LHC RESULTS AND PHYSICS BEYOND SM

Michele Redi

Cortona, 31 Maggio

WHAT WE KNOW

SM is a gauge theory based on $S U(3)_{\odot} \otimes S U(2)_{L} \otimes U(1)_{r}$

$$
\begin{aligned}
& \mathcal{L}_{\text {Kinetic }}=-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4} W_{\mu \nu}^{b} W^{b \mu \nu}+i \sum_{j=1}^{3}\left(\bar{\Psi}_{L}^{j} D \Psi_{L}^{j}+\bar{\Psi}_{R}^{j} D \Psi_{R}^{j}\right) \\
& \Psi_{L, R}=(3,2)_{\frac{1}{6}} \oplus(3,1)_{\frac{2}{3}} \oplus(3,1)_{-\frac{1}{3}} \oplus(1,2)_{-\frac{1}{2}} \oplus(1,1)_{-1} \quad \text { (3 couplings) }
\end{aligned}
$$

WHAT WE KNOW

SM is a gauge theory based on $\operatorname{SU(3)_{\odot }\otimes SU(2)_{L}\otimes U(1)_{r}}$

$$
\begin{aligned}
& \mathcal{L}_{\text {Kinetic }}=-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}-\frac{1}{4} W_{\mu \nu}^{a} W^{a \mu \nu}-\frac{1}{4} W_{\mu \nu}^{b} W^{b \mu \nu}+i \sum_{j=1}^{3}\left(\bar{\Psi}_{L}^{j} D \Psi_{L}^{j}+\bar{\Psi}_{R}^{j} D \Psi_{R}^{j}\right) \\
& \Psi_{L, R}=(3,2)_{\frac{1}{6}} \oplus(3,1)_{\frac{2}{3}} \oplus(3,1)_{-\frac{1}{3}} \oplus(1,2)_{-\frac{1}{2}} \oplus(1,1)_{-1} \quad \text { (3 couplings) }
\end{aligned}
$$

Unbroken gauge symmetry forbids mass terms: vacuum must respect a smaller symmetry

$$
S U(3)_{c} \otimes U(1)_{Q}
$$

Mass terms can be written,

$$
\begin{aligned}
& \mathcal{L}_{\text {mass }}=\sum_{i, j=1}^{3}\left[\bar{u}_{L}^{i} M_{i, j}^{u} u_{R}+\bar{d}_{L}^{i} M_{i, j}^{d} d_{R}+\bar{e}_{L}^{i} M_{i, j}^{e} e_{R}\right]+\text { h.c. } \\
&+m_{W}^{2} W^{2}+\frac{1}{2} m_{Z}^{2} Z^{2} \\
&(20) \text { parameters }
\end{aligned}
$$

Mass for gauge bosons implies new degrees of freedom

$$
\begin{array}{cc}
m_{1}=0 & m_{1} \neq 0 \\
& \uparrow \\
& \downarrow
\end{array}
$$

The extra degrees of freedom are Goldstone Bosons

$$
S U(2)_{L} \otimes U(1)_{Y} \rightarrow U(1)_{Q}
$$

They become longitudinal polarizations of W \& Z

Important hint:

$$
\rho=\frac{m_{W}^{2}}{m_{Z}^{2} \cos ^{2} \theta_{W}} \approx 1
$$

Custodial Symmetry $S U(2)_{c}$

In principle the Higgs scalar is not necessary for EWSB

$$
A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right)=\frac{1}{v^{2}}(s+t)
$$

Interactions become strongly coupled around TeV .
Perturbativity is violated at

$$
\Lambda \sim 3 \mathrm{TeV}
$$

In the SM electro-weak symmetry is broken through a scalar doublet with $Y=1 / 2$

$$
\begin{gathered}
V(H)=\lambda\left(|H|^{2}-v^{2}\right)^{2} \\
H(x)=U(x)\binom{0}{v+h(x)}, \quad v=174 \mathrm{GeV}
\end{gathered}
$$

