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Introduction: Scattering amplitudes at one-loop

A generic n-point one-loop amplitude

Mn ≡
∫
An(q̄) ddq̄ ≡

∫
N(q̄)

D̄1 . . . D̄n
ddq̄

q̄
k1

ki ki+1

kn

we split the loop momentum q̄ in a 4-dimensional part q and a
(d − 4)-dimensional part ~µ

q̄ = q + ~µ q̄2 = q2 − µ2

the numerator of the integrand

N(q̄) = N(q, µ2)

the denominators

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i−µ2
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Introduction: Scattering amplitudes at one-loop

=
∑
dijkl +

∑
cijk +

∑
bij +

∑
ai +R

Every one-loop amplitude in d = 4− 2ε can be decomposed as

Mn =
∑

ijkl

dijkl Iijkl +
∑

ijk

cijk Iijk +
∑

ij

bij Iij +
∑

i

ai Ii + R +O(ε)

Iijk... =

∫
dq̄

D̄iD̄jD̄k . . .

the basis of Master Integrals (MIs) Iijk... is known
the computation of the amplitude can be reduced to the problem of
computing the coefficients of this decomposition and the rational
part R
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Integrand-level decomposition: OPP

∫
An(q̄)dq̄ =

∑
ijkl

dijkl

∫
dq̄

D̄iD̄jD̄kD̄l
+
∑

ijk

cijk

∫
dq̄

D̄iD̄jD̄k
+
∑

ij

bij

∫
dq̄

D̄iD̄j
+
∑

i

ai

∫
dq̄
D̄i

+ R

The previous decomposition holds at the integral-level

An analogous decomposition holds at the integrand-level
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

in d = 4− 2ε dimensions

A(q̄) =
N(q, µ2)

D̄1 . . . D̄n
=
∑

ijklm

∆ijklm(µ2)

D̄iD̄jD̄kD̄lD̄m
+
∑

ijkl

∆ijkl(q, µ2)

D̄iD̄jD̄kD̄l

+
∑

ijk

∆ijk(q, µ2)

D̄iD̄jD̄k
+
∑

ij

∆ij(q, µ2)

D̄iD̄j
+
∑

i

∆i(q, µ2)

D̄i

pentagons ∆ijklm(µ2) vanish upon integration
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Residues

The residues ∆ijk... have a known parametric form in terms of
residue-dependent four vectors ei, v⊥
unknown coefficients f0, di, ci, bi, ai

∆ijklm(µ2) = f0 µ2

∆ijkl(q, µ2) = d0 + d2µ
2 + d4µ

4 + (d1 + d3µ
2)(q · v⊥)

∆ijk(q, µ2) = c0 + c7 µ
2

+
(

c1 + c8µ
2
)

(q · e3) + c2 (q · e3)2 + c3 (q · e3)3

+
(

c4 + c9µ
2
)

(q · e4) + c5 (q · e4)2 + c6 (q · e4)3

∆ij(q, µ2) = b0 + b9 µ
2 + b1(q · e2) + b2(q · e2)2

+ b3(q · e3) + b4(q · e3)2 + b5(q · e4) + b6(q · e4)2

+ b7(q · e2)(q · e3) + b8(q · e2)(q · e4)

∆i(q) = a0 + a1(q · e1) + a1(q · e1) + a1(q · e1) + a1(q · e1)

the red terms give Master Integrals
the blu terms determine the rational part
the other terms (spurious) vanish upon integration
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Extended decomposition

The previous decomposition holds for renormalizable theories
the rank of the numerator can not be greater that the number n of
denominators

It can be extended to non-renormalizable theories
[P. Mastrolia, E. Mirabella, T. P. (2012)]

if, for instance, the rank of the numerator is equal n + 1 we get

∆̃ijk`m(q, µ2
) = ∆ijk`m(q, µ2

)

∆̃ijk`(q, µ2
) = ∆ijk`(q, µ2

) + d4,5 µ
4 q · v⊥

∆̃ijk(q, µ2
) = ∆ijk(q, µ2

) + c3,14 µ
4

+ c3,10 µ
2

(q · e3)
2

+ c3,11 µ
2

(q · e4)
2

+ c3,12(q · e3)
4

+ c3,13(q · e4)
4

∆̃ij(q, µ2
) = ∆ij(q, µ2

) + µ
2
(

b(ij)
10 (q · e2) + b(ij)

11 (q · e3) + b12(q · e4)
)

+ b13 (q · e2)
3

+ b14(q · e3)
3

+ b15(q · e4)
3

+ b16(q · e2)
2
(q · e3) + b17(q · e2)

2
(q · e4) + b18(q · e2)(q · e3)

2
+ b19(q · e2)(q · e4)

