The four-dimensional BF theory with a planar boundary

Andrea Amoretti

andrea.amoretti@ge.infn.it

Universitá degli Studi di Genova
four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines

Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

May 30, 2012

In collaboration with: A. Blasi, N. Maggiore, N. Magnoli Based on: arXiv:1205.6156

Outlines

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines
Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

Outlines

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines
Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

Outlines

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines
Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions
3. The physics on the boundary

Topological field theories and their physical implication
A. Amoretti

Outlines

Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

Figure: Resistance measurements for IQHE and FQHE

$$
S_{C S}=\frac{k}{2 \pi} \int d^{3} x \epsilon^{\mu \nu \rho} A_{\mu} \partial_{\nu} A_{\rho}
$$

回 X. G. Wen, Adv. Phys 44, 1995 (QHE)

Topological field theories and their physical implication

The
four-dimensional
BF theory with a planar boundary
A. Amoretti

Outlines

Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

Figure: Band structure of $\mathrm{Bi}_{2} \mathrm{Se}_{3}$ (ARPES)

Bernevig and Zhang, Phys. Rev. Lett 96, 2006 (TI)
葍 Cho and Moore, Annals Phys. 326, 2011 (TI)
Diamantini et al, Nucl. Phys B, 1995 (Superconductivity)

The classical theory

The classical action
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines

$$
\begin{aligned}
& S=\int_{M} d^{4} x \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} B_{\rho \sigma} \\
& F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
& {\left[A_{\mu}\right]=1, \quad\left[B_{\mu \nu}\right]=2}
\end{aligned}
$$

Birmigham et al., Phys. Rept., 209, 1991

Introduction
The classical theory and the gauge-fixing

The introduction
of the boundary
The physics on the boundary

Conclusions

The classical theory

The classical action
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines

$$
\begin{aligned}
& S=\int_{M} d^{4} x \epsilon^{\mu \nu \rho \sigma} F_{\mu \nu} B_{\rho \sigma} \\
& F_{\mu \nu} \equiv \partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
& {\left[A_{\mu}\right]=1, \quad\left[B_{\mu \nu}\right]=2}
\end{aligned}
$$

Introduction
The classical theory and the gauge-fixing

The introduction
of the boundary
The physics on
the boundary
Birmigham et al., Phys. Rept., 209, 1991

Symmetries

$$
\left\{\begin{array} { l }
{ \delta ^ { (1) } A _ { \mu } = - \partial _ { \mu } \theta } \\
{ \delta ^ { (1) } B _ { \mu \nu } = 0 , }
\end{array} \quad \left\{\begin{array}{l}
\delta^{(2)} A_{\mu}=0 \\
\delta^{(2)} B_{\mu \nu}=-\left(\partial_{\mu} \varphi_{\nu}-\partial_{\nu} \varphi_{\mu}\right)
\end{array}\right.\right.
$$

The classical theory

We need to fix the gauge

1. Axial gauge:

Outlines

Introduction
The classical theory and the gauge-fixing

The introduction
of the boundary
The physics on
the boundary
Conclusions

The classical theory

We need to fix the gauge
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. Axial gauge:

$$
A_{3}=B_{i 3}=0, \quad i=0,1,2
$$

2. We fix the gauge by adding to S the term

$$
S_{g f}=\int_{M} d^{4} x\left(b A_{3}+d^{i} B_{i 3}\right)
$$

Outlines

Introduction
The classical theory and the gauge-fixing

The introduction
of the boundary
The physics on
the boundary
Conclusions

The classical theory

We need to fix the gauge
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. Axial gauge:

$$
A_{3}=B_{i 3}=0, \quad i=0,1,2
$$

2. We fix the gauge by adding to S the term

$$
S_{g f}=\int_{M} d^{4} x\left(b A_{3}+d^{i} B_{i 3}\right)
$$

Outlines

Introduction
The classical theory and the gauge-fixing

The introduction
of the boundary
The physics on
the boundary
Conclusions
3. The residual gauge invariance and the Ward identities:

$$
\begin{aligned}
& \partial_{i} J_{A^{i}}^{i}+\partial_{3} J_{A^{3}}^{3}+\partial_{3} b=0 \\
& \partial_{j} J_{B^{i j}}^{i j}+\partial_{3} J_{B^{i 3}}^{i 3}+\frac{1}{2} \partial_{3} d^{i}=0 .
\end{aligned}
$$