In the SM electro-weak symmetry is broken through a scalar doublet with $Y=1 / 2$

$$
\begin{gathered}
V(H)=\lambda\left(|H|^{2}-v^{2}\right)^{2} \\
H(x)=U(x)\binom{0}{v+h(x)}, \quad v=174 \mathrm{GeV}
\end{gathered}
$$

VEV breaks symmetry. The Goldstone Bosons in $U(x)$ are eaten giving mass to W \& Z. Higgs sector respects custodial symmetry

$$
\frac{S U(2)_{L} \otimes S U(2)_{R}}{S U(2)_{L+R}} \quad \longrightarrow \quad \rho \approx 1
$$

If SM is correct only unknown is the quartic/mass

$$
m_{h}=\sqrt{\lambda} v
$$

In the SM :

$$
A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right) \simeq \frac{1}{v^{2}}\left[s-\frac{s^{2}}{s-m_{h}^{2}}+(s \rightarrow t)\right]
$$

Amplitude does not grow so SM can be valid up to the Planck scale.

In the SM:

$$
A\left(W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}\right) \simeq \frac{1}{v^{2}}\left[s-\frac{s^{2}}{s-m_{h}^{2}}+(s \rightarrow t)\right]
$$

Amplitude does not grow so SM can be valid up to the Planck scale.

- Hierarchy problem
- Dark Matter
- Origin of Yukawas, CP
- Explains nothing

QUANTUM
$\frac{\text { GRAVITY }}{\hat{i}} \quad M_{p}=10^{18} \mathrm{GeV}$
\grave{O}
Z
\vdots
\vdots
\vdots
$=\left[\begin{array}{l}m_{h}=125 \mathrm{GeV}(?) \\ m_{W}=80 \mathrm{GeV} \\ 0\end{array}\right.$

$\begin{array}{ll}\text { Indirect tests: } & m_{h}<150 \mathrm{GeV} \\ \text { Direct search: } & m_{h}>114 \mathrm{GeV}\end{array}$

2011 LHC: HIGGS
 (+ Moriond Update)

Atlas and CMS presented results based of 5/fb luminosity.

Main goal of LHC:

discover the force that breaks electro-weak symmetry

$$
\begin{gathered}
p p \rightarrow u, d, c, s, t, b, w, z, g, \gamma \\
h(?)+\text { new physics }
\end{gathered}
$$

$$
\text { 2011: } E=7 \mathrm{TeV}
$$

$$
\text { 2012 : } E=8 \mathrm{TeV}
$$

Higgs production at LHC:

Higgs decay:

Higgs @ 125 GeV:

$$
\begin{array}{cll}
\operatorname{BR}(h \rightarrow b \bar{b})=58 \% & \operatorname{BR}\left(h \rightarrow W W^{*}\right)=21.6 \% & \mathrm{BR}\left(h \rightarrow \tau^{+} \tau^{-}\right)=6.4 \% \\
\operatorname{BR}\left(h \rightarrow Z Z^{*}\right)=2.7 \% & \operatorname{BR}(h \rightarrow g g)=8.5 \% & \operatorname{BR}(h \rightarrow \gamma \gamma)=0.22 \%
\end{array}
$$

$H \rightarrow \gamma \gamma$

Atlas:

Exclusion limit:

Excess @ 126 GeV; local significance 2.8 SD.

$H \rightarrow \gamma \gamma$

Atlas:

Excess@126 GeV; local significance 2.8 SD.

CMS:

Excess @ 124.5 GeV : local significance 2.9 SD, I. 6 SD globally

$H \rightarrow Z Z^{*} \rightarrow 4 l$

Atlas has 3 events at $124-125 \mathrm{GeV}: 2.1 \mathrm{SD}$ CMS has 2 events at 125 GeV but also 3 at II $9-120 \mathrm{GeV}$.