2

∆̃i(q, µ2
) = ∆i(q, µ2

) + a5(q · e1)
2

+ c1,6(q · e2)
2

+ c1,7(q · e3)
2

+ c1,8(q · e4)
2

+ a10(q · e1)(q · e3)

+ a11(q · e1)(q · e4) + a12(q · e2)(q · e3) + a13(q · e2)(q · e4) + a14 µ
2

+ a15(q · e3)(q · e4)

∆̃Q(q, µ2
) = cQ,0 .
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Result for the integrated amplitude

A generic integrand can be decomposed as

An =
∑
ijklm

∆ijklm

D̄iD̄jD̄kD̄lD̄m
+
∑
ijkl

∆ijkl

D̄iD̄jD̄kD̄l
+
∑

ijk

∆ijk

D̄iD̄jD̄k
+
∑

ij

∆ij

D̄iD̄j
+
∑

i

∆i

D̄i

the residues ∆ij...

have a known parametric form
contain the coefficients of the MIs

After integration∫
An(q̄)dq̄ =

∑
ijkl

∫
d(ijkl)

0

D̄iD̄jD̄kD̄l
+
∑

ijk

∫
c(ijk)

0

D̄iD̄jD̄k
+
∑

ij

∫
b(ij)

0

D̄iD̄j
+
∑

i

∫
ai

0

D̄i
+ R

several terms vanish (they are called spurious)
the rational part R is determined by integrals in µ2, e.g.
∫

µ4

D̄iD̄jD̄kD̄l
= −1

6
+O(ε),

∫
µ2

D̄iD̄jD̄k
=

1
2

+O(ε), . . .
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N = N decomposition

N(q, µ2)

D1 . . .Dn
=
∑
ijklm

∆ijklm

DiDjDkDlDm
+
∑
ijkl

∆ijkl

DiDjDkDl
+
∑

ijk

∆ijk

DiDjDk
+
∑

ij

∆ij

DiDj
+
∑

i

∆i

Di

The former decomposition can be rewritten as

N(q, µ2) =
∑
ijklm

∆ijklm

∏
h 6=i,j,k,l

Dh +
∑
ijkl

∆ijkl

∏
h 6=i,j,k,l

Dh +
∑

ijk

∆ijk

∏
h 6=i,j,k

Dh

+
∑

ij

∆ij

∏
h 6=i,j

Dh +
∑

i

∆i

∏
h6=i

Dh

the residues ∆ijk... are polynomials in the components of q and µ2

the coefficients which parametrize the residues can be found by
polynomial fitting
an efficient strategy is to evaluate the integrand on solutions of multiple
cuts i.e. on values of q and µ2 such that some denominators Di vanish
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Integrand reduction and multiple cuts

On the solutions of the 5-cut: Di = Dj = Dk = Dl = Dm = 0

N(q)∏
h 6=i,j,k,l,m Dh

∣∣∣∣∣
cut

= ∆ijklm

On the solutions of the 4-cut: Di = Dj = Dk = Dl = 0
[

N(q)∏
h 6=i,j,k,l Dh

−
∑

m

∆ijklm

Dm

]

cut

= ∆ijkl

On the solutions of the 3-cut: Di = Dj = Dk = 0

 N(q)∏

h 6=i,j,k Dh
−
∑

l,m

∆ijklm

DlDm
−
∑

l

∆ijkl

Dl




cut

= ∆ijk
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Integrand reduction and multiple cuts

On the solutions of the 2-cut: Di = Dj = 0

 N(q)∏

h 6=i,j Dh
−
∑

k,l,m

∆ijklm

DkDlDm
−
∑

k,l

∆ijkl

DkDl
−
∑

k

∆ijk

Dk




cut

= ∆ij

On the solutions of the 1-cut: Di = 0

 N(q)∏

h 6=i Dh
−
∑

j,k,l,m

∆ijklm

DjDkDlDm
−
∑

j,k,l

∆ijkl

DjDkDl
−
∑

j,k

∆ijk

DjDk
−
∑

j

∆ij

Dj




cut

= ∆i

by sampling the integrand on cut-solutions one can recursively fit the
coefficients of each residue – from the 5-point ones to the 1-point ones –
by solving smaller systems of equations

higher-point residues and computed first and then subtracted from the
integrand in order to find the lower-point ones
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Analytic and semi-analytic reduction

By exploiting the analytic information about the integrand we can
construct a simplified reduction procedure where

No systems of equations appear
The coefficients of the pentagons and the spurious coefficients of
the boxes do not have to be computed
No subtraction is needed for the computation of 4 and 3-point
coefficients
The computation of 3, 2, and 1-point residues is completely
disentangled from the higher-point ones
In the case of 2 and 1-point residues, the subtractions at integrand
level are replaced by corrections to the coefficients
The parametric form of this corrections is known as a function of
the 3 and 2-point coefficients