The boundary $x_{3}=0$

The Symanzik's method
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. Locality:

$$
\mathcal{L} \sim \delta^{(n)}\left(x_{3}\right) f\left(x_{i}, x_{3}\right)
$$

Separability:

R K. Symanzik, Nucl. Phys B 190, 1981
囯 S. Emery and O. Piguet Helv. Phys. Acta, 64, 1991

The boundary $x_{3}=0$

The Symanzik's method
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. Locality:

$$
\mathcal{L} \sim \delta^{(n)}\left(x_{3}\right) f\left(x_{i}, x_{3}\right)
$$

2. Separability:

$$
\begin{gathered}
\Delta_{A B}\left(x, x^{\prime}\right)=\theta\left(x_{3}\right) \theta\left(x_{3}^{\prime}\right) \Delta_{A B}^{+}+\theta\left(-x_{3}\right) \theta\left(-x_{3}^{\prime}\right) \Delta_{A B}^{-} \\
\Delta_{A B}\left(x, x^{\prime}\right)=0 \text { if } x_{3} x_{3}^{\prime}<0
\end{gathered}
$$

Outlines
Introduction
The classical
theory and the
gauge-fixing
The introduction of the boundary

The physics on
the boundary
Conclusions

囯 K. Symanzik, Nucl. Phys B 190, 1981
囯 S. Emery and O. Piguet Helv. Phys. Acta, 64, 1991

The boundary $x_{3}=0$
The Symanzik's method
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. Locality:

$$
\mathcal{L} \sim \delta^{(n)}\left(x_{3}\right) f\left(x_{i}, x_{3}\right)
$$

2. Separability:

$$
\begin{gathered}
\Delta_{A B}\left(x, x^{\prime}\right)=\theta\left(x_{3}\right) \theta\left(x_{3}^{\prime}\right) \Delta_{A B}^{+}+\theta\left(-x_{3}\right) \theta\left(-x_{3}^{\prime}\right) \Delta_{A B}^{-} \\
\Delta_{A B}\left(x, x^{\prime}\right)=0 \text { if } x_{3} x_{3}^{\prime}<0
\end{gathered}
$$

Outlines
Introduction
The classical
theory and the
gauge-fixing
The introduction of the boundary

The physics on
the boundary
Conclusions

囯 K. Symanzik, Nucl. Phys B 190, 1981
国 S. Emery and O. Piguet Helv. Phys. Acta, 64, 1991
The boundary Lagrangian

$$
\mathcal{L}_{b}=\delta\left(x_{3}\right)\left[\frac{a_{1}}{2} \epsilon^{i j k} \partial_{i} A_{j} A_{k}+a_{2} A_{i} \tilde{B}^{i}+a_{3} \frac{m}{2} A_{i} A^{i}\right]
$$

The boundary $x_{3}=0$

The boundary conditions
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. The equations of motion with a boundary term for A^{i} and \tilde{B}^{i} :

$$
\begin{aligned}
& \partial_{3} \tilde{B}^{i}=-\delta\left(x^{3}\right)\left[a_{1} \epsilon^{i j k}\left(\partial_{j} A_{k}\right)^{+}+a_{2} \tilde{B}^{i+}+a_{3} m A^{i+}\right] \\
& \epsilon^{i j k} \partial_{3} A_{k}=a_{2} \delta\left(x^{3}\right) \epsilon^{i j k} A_{k}^{+}
\end{aligned}
$$

The algebraic system for the fields on the boundary:
The physics on
the boundary
Conclusions