$2 e 2 \mu$ candidate with $\mathrm{m}_{2 е 2 \mu}=124.3 \mathrm{GeV}$

$\mathrm{P}_{\mathrm{T}}\left(e^{+}, e^{-}, \mu^{-}, \mu^{+}\right)=41.5,26.5,24.7,18.3 \mathrm{GeV}$ $m\left(e^{+} e^{-}\right)=76.8 \mathrm{GeV}, \mathrm{m}\left(\mu^{+} \mu^{-}\right)=45.7 \mathrm{GeV}$

Fitted signal strength $\sigma / \sigma_{S M}$

Comparison of channels for $\mathrm{M}_{\mathrm{H}}=\mathbf{1 2 5} \mathbf{~ G e V}$

- The fitted σ of the excess near 125 GeV is consistent with the SM scalar boson expectation
- At low mass several channels show some excess
- At 125 GeV all sensitive channels show an excess consistent with signal expectations

Breakdown of an observed excess

Excess of events observed at 126 GeV :

- Observed local significance 2.5σ (expected 2.9σ).
- Best-fit signal strength at $126 \mathrm{GeV}: \hat{\mu}=0.9_{-0.3}^{+0.4}$.
- Global probability of such a background fluctation anywhere in the full explored mass range ($110-600 \mathrm{GeV}$): 30%; in the mass range (110-146 GeV): 10%.

If Higgs exists it must be at 125 GeV !

IMPLICATIONS

SM HIGGS?

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial_{\mu} h\right)^{2}-V(h)+\frac{v^{2}}{4} \operatorname{Tr}\left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma\right)\left[1+2 a \frac{h}{v}+b \frac{h^{2}}{v^{2}} \ldots\right] \\
& -m_{i} \bar{\psi}_{L i} \Sigma\left(1+c \frac{h}{v}+\ldots\right) \psi_{R i}+h . c .
\end{aligned}
$$

$$
\text { SM : } \quad a=b=c=1
$$

Azatov, Contino, Galloway ' 12

Can SM be the whole story?

$$
\mu \frac{d \lambda}{d \mu}=\frac{1}{16 \pi^{2}}\left(24 \lambda^{2}-6 y_{t}^{4}+\ldots\right)
$$

Giudice et al.
III2.3022

Can SM be the whole story?

$$
\mu \frac{d \lambda}{d \mu}=\frac{1}{16 \pi^{2}}\left(24 \lambda^{2}-6 y_{t}^{4}+\ldots\right)
$$

Stability:

$$
m_{h}>130 \mathrm{GeV}+1.8 \mathrm{GeV}\left(\frac{m_{t}-173.2 \mathrm{GeV}}{0.9 \mathrm{GeV}}\right)-0.5 \mathrm{GeV}\left(\frac{\alpha_{s}\left(M_{Z}\right)-0.1184}{0.0007}\right) \pm 3 \mathrm{GeV}
$$

Metastability:

$$
m_{h}>111 \mathrm{GeV}+2.8 \mathrm{GeV}\left(\frac{m_{t}-173.2 \mathrm{GeV}}{0.9 \mathrm{GeV}}\right)-0.9 \mathrm{GeV}\left(\frac{\alpha_{s}\left(M_{Z}\right)-0.1184}{0.0007}\right) \pm 3 \mathrm{GeV}
$$

Thermal Stability:

$$
m_{h}>121.7 \mathrm{GeV}+2 \mathrm{GeV}\left(\frac{m_{t}-173.2 \mathrm{GeV}}{0.9 \mathrm{GeV}}\right)-0.6 \mathrm{GeV}\left(\frac{\alpha_{s}\left(M_{Z}\right)-0.1184}{0.0007}\right) \pm 3 \mathrm{GeV}
$$