P. Mastrolia, E. Mirabella, T. P. (2012)
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The coefficients of the boxes

The residue of a box reads

∆ijkl(q, µ2) = d0 + d2µ
2 + d4 µ

4 + (d1 + d3µ
2)(q · v⊥)

d0 can be computed via 4-dimensional 4ple cuts [Britto, Cachazo, Feng (2004)]

d4 can be computed from d-dimensional 4ple cuts in the limit µ2 →∞
[S. Badger (2008)]

the d-dimensional solutions of a quadruple cut are

q± = aµ ±

√
α+

µ2

β2 vµ⊥ = ±
√
µ2

β
vµ⊥ +O(1)

with aµ, vµ⊥, α, β fixed by the cut conditions
the integrand in the asymptotic limit µ2 →∞ of the cut-solutions

N(q, µ2)∏
m6=i,j,k,l Dm

∣∣∣∣∣
cut

= d4 µ
4 +O(µ3)

d1, d2, d3 are spurious and do not need to be computed
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The coefficients of the triangles

The residue of a triangle reads (4-dim for brevity)

∆ijk(q) = c0+c1 (q·e3)+c2 (q·e3)2+c3 (q·e3)3+c4 (q·e4)+c5 (q·e4)2+c6 (q·e4)3

the solutions of a triple cut can be parametrized by a variable t

qµ+ = aµ + t eµ3 +
α

t
eµ4 , q− = aµ +

α

t
eµ3 + t eµ4

in the limit t→∞ uncut denominators are linear in t, hence
pentagons vanish as 1/t2

boxes are constant but they vanish in the average over q±
the integrand

N(q±)∏
m6=i,j,k Dm

∣∣∣∣∣
cut

= ∆ijk +
∑

l

∆ijkl

Dl
+
∑

lm

∆ijklm

DlDm

= ∆ijk+ d± +O(1/t)

with d+ + d− = 0

[Forde (2007)]
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The coefficients of the triangles

In the asymptotic limit t→∞
N(q±)∏
m 6=i,j,k Dm

∣∣∣∣∣
cut

= d± + ∆ijk +O(1/t) with d+ + d− = 0

the integrand

N(q±)∏
m6=i,j,k Dm

∣∣∣∣∣
cut

= n±0 + n±1 t + n±2 t2 + n±3 t3 +O(1/t)

the residue

∆ijk(q+) = c0 + c4 (e3 · e4) t + c5 (e3 · e4) t2 + c6 (e3 · e4) t3 +O(1/t)

∆ijk(q−) = c0 + c1 (e3 · e4) t + c2 (e3 · e4) t2 + c3 (e3 · e4) t3 +O(1/t)

by comparison we get

c1 =
n−1

(e3 · e4)
, c2 =

n−2
(e3 · e4)2 , c3 =

n−3
(e3 · e4)3 , c4 =

n+1
(e3 · e4)

, . . .

c0 =
n+0 + n−0

2
T. Peraro (MPI - München) Integrand Reduction Cortona 2012 15 / 24



The coefficients of the bubbles

The residue of a bubble reads (4-dim for brevity)
∆ij(q) = b0 + b1 (q · e2) + b2 (q · e2)

2 + b3 (q · e3) + b4 (q · e3)
2 + b5 (q · e4)

+ b6 (q · e4)
2 + b7 (q · e2)(q · e3) + b8 (q · e2)(q · e4)

the solutions of a double cut can be parametrized by two variables t, x

q+ = x e1 + (α0 + xα1)e2 + t e3 +
β0 + β1x + β2x2

t
e4

q− = x e1 + (α0 + xα1)e2 +
β0 + β1x + β2x2

t
e3 + t e4

in the limit t→∞ uncut denominators are linear in t, hence
pentagons and boxes vanish as 1/t3 and 1/t respectively
the integrand

N(q±)∏
m6=i,j Dm

∣∣∣∣∣
cut

= ∆ij +
∑

k

∆ijk

Dk
+
∑

kl

∆ijkl

DkDl
+
∑

klm

∆ijklm

DkDlDm

= ∆ij +
∑

k

∆ijk

Dk
+O(1/t)
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The coefficients of the bubbles

In the asymptotic limit t→∞
the integrand

N(q±)∏
m 6=i,j,k Dm

∣∣∣∣∣
cut

= n±0 + n±1 x + n±2 x2 +
(

n±3 + n±4 x
)

t + n±5 t2 +O(1/t)

the subtraction term
∆ijk(q±)

