Scattering Amplitudes at the Integrand Level

Tiziano Peraro

Max-Planck-Institut für Physik Föhringer Ring 6, D-80805 München, Germany

Cortona 2012 May 30-31, June 1

based on:

arXiv:1203.0291: work in progress: P. Mastrolia, E. Mirabella, T. P. G. Ossola, P. Mastrolia, E. Mirabella, T. P.

Introduction

- Integrand level approach at one loop (OPP)
- 3 Analytic and semi-analytic reduction at the integrand level
 - Simplified reduction with Laurent expansion
 - Semi-numeric implementation

Higher loops

- Integrand decomposition at 2 loops
- Examples

Introduction: Scattering amplitudes at one-loop

• A generic *n*-point one-loop amplitude

$$\mathcal{M}_n \equiv \int \mathcal{A}_n(\bar{q}) \, d^d \bar{q} \equiv \int \frac{N(\bar{q})}{\bar{D}_1 \dots \bar{D}_n} d^d \bar{q}$$

• we split the loop momentum \bar{q} in a 4-dimensional part q and a (d-4)-dimensional part μ

$$ar{q}=q+ec{\mu} ~~~ ar{q}^2=q^2-\mu^2$$

1.

L

• the numerator of the integrand

$$N(\bar{q}) = N(q, \mu^2)$$

the denominators

$$\bar{D}_i = (\bar{q} + p_i)^2 - m_i^2 = (q + p_i)^2 - m_i^2 - \mu^2$$

Introduction: Scattering amplitudes at one-loop

$$= \sum d_{ijkl} + \sum c_{ijk} + \sum b_{ij} + \sum a_i + R$$

• Every one-loop amplitude in $d = 4 - 2\epsilon$ can be decomposed as

$$\mathcal{M}_{n} = \sum_{ijkl} \frac{d_{ijkl}}{I_{ijkl}} I_{ijkl} + \sum_{ijk} \frac{c_{ijk}}{I_{ijk}} I_{ijk} + \sum_{ij} \frac{b_{ij}}{I_{ij}} I_{ij} + \sum_{i} \frac{a_{i}}{I_{i}} I_{i} + R + \mathcal{O}(\epsilon)$$
$$I_{ijk...} = \int \frac{d\bar{q}}{\bar{D}_{i}\bar{D}_{j}\bar{D}_{k}\ldots}$$

- the basis of Master Integrals (MIs) I_{ijk...} is known
- the computation of the amplitude can be reduced to the problem of computing the coefficients of this decomposition and the rational part R

$$\int \mathcal{A}_n(\bar{q}) d\bar{q} = \sum_{ijkl} d_{ijkl} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} + \sum_{ijk} c_{ijk} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j \bar{D}_k} + \sum_{ij} b_{ij} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j} + \sum_i a_i \int \frac{d\bar{q}}{\bar{D}_i} + R$$

• The previous decomposition holds at the integral-level

$$\int \mathcal{A}_n(\bar{q}) d\bar{q} = \sum_{ijkl} d_{ijkl} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} + \sum_{ijk} c_{ijk} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j \bar{D}_k} + \sum_{ij} b_{ij} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j} + \sum_i a_i \int \frac{d\bar{q}}{\bar{D}_i} + R$$

- The previous decomposition holds at the integral-level
- An analogous decomposition holds at the integrand-level [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

$$\int \mathcal{A}_n(\bar{q}) d\bar{q} = \sum_{ijkl} d_{ijkl} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} + \sum_{ijk} c_{ijk} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j \bar{D}_k} + \sum_{ij} b_{ij} \int \frac{d\bar{q}}{\bar{D}_i \bar{D}_j} + \sum_i a_i \int \frac{d\bar{q}}{\bar{D}_i} + R$$