126 GeV Higgs only marginally compatible with $\quad \lambda\left(m_{p}\right)=0$

NEW PHYSICS

NATURALNESS

Higgs mass only relevant operator in SM:

$$
\left[\phi^{2}\right] \approx 2 \xrightarrow{\text { naive coefficient }} \quad \Lambda^{2}
$$

NATURALNESS

Higgs mass only relevant operator in SM:

$$
\left[\phi^{2}\right] \approx 2 \xrightarrow{\text { naive coefficient }} \quad \Lambda^{2}
$$

Perturbatively:

$$
\delta m_{h}^{2}=-\frac{3 \lambda_{t}^{2}}{8 \pi^{2}} \Lambda_{t}^{2}
$$

$\Lambda_{t} \sim 3 m_{h}$

$$
\delta m_{h}^{2}=\frac{9 g^{2}+3 g^{\prime 2}}{32 \pi^{2}} \Lambda_{g}^{2} \quad \longrightarrow \quad \Lambda_{g} \sim 9 m_{h}
$$

Two paradigms:

- Weak Coupling: Supersymmetry

Two paradigms:

- Weak Coupling: Supersymmetry

- Strong Coupling:

Technicolor, Composite Higgs, Higgsless, Extra-dimensions ...

SUSY

MSSM tree level:

$$
m_{h}<M_{z} \cos 2 \beta
$$

@ LEP : $m_{h}>114 \mathrm{GeV}$

SUSY

MSSM tree level:

$$
m_{h}<M_{z} \cos 2 \beta
$$

@ LEP : $m_{h}>114 \mathrm{GeV}$

Radiative corrections

$$
\Delta m_{h}^{2} \approx \frac{3 m_{t}^{4}}{\pi^{2} v^{2}} \log \frac{m_{\tilde{t}}}{m_{t}}
$$

Possible, but

$$
\mathrm{TUNING} \approx \frac{\Delta m_{H_{u}}^{2}}{m_{Z}^{2}}>\frac{3 y_{t}^{2}}{4 \pi^{2}} \frac{m_{\tilde{t}}^{2}}{m_{t}^{2}} \log \frac{m_{\tilde{t}}}{m_{t}}
$$

CMSSM bounds:

Still ways out:

Large A-terms

Natural SUSY

NMSSM
R-parity
Violation
Compressed Spectrum

Split SUSY

Partial SUSY

Tuning

PMSSM

None terribly convincing...

Natural SUSY:

Stops can still be light!

Right-Handed Stop

STRONG DYNAMICS

- Large Extra-Dimensions:

$$
\begin{aligned}
& m_{p}^{2}=m_{D}^{D-2} V_{D-4} \\
& =m_{D}^{2} N_{e f f}
\end{aligned}
$$

Always problematic for flavor physics and precision tests.

STRONG DYNAMICS

- Large Extra-Dimensions:

$$
\begin{aligned}
& m_{p}^{2}=m_{D}^{D-2} V_{D-4} \\
& =m_{D}^{2} N_{e f f}
\end{aligned}
$$

Always problematic for flavor physics and precision tests.

Strong gravity at the TeV scale:

$$
\frac{4}{m_{T}^{4}}\left(T_{\mu \nu} T^{\mu \nu}-\frac{T_{\mu}^{\mu} T_{\nu}^{\nu}}{D-2}\right) \quad m_{D} \text { in multi }-\mathrm{TeV} \text { range }
$$

- Technicolor (Higgsless)

$$
\left\langle\bar{\Psi}_{L}^{i} \Psi_{R}^{j}\right\rangle \sim v^{3} \delta^{i j} \quad \longrightarrow \quad \frac{S U(2)_{L} \otimes S U(2)_{R}}{S U(2)_{L+R}}
$$

Longitudinal polarizations of $W \& Z$ are composite states.

- Technicolor (Higgsless)

$$
\left\langle\bar{\Psi}_{L}^{i} \Psi_{R}^{j}\right\rangle \sim v^{3} \delta^{i j} \quad \longrightarrow \quad \frac{S U(2)_{L} \otimes S U(2)_{R}}{S U(2)_{L+R}}
$$

Longitudinal polarizations of $W \& Z$ are composite states.

