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Topological �eld theories and their physical

implication

Figure: Resistance measurements for IQHE and FQHE

SCS = k
2π

∫
d3xεµνρAµ∂νAρ

X. G. Wen, Adv. Phys 44, 1995 (QHE)
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Topological �eld theories and their physical

implication

Figure: Band structure of Bi2Se3 (ARPES)

Bernevig and Zhang, Phys. Rev. Lett 96, 2006 (TI)

Cho and Moore, Annals Phys. 326, 2011 (TI)

Diamantini et al, Nucl. Phys B, 1995 (Superconductivity)
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The classical theory

The classical action

S =

∫
M

d4xεµνρσFµνBρσ

Fµν ≡ ∂µAν − ∂νAµ
[Aµ] = 1, [Bµν ] = 2

Birmigham et al., Phys. Rept., 209, 1991

Symmetries

{
δ(1)Aµ = −∂µθ
δ(1)Bµν = 0,

{
δ(2)Aµ = 0

δ(2)Bµν = −(∂µϕν − ∂νϕµ).
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The classical theory

We need to �x the gauge

1. Axial gauge:

A3 = Bi3 = 0, i = 0, 1, 2

2. We �x the gauge by adding to S the term

Sgf =

∫
M

d4x
(
bA3 + d iBi3

)
3. The residual gauge invariance and the Ward identities:

∂iJ
i
Ai + ∂3J

3
A3 + ∂3b = 0

∂jJ
ij

B ij + ∂3J
i3
B i3 +

1

2
∂3d

i = 0.
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The boundary x3 = 0

The Symanzik's method

1. Locality:

L ∼ δ(n)(x3)f (xi , x3)

2. Separability:

∆AB(x , x ′) = θ(x3)θ(x ′3)∆+
AB + θ(−x3)θ(−x ′3)∆−AB

∆AB(x , x ′) = 0 if x3x
′
3 < 0

K. Symanzik, Nucl. Phys B 190, 1981

S. Emery and O. Piguet Helv. Phys. Acta, 64, 1991

The boundary Lagrangian

Lb = δ(x3)
[a1
2
εijk∂iAjAk + a2Ai B̃

i + a3
m

2
AiA

i
]
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The boundary x3 = 0

The boundary conditions

1. The equations of motion with a boundary term for Ai

and B̃ i :

∂3B̃
i = −δ(x3)[a1ε

ijk(∂jAk)+ + a2B̃
i+ + a3mAi+]

εijk∂3Ak = a2δ(x3)εijkA+
k

2. The algebraic system for the �elds on the boundary:

(1 + a2)B̃ i+ = −a1εijk∂jA+
k − a3mAi+

(1− a2)A+
i = 0

3. The only acceptable boundary condition is:

B̃ i+ = −a3m
2

Ai+
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The Ward identities and the boundary algebra

The integrated broken Ward identities:∫∞
−∞ dx3∂iJ

i
Ai = ∂i B̃

i+

∫∞
−∞ dx3ε

ijk∂jJB̃k = −εijk∂jA+
k

The boundary algebra

∂lδ
(3)(X − X ′) = ∂i∆Al B̃

i (X ′,X )

[B̃0+(X ),Aβ(X ′)]t=t′ = ∂βδ
(2)(X ′ − X )

[B̃0+(X ), B̃+
0 (X ′)]t=t′ = 0

[A+
β (X ),Aγ+(X ′)]t=t′ = 0

A. P. Balachandran et al., Mod.Phys.Lett. A8, 1993
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The dimensional reduction

The new �elds and their symmetries

1. {
∂i B̃

i+ = 0

εijk∂jA
+
k = 0

⇒

{
B̃ i+ = εijk∂jζk

A+
i = ∂iΛ

2. {
δΛ = const

δζi = ∂iθ

The boundary condition and the duality relation

εijk∂jζk = −a3m
2
∂ iΛ ⇒

{
Λ→ Λ√

m

ζi →
√
mζi

⇒ εijk∂jζk = ∂ iΛ
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The dimensional reduction

The canonical commutation relation for the new �elds

[Λ(X ), εβγ∂′βζγ(X ′)]t=t′ = δ(2)(X − X ′)

[εγβζβ(X ), ∂′δΛ(X ′)]t=t′ = δγδ δ
(2)(X − X ′)

The conjugate variables and the boundary Lagrangian

1. x0 ∼ Λ p0 ∼ εβγ∂βζγ
x1,2 ∼ εγβζβ p1,2 ∼ ∂δΛ

2.

L =
∑
i

pi ẋi − H =

εαβ∂αζβ∂tΛ + ∂αΛεαβ∂tζβ −
1

2
(εαβ∂αζβ)2 − 1

2
(∂αΛ)2
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The physics on the boundary

The duality relation and massless fermionic �elds

(2D) ∂iΛ + εij∂
jζ = 0 ⇒ (3D) εijk∂jζk = ∂ iΛ

H. Aratyn, Phys.Rev., 1983

The boundary Lagrangian

L = εαβ∂αζβ∂tΛ + ∂αΛεαβ∂tζβ −
1

2
(εαβ∂αζβ)2 − 1

2
(∂αΛ)2

G. Cho and J. E. Moore, Annals Phys. 326, 2011
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Conclusions

1. The physics on the boundary is expressed in terms of a

gauge �eld and a scalar �eld

2. The only acceptable boundary condition implies massless

fermionic �elds

3. There are three pairs of canonical variables on the

boundary

4. Contacts:

A. P. Balachandran et al., Mod.Phys.Lett. A8, 1993

G. Cho and J. E. Moore, Annals Phys. 326, 2011

5. Future developments:

- Non-abelian extension

- The �ve-dimensional BF model with a boundary
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