- The previous decomposition holds at the integral-level
- An analogous decomposition holds at the integrand-level [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
- in $d = 4 2\epsilon$ dimensions

$$\begin{aligned} \mathcal{A}(\bar{q}) &= \frac{N(q,\mu^2)}{\bar{D}_1 \dots \bar{D}_n} = \sum_{ijklm} \frac{\Delta_{ijklm}(\mu^2)}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l \bar{D}_m} + \sum_{ijkl} \frac{\Delta_{ijkl}(q,\mu^2)}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} \\ &+ \sum_{ijk} \frac{\Delta_{ijk}(q,\mu^2)}{\bar{D}_i \bar{D}_j \bar{D}_k} + \sum_{ij} \frac{\Delta_{ij}(q,\mu^2)}{\bar{D}_i \bar{D}_j} + \sum_i \frac{\Delta_i(q,\mu^2)}{\bar{D}_i} \end{aligned}$$

• pentagons $\Delta_{ijklm}(\mu^2)$ vanish upon integration

Residues

- The residues \(\Delta_{ijk...}\) have a known parametric form in terms of
 residue-dependent four vectors \(e_i, v_i)\)
 - unknown coefficients f_0, d_i, c_i, b_i, a_i

$$\begin{split} \Delta_{ijklm}(\mu^2) &= f_0 \ \mu^2 \\ \Delta_{ijkl}(q,\mu^2) &= d_0 + d_2 \mu^2 + d_4 \mu^4 + (d_1 + d_3 \mu^2)(q \cdot v_\perp) \\ \Delta_{ijk}(q,\mu^2) &= c_0 + c_7 \ \mu^2 \\ &+ \left(c_1 + c_8 \mu^2\right)(q \cdot e_3) + c_2 \ (q \cdot e_3)^2 + c_3 \ (q \cdot e_3)^3 \\ &+ \left(c_4 + c_9 \mu^2\right)(q \cdot e_4) + c_5 \ (q \cdot e_4)^2 + c_6 \ (q \cdot e_4)^3 \\ \Delta_{ij}(q,\mu^2) &= b_0 + b_9 \ \mu^2 + b_1(q \cdot e_2) + b_2(q \cdot e_2)^2 \\ &+ b_3(q \cdot e_3) + b_4(q \cdot e_3)^2 + b_5(q \cdot e_4) + b_6(q \cdot e_4)^2 \\ &+ b_7(q \cdot e_2)(q \cdot e_3) + b_8(q \cdot e_2)(q \cdot e_4) \\ \Delta_i(q) &= a_0 + a_1(q \cdot e_1) + a_1(q \cdot e_1) + a_1(q \cdot e_1) + a_1(q \cdot e_1) \end{split}$$

- the red terms give Master Integrals
- the blu terms determine the rational part
- the other terms (spurious) vanish upon integration

Extended decomposition

- The previous decomposition holds for renormalizable theories
 - the rank of the numerator can not be greater that the number *n* of denominators
- It can be extended to non-renormalizable theories
 - [P. Mastrolia, E. Mirabella, T. P. (2012)]
 - if, for instance, the rank of the numerator is equal n + 1 we get