No Higgs scalar but techni-resonances (spin 0, I/2, I etc.).

Clearly ruled out if Higgs confirmed.

- Composite Higgs:

Higgs doublet could be a light remnant of strong dynamics.

```
Strong sector:
resonances +
Higgs bound state
```


spin 1
spin 1/2
spin $0 \ldots . . \quad 2_{\frac{1}{2}}$

Two parameters:

$$
m_{\rho} \quad g_{\rho}
$$

- Composite Higgs:

Higgs doublet could be a light remnant of strong dynamics.

```
Strong sector:
resonances +
Higgs bound state
```



```
spin I
spin 1/2
spin 0.... }\quad\mp@subsup{2}{\frac{1}{2}}{
```

Two parameters:
$m_{\rho} \quad g_{\rho}$

- Relieves hierarchy problem

$$
\delta m_{h}^{2} \sim \frac{3 \lambda_{t}^{2}}{4 \pi^{2}} m_{\rho}^{2}
$$

Particularly compelling if Higgs is a Goldstone Boson: Massless at leading order.

EX: $\frac{S O(5)}{S U(2)_{L} \otimes S U(2)_{R}} \quad \longrightarrow \quad G B=(2,2)$

Agashe, Contino, Pomarol, '04

Mrazek, Pomarol, Rattazzi,
MR, Serra, Wulzer 'II

Particularly compelling if Higgs is a Goldstone Boson: Massless at leading order.

ЕХ: $\frac{S O(5)}{S U(2)_{L} \otimes S U(2)_{R}} \quad \longrightarrow \quad G B=(2,2)$

Agashe , Contino, Pomarol, '04

Mrazek, Pomarol, Rattazzi,
MR, Serra, Wulzer 'II

Low energy lagrangian

$$
\begin{gathered}
\mathcal{L}=f^{2} D_{\mu} \Sigma^{i} D^{\mu} \Sigma^{i}+\ldots \xrightarrow{S U(2)_{L} \otimes S U(2)_{R}} \quad \rho \approx 1 \\
m_{\rho}=g_{\rho} f
\end{gathered}
$$

General picture:

```
Strong sector:
Higgs + (top)
    m\rho
```

Elementary:
SM Fermions

+ Gauge Fields

General picture:

```
Strong sector:
Higgs + (top)
    m\rho
```


Elementary: SM Fermions + Gauge Fields

They talk through linear couplings:

$$
\begin{gathered}
\mathcal{L}_{\text {gauge }}=g A_{\mu} J^{\mu} \\
\mathcal{L}_{\text {mixing }}=\lambda_{L} \bar{f}_{L} O_{R}+\lambda_{R} \bar{f}_{R} O_{R} \quad \xrightarrow{\tan \varphi \sim \frac{\lambda}{g_{\rho}}} y \sim \frac{\lambda_{L} \lambda_{R}}{g_{\rho}}
\end{gathered}
$$

Potential generated at I-loop:

$$
V(H) \propto \frac{m_{\rho}^{4}}{g_{\rho}^{2}} \frac{\lambda_{L, R}^{2}}{16 \pi^{2}} \hat{V}\left(\frac{H}{f}\right)
$$

Main difference from techni-color is that f is not linked to v . Increasing $f \mathrm{CH}$ approximates SM.

Spectrum:

Main difference from techni-color is that f is not linked to v. Increasing f CH approximates SM.