Dk
= b̃k,±

0 + b̃k,±
1 x + b̃k,±

2 x2 +
(

b̃k,±
3 + b̃k,±

4 x
)

t + b̃k,±
5 t2 +O(1/t)

where b̃k,±
i are known functions of the triangle coefficients

the residue

∆ij(q+) = b0 + b1 (e1 · e2) x + b2 (e1 · e2)
2x2+

+
(

b5 + b7 (e1 · e2)x
)

(e3 · e4) t + b6 (e3 · e4)
2 t2 +O(1/t)

by comparison

b0 = n±0 −
∑

k

b̃k,±
0 , b1 =

n±1
e1 · e2

−
∑

k

b̃k,±
1 . . .
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Semi-numeric implementation

The loop momentum on a triple, double or single cut

qµ = ηµ−1
1
t

+ ηµ0 + ηµ1 t

The integrand

N(q)

DiDj . . .

∣∣∣∣
cut

=

∑
nk tk

(
∑

di,k tk) (
∑

dj,k tk) . . .

the coefficients nk are functions of the vectors ηµk

nk = nk(η−1, η0, η1)

these functions can be easily obtained from either the analytic
expression of the numerator or the tensor structure of the integrand
the Laurent expansion of the ratio of two rational functions can be
computed (analytically or numerically) via polynomial division
neglecting the remainder
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Stability of the algorithm

For a 6-point amplitude of rank 6: N(q) =
∏6

i=1(q · ri)

we only need to compute 386 coefficients out of 461 (16% less)
the reconstruction of the integrand is a couple of digits more
accurate than the one of Samurai

A simple example: 0→ 4γ
Plotting the relative error∣∣∣∣Aanalytic −Anumeric

Aanalytic

∣∣∣∣
as a function of m2/s
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Summary of one-loop reduction

The coefficients of the MIs and the rational part of a 1-loop
amplitude can be computed with operations at integrand level

the traditional OPP approach performs a full reconstruction of the
integrand in terms of Pentagons, Boxes, Triangles, Bubbles and
Tadpoles

the computation of lower point residues requires the knowledge of
all the higher point residues
at every step in the reduction we must subtract all the higher point
residues and solve a system of equations

By exploiting the analytic information about the integrand we can
construct a simplified reduction algorithm with

no system of equations to be solved
no subtraction of pentagons and boxes
subtractions of 3-point and 2-point residues are replaced by
corrections at coefficient level
successfully implemented in C++ and MATHEMATICA
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Higher loops

How does this extend to higher loops?
few papers on the subject
Mastrolia, Ossola (2011), Badger, Frellesvig, Zhang (2012)

some elements are common to one-loop
the numerator of the integrand can be rewritten as a combination of
residues and denominators
the residues are polynomials in the components of the loop
momenta
they can be reconstructed by evaluating the integrand on solutions
of multiple cuts

. . . but there are important differences
a complete basis of master integrals is not known
the reduction tells us which MIs we need
the form of the residues must be worked out for every different
topology
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Integrand reduction at 2 loops

At 2 loops:
the decomposition in d = 4 dimensions is

N(q1, q2)

D1 . . .Dn
=
∑

i1,...,i8

∆i1...i8

Di1 . . .Di8
+
∑

i1,...,i7

∆i1...i7

Di1 . . .Di7
+ . . .+

∑

i1,i2

∆i1 i2

Di1Di2

the residues can sit over 8 or less denominators
their parametric form can be found with several techniques
the unknown coefficients which appear in this parametrization can
be found by evaluating the integrand on solutions of multiple cuts

we start from 8-cuts
we subtract their residues and proceed with 7-cuts
. . .
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5-point amplitude in N = 4 SYM and N = 8 SG
G. Ossola, P. Mastrolia, E. Mirabella, T. P. (to be published)
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5-point amplitude in N = 4 SYM
the numerator has rank 1 [Carrasco, Johansson (2011)]
can be decomposed in terms of 8-cut and 7-cut residues
simple analytic expressions for the coefficients found with a
generalization of the Lorentz-expansion technique

5-point amplitude in N = 8 SG
the numerator has rank 2 [Carrasco, Johansson (2011)]
can be decomposed in terms of 8-cut, 7-cut and 6-cut residues
performed complete numerical reduction
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Summary and conclusions

Scattering amplitudes at the integrand level
At one-loop, the reduction at the integrand level

has been implemented in several codes, some of which publicly
available (e.g. Samurai, CutTools, NGluon,. . . )
simplified reduction via Laurent expansion can provide improved
stability

At higher loops
the first results look promising
applied to both planar and non-planar diagrams
analytic techniques such as the Laurent expansion and polynomial
division of the integrand can also simplify the computation at two
(and more?) loops
. . . work is in progress!
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