The boundary $x_{3}=0$

The boundary conditions
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. The equations of motion with a boundary term for A^{i} and \tilde{B}^{i} :

$$
\begin{aligned}
& \partial_{3} \tilde{B}^{i}=-\delta\left(x^{3}\right)\left[a_{1} \epsilon^{i j k}\left(\partial_{j} A_{k}\right)^{+}+a_{2} \tilde{B}^{i+}+a_{3} m A^{i+}\right] \\
& \epsilon^{i j k} \partial_{3} A_{k}=a_{2} \delta\left(x^{3}\right) \epsilon^{i j k} A_{k}^{+}
\end{aligned}
$$

2. The algebraic system for the fields on the boundary:

$$
\begin{aligned}
& \left(1+a_{2}\right) \tilde{B}^{i+}=-a_{1} \epsilon^{i j k} \partial_{j} A_{k}^{+}-a_{3} m A^{i+} \\
& \left(1-a_{2}\right) A_{i}^{+}=0
\end{aligned}
$$

The only acceptable boundary condition is:

The boundary $x_{3}=0$

The boundary conditions

1. The equations of motion with a boundary term for A^{i} and \tilde{B}^{i} :

$$
\begin{aligned}
& \partial_{3} \tilde{B}^{i}=-\delta\left(x^{3}\right)\left[a_{1} \epsilon^{i j k}\left(\partial_{j} A_{k}\right)^{+}+a_{2} \tilde{B}^{i+}+a_{3} m A^{i+}\right] \\
& \epsilon^{i j k} \partial_{3} A_{k}=a_{2} \delta\left(x^{3}\right) \epsilon^{i j k} A_{k}^{+}
\end{aligned}
$$

2. The algebraic system for the fields on the boundary:

$$
\begin{aligned}
& \left(1+a_{2}\right) \tilde{B}^{i+}=-a_{1} \epsilon^{i j k} \partial_{j} A_{k}^{+}-a_{3} m A^{i+} \\
& \left(1-a_{2}\right) A_{i}^{+}=0
\end{aligned}
$$

3. The only acceptable boundary condition is:

$$
\tilde{B}^{i+}=-\frac{a_{3} m}{2} A^{i+}
$$

The Ward identities and the boundary algebra

 The integrated broken Ward identities:The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x_{3} \partial_{i} J_{A^{i}}^{i}=\partial_{i} \tilde{B}^{i+} \\
& \int_{-\infty}^{\infty} d x_{3} \epsilon^{i j k} \partial_{j} J_{\tilde{B}^{k}}=-\epsilon^{i j k} \partial_{j} A_{k}^{+}
\end{aligned}
$$

Outlines

Introduction

The classical
theory and the gauge-fixing

The introduction
of the boundary
The physics on the boundary

Conclusions

The Ward identities and the boundary algebra

 The integrated broken Ward identities:The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x_{3} \partial_{i} J_{A^{i}}^{i}=\partial_{i} \tilde{B}^{i+} \\
& \int_{-\infty}^{\infty} d x_{3} \epsilon^{i j k} \partial_{j} J_{\tilde{B}^{k}}=-\epsilon^{i j k} \partial_{j} A_{k}^{+}
\end{aligned}
$$

The boundary algebra

$$
\partial_{l} \delta^{(3)}\left(X-X^{\prime}\right)=\partial_{i} \Delta_{A_{l} \tilde{B}^{i}}\left(X^{\prime}, X\right)
$$

The physics on the boundary

Conclusions

The Ward identities and the boundary algebra
The integrated broken Ward identities:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} d x_{3} \partial_{i} J_{A^{i}}^{i}=\partial_{i} \tilde{B}^{i+} \\
& \int_{-\infty}^{\infty} d x_{3} \epsilon^{i j k} \partial_{j} J_{\tilde{B}^{k}}=-\epsilon^{i j k} \partial_{j} A_{k}^{+}
\end{aligned}
$$