Spectrum:

Higgs is angle,

$$
0<h<2 \pi f \quad \longrightarrow \quad \begin{gathered}
\text { Tuning } \\
\xi=\frac{v^{2}}{f^{2}}
\end{gathered}
$$

Realized in Randall-Sundrum scenario

Realized in Randall-Sundrum scenario

Connected through AdS/CFT to strongly coupled CFTs
Arkani-Hamed, Porrati, Randall '01
Rattazzi, Zaffaroni '0I

Modified couplings:

$$
a, b, c=1+\mathcal{O}\left(\frac{v^{2}}{f^{2}}\right)
$$

Modified couplings:

$$
a, b, c=1+\mathcal{O}\left(\frac{v^{2}}{f^{2}}\right)
$$

$f=800 \mathrm{GeV}$

MR, Tesi ' 12

Light Higgs wants light partners.

Most sensitive experimental searches (1-slide snapshot)

* Looking for pair production

$$
\begin{aligned}
& \text { [CMS L=1.14 fb- }{ }^{-1} \text {] } T \bar{T} \rightarrow W b W \bar{b} \rightarrow b \bar{b} l^{+} l^{-} E_{T} \quad m_{T}>422 \mathrm{GeV} \\
& \text { PAS-EXO-11-050 } \\
& \text { [CMS L=0.80 fb-1] } T \bar{T} \rightarrow W b W \bar{b} \rightarrow b 3 j l^{ \pm} E_{T} \\
& m_{T}>450 \mathrm{GeV} \\
& \text { PAS-EXO-11-051 } \\
& \text { [CMS L=191 } \mathrm{pb}^{-1} \text {] } T \bar{T} \rightarrow t Z \bar{t} Z \rightarrow\left(l^{+} l^{-}\right) l^{ \pm} j j \quad m_{T}>417 \mathrm{GeV} \\
& \text { PAS-EXO-11-005 } \\
& \text { [CMS L=1.14 fb }{ }^{-1} \text {] } \\
& B \bar{B} \rightarrow W t W \bar{t} \rightarrow l^{ \pm} l^{ \pm} b 3 j E_{T} \quad m_{B}>495 \mathrm{GeV} \\
& \rightarrow l l l b 1 j \not{ }_{T}
\end{aligned}
$$

- Looking for single production

$$
\begin{array}{crl}
{\left[\begin{array}{ll}
\text { D0 L } \left.\mathrm{L}=5.4 \mathrm{fb}^{-1}\right]
\end{array}\right.} & Q \bar{q} & \rightarrow W q \bar{q} \rightarrow l^{ \pm} j j E_{T} \\
\text { arXiv:1010.1466 } & & \rightarrow Z q \bar{q} \rightarrow\left(l^{+} l^{-}\right) j j
\end{array}
$$

Notice: All analyses assume 100% BR to the considered channel

If naturalness is a good guide new states must be around the corner and maybe seen in 2012 .

OUTLOOK

OUTLOOK

- Within 2012 we will know if the Higgs is fact or fiction. Watch out ICHEP in July.

OUTLOOK

- Within 2012 we will know if the Higgs is fact or fiction. Watch out ICHEP in July.
- No striking deviations from SM have been found but few discrepancies exist: CP violation in D-mesons, some Higgs couplings.

OUTLOOK

- Within 2012 we will know if the Higgs is fact or fiction. Watch out ICHEP in July.
- No striking deviations from SM have been found but few discrepancies exist: CP violation in D-mesons, some Higgs couplings.
- If Higgs @ 125 GeV is confirmed with couplings compatible with SM, room for new physics getting narrow. Universe might be tuned.

126 GeV Higgs only marginally compatible with $\quad \lambda\left(m_{p}\right)=0$

$$
\delta m_{h}^{2}=\frac{3 G_{F}}{\sqrt{2} \pi^{2}} m_{t}^{4}\left(\log \left(\frac{\bar{m}_{\tilde{t}}^{2}}{m_{t}^{2}}\right)+\frac{X_{t}^{2}}{\bar{m}_{\tilde{t}}^{2}}\left(1-\frac{X_{t}^{2}}{12 \bar{m}_{\tilde{t}}^{2}}\right)\right)
$$