$$\begin{split} \tilde{\Delta}_{ijk\ell m}(q,\mu^2) &= \Delta_{ijk\ell m}(q,\mu^2) \\ \tilde{\Delta}_{ijk\ell}(q,\mu^2) &= \Delta_{ijk\ell}(q,\mu^2) + 4_{4,5} \ \mu^4 \ q \cdot \nu_\perp \\ \tilde{\Delta}_{ijk}(q,\mu^2) &= \Delta_{ijk}(q,\mu^2) + c_{3,14} \ \mu^4 + c_{3,10} \ \mu^2 \ (q \cdot e_3)^2 + c_{3,11} \ \mu^2 \ (q \cdot e_4)^2 + c_{3,12}(q \cdot e_3)^4 + c_{3,13}(q \cdot e_4)^4 \\ \tilde{\Delta}_{ij}(q,\mu^2) &= \Delta_{ij}(q,\mu^2) + \mu^2 \Big(b_{10}^{(ij)} \ (q \cdot e_2) + b_{11}^{(ij)} \ (q \cdot e_3) + b_{12}(q \cdot e_4) \Big) + b_{13} \ (q \cdot e_2)^3 + b_{14}(q \cdot e_3)^3 \\ &+ b_{15}(q \cdot e_4)^3 + b_{16}(q \cdot e_2)^2 (q \cdot e_3) + b_{17}(q \cdot e_2)^2 (q \cdot e_4) + b_{18}(q \cdot e_2)(q \cdot e_3)^2 + b_{19}(q \cdot e_2)(q \cdot e_4)^2 \\ \tilde{\Delta}_i(q,\mu^2) &= \Delta_i(q,\mu^2) + a_5(q \cdot e_1)^2 + c_{1,6}(q \cdot e_2)^2 + c_{1,7}(q \cdot e_3)^2 + c_{1,8}(q \cdot e_4)^2 + a_{10}(q \cdot e_1)(q \cdot e_3) \\ &+ a_{11}(q \cdot e_1)(q \cdot e_4) + a_{12}(q \cdot e_2)(q \cdot e_3) + a_{13}(q \cdot e_2)(q \cdot e_4) + a_{14} \ \mu^2 + a_{15}(q \cdot e_3)(q \cdot e_4) \\ \tilde{\Delta}_Q(q,\mu^2) &= c_{Q,0} \,. \end{split}$$

Result for the integrated amplitude

• A generic integrand can be decomposed as

$$\mathcal{A}_n = \sum_{ijklm} \frac{\Delta_{ijklm}}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l \bar{D}_m} + \sum_{ijkl} \frac{\Delta_{ijkl}}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} + \sum_{ijk} \frac{\Delta_{ijk}}{\bar{D}_i \bar{D}_j \bar{D}_k} + \sum_{ij} \frac{\Delta_{ij}}{\bar{D}_i \bar{D}_j} + \sum_i \frac{\Delta_{ij}}{\bar{D}_i} + \sum_i \frac{\Delta_{ijklm}}{\bar{D}_i \bar{D}_j} + \sum_i \frac{\Delta_{ijklm}}{\bar{$$

• the residues $\Delta_{ij...}$

- have a known parametric form
- contain the coefficients of the MIs
- After integration

$$\int \mathcal{A}_n(\bar{q}) d\bar{q} = \sum_{ijkl} \int \frac{d_0^{(ijkl)}}{\bar{D}_i \bar{D}_j \bar{D}_k \bar{D}_l} + \sum_{ijk} \int \frac{c_0^{(ijk)}}{\bar{D}_i \bar{D}_j \bar{D}_k} + \sum_{ij} \int \frac{b_0^{(ij)}}{\bar{D}_i \bar{D}_j} + \sum_i \int \frac{d_0^i}{\bar{D}_i} + R$$

- several terms vanish (they are called spurious)
- the rational part *R* is determined by integrals in μ^2 , e.g.

$$\int \frac{\mu^4}{\bar{D}_l \bar{D}_j \bar{D}_k \bar{D}_l} = -\frac{1}{6} + \mathcal{O}(\epsilon), \qquad \int \frac{\mu^2}{\bar{D}_l \bar{D}_j \bar{D}_k} = \frac{1}{2} + \mathcal{O}(\epsilon), \qquad \dots$$

$$\frac{N(q,\mu^2)}{D_1\dots D_n} = \sum_{ijklm} \frac{\Delta_{ijklm}}{D_i D_j D_k D_l D_m} + \sum_{ijkl} \frac{\Delta_{ijkl}}{D_i D_j D_k D_l} + \sum_{ijk} \frac{\Delta_{ijk}}{D_i D_j D_k} + \sum_{ij} \frac{\Delta_{ij}}{D_i D_j} + \sum_i \frac{\Delta_i}{D_i} \sum_{jklm} \frac{\Delta_i}{D_i} + \sum_i \frac{\Delta_i}{D_i} \sum_{jklm} \frac{\Delta_i}{D_i} + \sum_i \frac{\Delta_i}{D_i} \sum_{jklm} \frac{\Delta_i$$