The boundary algebra

$$
\partial_{I} \delta^{(3)}\left(X-X^{\prime}\right)=\partial_{i} \Delta_{A_{i} \tilde{B}^{i}}\left(X^{\prime}, X\right)
$$

$$
\begin{aligned}
& {\left[\tilde{B}^{0+}(X), A_{\beta}\left(X^{\prime}\right)\right]_{t=t^{\prime}}=\partial_{\beta} \delta^{(2)}\left(X^{\prime}-X\right)} \\
& {\left[\tilde{B}^{0+}(X), \tilde{B}_{0}^{+}\left(X^{\prime}\right)\right]_{t=t^{\prime}}=0} \\
& {\left[A_{\beta}^{+}(X), A^{\gamma+}\left(X^{\prime}\right)\right]_{t=t^{\prime}}=0}
\end{aligned}
$$

E- A. P. Balachandran et al., Mod.Phys.Lett. A8, 1993

The dimensional reduction

The new fields and their symmetries
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti
1.

$$
\left\{\begin{array}{l}
\partial_{i} \tilde{B}^{i+}=0 \\
\epsilon^{i j k} \partial_{j} A_{k}^{+}=0
\end{array}\right.
$$

Outlines

Introduction
The classical theory and the gauge-fixing

The introduction
of the boundary
The physics on the boundary

Conclusions

The dimensional reduction

The new fields and their symmetries
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti
1.

$$
\left\{\begin{array} { l }
{ \partial _ { i } \tilde { B } ^ { i + } = 0 } \\
{ \epsilon ^ { i j k } \partial _ { j } A _ { k } ^ { + } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\tilde{B}^{i+}=\epsilon^{i j k} \partial_{j} \zeta_{k} \\
A_{i}^{+}=\partial_{i} \Lambda
\end{array}\right.\right.
$$

Outlines

Introduction
The classical
theory and the gauge-fixing

The introduction
of the boundary
The physics on the boundary

Conclusions

The dimensional reduction

The new fields and their symmetries
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti
1.

$$
\left\{\begin{array} { l }
{ \partial _ { i } \tilde { B } ^ { i + } = 0 } \\
{ \epsilon ^ { i j k } \partial _ { j } A _ { k } ^ { + } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\tilde{B}^{i+}=\epsilon^{i j k} \partial_{j} \zeta_{k} \\
A_{i}^{+}=\partial_{i} \Lambda
\end{array}\right.\right.
$$

2.

$$
\left\{\begin{array}{l}
\delta \Lambda=\text { const } \\
\delta \zeta_{i}=\partial_{i} \theta
\end{array}\right.
$$

The introduction
of the boundary
The physics on the boundary

The dimensional reduction

The new fields and their symmetries
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti
1.

$$
\left\{\begin{array} { l }
{ \partial _ { i } \tilde { B } ^ { i + } = 0 } \\
{ \epsilon ^ { i j k } \partial _ { j } A _ { k } ^ { + } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\tilde{B}^{i+}=\epsilon^{i j k} \partial_{j} \zeta_{k} \\
A_{i}^{+}=\partial_{i} \Lambda
\end{array}\right.\right.
$$

Outlines
Introduction
The classical
theory and the
gauge-fixing
2.

$$
\left\{\begin{array}{l}
\delta \Lambda=\text { const } \\
\delta \zeta_{i}=\partial_{i} \theta
\end{array}\right.
$$

The introduction
of the boundary
The physics on
the boundary
Conclusions

The boundary condition and the duality relation

$$
\epsilon^{i j k} \partial_{j} \zeta_{k}=-\frac{a_{3} m}{2} \partial^{i} \Lambda
$$

The dimensional reduction

The new fields and their symmetries
The
four-dimensional
BF theory with a
planar boundary
A. Amoretti
1.

$$
\left\{\begin{array} { l }
{ \partial _ { i } \tilde { B } ^ { i + } = 0 } \\
{ \epsilon ^ { i j k } \partial _ { j } A _ { k } ^ { + } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\tilde{B}^{i+}=\epsilon^{i j k} \partial_{j} \zeta_{k} \\
A_{i}^{+}=\partial_{i} \Lambda
\end{array}\right.\right.
$$

Outlines
Introduction
The classical
theory and the
gauge-fixing
2.

