} \eta$ and where ε are 2 -dimensional Majorana (real) spinors and η are spinors for the sphere.

Correction to Navier-Stokes equations

Once we impose Einstein's equation we get the constraints (large r limit has been taken)

$$
\begin{aligned}
& \left(\partial_{i} \beta_{i}-3 \partial_{0} b\right)+\frac{1}{2}\left(w_{i} \partial_{i} \lambda+N \partial_{0} \lambda\right)=0 \\
& \left(\partial_{0} \beta_{i}-3 \partial_{i} b\right)-\frac{1}{2}\left(N \partial_{i} \lambda+3 w_{i} \partial_{0} \lambda\right)=0
\end{aligned}
$$

where $w_{i}=\varepsilon_{i j k} w_{j k}$ and $w_{k j}$ a 3 -dimensional antisymmetric matrix of parameters.
Note that the compatibility condition is

$$
N^{2}=3 w_{i} w_{i}
$$

Future development

The next step to take is compute full metric at first order and then the stress energy tensor using Brown and York prescription [Brown, York 93].
We define the constraint that foliate the spacetime at constant r :

$$
\Phi=r-c=0
$$

with $c \in \mathcal{R}$.

Future development

The next step to take is compute full metric at first order and then the stress energy tensor using Brown and York prescription ${ }_{[B r o w n, ~ Y o r k ~ 93] ~}$.
We define the constraint that foliate the spacetime at constant r :

$$
\Phi=r-c=0
$$

with $c \in \mathcal{R}$. The outward pointing normal vector to the boundary $\partial \mathcal{M}_{r=c}$ is defined as

$$
n_{M}=\frac{\partial_{M} \Phi}{\sqrt{g^{R S} \partial_{R} \Phi \partial_{S} \Phi}}
$$

Using n_{M} we can define the boundary metric γ :

$$
\hat{\gamma}_{M N}=g_{M N}-n_{M} n_{N}
$$

In order to obtain a 4-dimensional metric we have to eliminate from $\hat{\gamma}$ the column and the row corresponding to r :

Using n_{M} we can define the boundary metric γ :

$$
\hat{\gamma}_{M N}=g_{M N}-n_{M} n_{N}
$$

In order to obtain a 4-dimensional metric we have to eliminate from $\hat{\gamma}$ the column and the row corresponding to r :

$$
\gamma_{M N}=\left(\begin{array}{c|cc}
\gamma_{r r} & \gamma_{r t} & \gamma_{r j} \\
\hline \gamma_{t r} & \gamma_{\mu \nu} \\
\gamma_{i r} &
\end{array}\right)
$$

Using n_{M} we can define the boundary metric γ :

$$
\hat{\gamma}_{M N}=g_{M N}-n_{M} n_{N}
$$

In order to obtain a 4-dimensional metric we have to eliminate from $\hat{\gamma}$ the column and the row corresponding to r :

$$
\gamma_{M N}=\left(\begin{array}{c|cc}
\gamma_{r r} & \gamma_{r t} & \gamma_{r j} \\
\hline \gamma_{t r} & \gamma_{\mu \nu} \\
\gamma_{i r} &
\end{array}\right)
$$

In a similar fashion we calculate the extrinsic curvature $\Theta_{M N}$ and then $\Theta_{\mu \nu}$:

$$
\Theta_{M N}=-\frac{1}{2}\left(\nabla_{M} n_{N}-\nabla_{N} n_{M}\right)
$$

Finally we can define our (boundary) stress energy tensor as [Balasubramanian, Kraus 99]

$$
T^{\mu \nu}=\frac{1}{8 \pi G}\left(\Theta^{\mu \nu}-\Theta \gamma^{\mu \nu}-3 \gamma^{\mu \nu}-\frac{1}{2} G^{\mu \nu}\right)
$$

where Θ is defined as the trace of $\Theta^{\mu \nu}$ and $G^{\mu \nu}$ is the Einstein tensor build from $\gamma^{\mu \nu}$. Note that we set $R_{A d S}=1$.

Conclusion

The present work opens up to several new generalizations:

Conclusion

The present work opens up to several new generalizations:

- Instead of taking as local functions only the bilinears, one can promote the fermions themselves to be local functions of the boundary coordinates. In that case, one needs to study the constraints coming from the Rarita-Schwinger equations in the same spirit as done in work on Minwalla et al.

Conclusion

The present work opens up to several new generalizations:

- Instead of taking as local functions only the bilinears, one can promote the fermions themselves to be local functions of the boundary coordinates. In that case, one needs to study the constraints coming from the Rarita-Schwinger equations in the same spirit as done in work on Minwalla et al.
- What is the form of the complete metric transformation? Compute it up to fourth order is the only way to obtain the full stress energy tensor.[L.G.C.G., P.A. Grassi, A. Mezzalira]