• The former decomposition can be rewritten as

$$N(q, \mu^{2}) = \sum_{ijklm} \Delta_{ijklm} \prod_{h \neq i, j, k, l} D_{h} + \sum_{ijkl} \Delta_{ijkl} \prod_{h \neq i, j, k, l} D_{h} + \sum_{ijk} \Delta_{ijk} \prod_{h \neq i, j, k} D_{h}$$
$$+ \sum_{ij} \Delta_{ij} \prod_{h \neq i, j} D_{h} + \sum_{i} \Delta_{i} \prod_{h \neq i} D_{h}$$

- the residues $\Delta_{ijk...}$ are polynomials in the components of q and μ^2
- the coefficients which parametrize the residues can be found by polynomial fitting
- an efficient strategy is to evaluate the integrand on solutions of multiple cuts i.e. on values of q and μ² such that some denominators D_i vanish

Integrand reduction and multiple cuts

• On the solutions of the 5-cut: $D_i = D_j = D_k = D_l = D_m = 0$

$$\left. \frac{N(q)}{\prod_{h \neq i, j, k, l, m} D_h} \right|_{\rm cut} = \Delta_{ijklm}$$

• On the solutions of the 4-cut: $D_i = D_j = D_k = D_l = 0$

$$\left[\frac{N(q)}{\prod_{h\neq i,j,k,l} D_h} - \sum_m \frac{\Delta_{ijklm}}{D_m}\right]_{\rm cut} = \Delta_{ijkl}$$

• On the solutions of the 3-cut: $D_i = D_j = D_k = 0$

$$\left[\frac{N(q)}{\prod_{h\neq i,j,k} D_h} - \sum_{l,m} \frac{\Delta_{ijklm}}{D_l D_m} - \sum_l \frac{\Delta_{ijkl}}{D_l}\right]_{\rm cut} = \Delta_{ijk}$$

Integrand reduction and multiple cuts

• On the solutions of the 2-cut: $D_i = D_j = 0$

$$\left[\frac{N(q)}{\prod_{h\neq i,j} D_h} - \sum_{k,l,m} \frac{\Delta_{ijklm}}{D_k D_l D_m} - \sum_{k,l} \frac{\Delta_{ijkl}}{D_k D_l} - \sum_k \frac{\Delta_{ijk}}{D_k}\right]_{\text{cut}} = \Delta_{ij}$$

• On the solutions of the 1-cut: $D_i = 0$

$$\left[\frac{N(q)}{\prod_{h\neq i} D_h} - \sum_{j,k,l,m} \frac{\Delta_{ijklm}}{D_j D_k D_l D_m} - \sum_{j,k,l} \frac{\Delta_{ijkl}}{D_j D_k D_l} - \sum_{j,k} \frac{\Delta_{ijk}}{D_j D_k} - \sum_j \frac{\Delta_{ij}}{D_j}\right]_{\text{cut}} = \Delta_i$$

Integrand reduction and multiple cuts

• On the solutions of the 2-cut: $D_i = D_j = 0$

$$\left[\frac{N(q)}{\prod_{h\neq i,j} D_h} - \sum_{k,l,m} \frac{\Delta_{ijklm}}{D_k D_l D_m} - \sum_{k,l} \frac{\Delta_{ijkl}}{D_k D_l} - \sum_k \frac{\Delta_{ijk}}{D_k}\right]_{\text{cut}} = \Delta_{ij}$$

• On the solutions of the 1-cut: $D_i = 0$

$$\left[\frac{N(q)}{\prod_{h\neq i} D_h} - \sum_{j,k,l,m} \frac{\Delta_{ijklm}}{D_j D_k D_l D_m} - \sum_{j,k,l} \frac{\Delta_{ijkl}}{D_j D_k D_l} - \sum_{j,k} \frac{\Delta_{ijk}}{D_j D_k} - \sum_j \frac{\Delta_{ij}}{D_j}\right]_{\text{cut}} = \Delta_i$$

- by sampling the integrand on cut-solutions one can recursively fit the coefficients of each residue – from the 5-point ones to the 1-point ones – by solving smaller systems of equations
- higher-point residues and computed first and then subtracted from the integrand in order to find the lower-point ones