$$
\left\{\begin{array}{l}
\delta \Lambda=\text { const } \\
\delta \zeta_{i}=\partial_{i} \theta
\end{array}\right.
$$

The introduction
of the boundary
The physics on
the boundary
Conclusions

The boundary condition and the duality relation
$\epsilon^{i j k} \partial_{j} \zeta_{k}=-\frac{a_{3} m}{2} \partial^{i} \Lambda \Rightarrow\left\{\begin{array}{l}\Lambda \rightarrow \frac{\Lambda}{\sqrt{m}} \\ \zeta_{i} \rightarrow \sqrt{m} \zeta_{i}\end{array} \Rightarrow \epsilon^{i j k} \partial_{j} \zeta_{k}=\partial^{i} \Lambda\right.$

The dimensional reduction

The canonical commutation relation for the new fields

$$
\begin{aligned}
& {\left[\Lambda(X), \epsilon^{\beta \gamma} \partial_{\beta}^{\prime} \zeta_{\gamma}\left(X^{\prime}\right)\right]_{t=t^{\prime}}=\delta^{(2)}\left(X-X^{\prime}\right)} \\
& {\left[\epsilon^{\gamma \beta} \zeta_{\beta}(X), \partial_{\delta}^{\prime} \Lambda\left(X^{\prime}\right)\right]_{t=t^{\prime}}=\delta_{\delta}^{\gamma} \delta^{(2)}\left(X-X^{\prime}\right)}
\end{aligned}
$$

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines

Introduction
The classical
theory and the gauge-fixing

The introduction of the boundary

The physics on the boundary

Conclusions

The dimensional reduction

The canonical commutation relation for the new fields

$$
\begin{aligned}
& {\left[\Lambda(X), \epsilon^{\beta \gamma} \partial_{\beta}^{\prime} \zeta_{\gamma}\left(X^{\prime}\right)\right]_{t=t^{\prime}}=\delta^{(2)}\left(X-X^{\prime}\right)} \\
& {\left[\epsilon^{\gamma \beta} \zeta_{\beta}(X), \partial_{\delta}^{\prime} \Lambda\left(X^{\prime}\right)\right]_{t=t^{\prime}}=\delta_{\delta}^{\gamma} \delta^{(2)}\left(X-X^{\prime}\right)}
\end{aligned}
$$

The conjugate variables and the boundary Lagrangian

$$
\begin{aligned}
\text { 1. } & x_{0} \sim \Lambda & & p_{0} \sim \epsilon^{\beta \gamma} \partial_{\beta} \zeta_{\gamma} \\
& x_{1,2} \sim \epsilon^{\gamma \beta} \zeta_{\beta} & & p_{1,2} \sim \partial_{\delta} \Lambda
\end{aligned}
$$

four-dimensional
BF theory with a
planar boundary
A. Amoretti

Outlines

Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

The dimensional reduction

The
four-dimensional
BF theory with a planar boundary
A. Amoretti

$$
\begin{aligned}
& {\left[\Lambda(X), \epsilon^{\beta \gamma} \partial_{\beta}^{\prime} \zeta_{\gamma}\left(X^{\prime}\right)\right]_{t=t^{\prime}}=\delta^{(2)}\left(X-X^{\prime}\right)} \\
& {\left[\epsilon^{\gamma \beta} \zeta_{\beta}(X), \partial_{\delta}^{\prime} \Lambda\left(X^{\prime}\right)\right]_{t=t^{\prime}}=\delta_{\delta}^{\gamma} \delta^{(2)}\left(X-X^{\prime}\right)}
\end{aligned}
$$

The conjugate variables and the boundary Lagrangian

$$
\text { 1. } \begin{array}{rlr}
x_{0} \sim \Lambda & & p_{0} \sim \epsilon^{\beta \gamma} \partial_{\beta} \zeta_{\gamma} \\
& x_{1,2} \sim \epsilon^{\gamma \beta} \zeta_{\beta} & \\
p_{1,2} \sim \partial_{\delta} \Lambda
\end{array}
$$

2.

$$
\begin{aligned}
& \mathcal{L}=\sum_{i} p_{i} \dot{x}_{i}-H= \\
& \epsilon^{\alpha \beta} \partial_{\alpha} \zeta_{\beta} \partial_{t} \Lambda+\partial_{\alpha} \Lambda \epsilon^{\alpha \beta} \partial_{t} \zeta_{\beta}-\frac{1}{2}\left(\epsilon^{\alpha \beta} \partial_{\alpha} \zeta_{\beta}\right)^{2}-\frac{1}{2}\left(\partial_{\alpha} \Lambda\right)^{2}
\end{aligned}
$$

Outlines

Introduction
The classical
theory and the
gauge-fixing
The introduction of the boundary

The physics on
the boundary
Conclusions

The physics on the boundary

The duality relation and massless fermionic fields
A. Amoretti

Outlines

$$
\text { (2D) } \partial_{i} \Lambda+\epsilon_{i j} \partial^{j} \zeta=0 \quad \Rightarrow \quad(3 D) \epsilon^{i j k} \partial_{j} \zeta_{k}=\partial^{i} \Lambda
$$

圁 H. Aratyn, Phys.Rev., 1983
The introduction
of the boundary
The physics on the boundary

Conclusions
\square

The physics on the boundary

The duality relation and massless fermionic fields

$$
\text { (2D) } \partial_{i} \Lambda+\epsilon_{i j} \partial^{j} \zeta=0 \quad \Rightarrow \quad(3 D) \epsilon^{i j k} \partial_{j} \zeta_{k}=\partial^{i} \Lambda
$$

围 H. Aratyn, Phys.Rev., 1983
The boundary Lagrangian

$$
\mathcal{L}=\epsilon^{\alpha \beta} \partial_{\alpha} \zeta_{\beta} \partial_{t} \Lambda+\partial_{\alpha} \Lambda \epsilon^{\alpha \beta} \partial_{t} \zeta_{\beta}-\frac{1}{2}\left(\epsilon^{\alpha \beta} \partial_{\alpha} \zeta_{\beta}\right)^{2}-\frac{1}{2}\left(\partial_{\alpha} \Lambda\right)^{2}
$$

R. Cho and J. E. Moore, Annals Phys. 326, 2011

Conclusions

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. The physics on the boundary is expressed in terms of a gauge field and a scalar field

The only acceptable boundary condition implies massless fermionic fields
 boundary
of the boundary
of the boundary
The physics on
the boundary
Conclusions

Conclusions

1. The physics on the boundary is expressed in terms of a gauge field and a scalar field
2. The only acceptable boundary condition implies massless fermionic fields

There are three pairs of canonical variables on the
A. Amoretti

Outlines

Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

Conclusions

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. The physics on the boundary is expressed in terms of a gauge field and a scalar field
2. The only acceptable boundary condition implies massless fermionic fields
3. There are three pairs of canonical variables on the boundary

Outlines

Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

Conclusions

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. The physics on the boundary is expressed in terms of a gauge field and a scalar field
2. The only acceptable boundary condition implies massless fermionic fields
3. There are three pairs of canonical variables on the boundary
4. Contacts:

R A. P. Balachandran et al., Mod.Phys.Lett. A8, 1993
G. Cho and J. E. Moore, Annals Phys. 326, 2011

Outlines
Introduction
The classical
theory and the
gauge-fixing
The introduction
of the boundary
The physics on
the boundary
Conclusions

Conclusions

The
four-dimensional
BF theory with a
planar boundary
A. Amoretti

1. The physics on the boundary is expressed in terms of a gauge field and a scalar field
2. The only acceptable boundary condition implies massless fermionic fields
3. There are three pairs of canonical variables on the boundary
4. Contacts:

R A. P. Balachandran et al., Mod.Phys.Lett. A8, 1993
圊 G. Cho and J. E. Moore, Annals Phys. 326, 2011
5. Future developments:

- Non-abelian extension
- The five-dimensional BF model with a boundary