By exploiting the analytic information about the integrand we can construct a simplified reduction procedure where

No systems of equations appear

- No systems of equations appear
- The coefficients of the pentagons and the spurious coefficients of the boxes do not have to be computed

- No systems of equations appear
- The coefficients of the pentagons and the spurious coefficients of the boxes do not have to be computed
- No subtraction is needed for the computation of 4 and 3-point coefficients

- No systems of equations appear
- The coefficients of the pentagons and the spurious coefficients of the boxes do not have to be computed
- No subtraction is needed for the computation of 4 and 3-point coefficients
- The computation of 3, 2, and 1-point residues is completely disentangled from the higher-point ones

By exploiting the analytic information about the integrand we can construct a simplified reduction procedure where

- No systems of equations appear
- The coefficients of the pentagons and the spurious coefficients of the boxes do not have to be computed
- No subtraction is needed for the computation of 4 and 3-point coefficients
- The computation of 3, 2, and 1-point residues is completely disentangled from the higher-point ones
- In the case of 2 and 1-point residues, the subtractions at integrand level are replaced by corrections to the coefficients
- The parametric form of this corrections is known as a function of the 3 and 2-point coefficients

P. Mastrolia, E. Mirabella, T. P. (2012)

The coefficients of the boxes

• The residue of a box reads

$$\Delta_{ijkl}(q,\mu^2) = d_0 + d_2\mu^2 + d_4\,\mu^4 + (d_1 + d_3\mu^2)(q \cdot v_\perp)$$

- d₀ can be computed via 4-dimensional 4ple cuts [Britto, Cachazo, Feng (2004)]
- d_4 can be computed from *d*-dimensional 4ple cuts in the limit $\mu^2 \to \infty$ [S. Badger (2008)]
 - the *d*-dimensional solutions of a quadruple cut are

$$q_{\pm} = a^{\mu} \pm \sqrt{\alpha + \frac{\mu^2}{\beta^2}} v_{\perp}^{\mu} = \pm \frac{\sqrt{\mu^2}}{\beta} v_{\perp}^{\mu} + \mathcal{O}(1)$$

with $a^{\mu}, v^{\mu}_{\perp}, \alpha, \beta$ fixed by the cut conditions

• the integrand in the asymptotic limit $\mu^2 \rightarrow \infty$ of the cut-solutions

$$\frac{N(q,\mu^2)}{\prod_{m\neq i,j,k,l} D_m}\bigg|_{\rm cut} = \frac{d_4\,\mu^4 + \mathcal{O}(\mu^3)}{}$$

• d_1, d_2, d_3 are spurious and do not need to be computed

The coefficients of the triangles

- The residue of a triangle reads (4-dim for brevity) $\Delta_{ijk}(q) = c_0 + c_1 (q \cdot e_3) + c_2 (q \cdot e_3)^2 + c_3 (q \cdot e_3)^3 + c_4 (q \cdot e_4) + c_5 (q \cdot e_4)^2 + c_6 (q \cdot e_4)^3$
- the solutions of a triple cut can be parametrized by a variable t

$$q^{\mu}_{+} = a^{\mu} + t e^{\mu}_{3} + \frac{\alpha}{t} e^{\mu}_{4}, \qquad q_{-} = a^{\mu} + \frac{\alpha}{t} e^{\mu}_{3} + t e^{\mu}_{4}$$

- in the limit $t \to \infty$ uncut denominators are linear in t, hence
 - pentagons vanish as $1/t^2$
 - boxes are constant but they vanish in the average over q_±
 - the integrand

$$\left. \frac{N(q_{\pm})}{\prod_{m \neq i,j,k} D_m} \right|_{\text{cut}} = \Delta_{ijk} + \sum_l \frac{\Delta_{ijkl}}{D_l} + \sum_{lm} \frac{\Delta_{ijklm}}{D_l D_m}$$
$$= \Delta_{ijk} + d_{\pm} + \mathcal{O}(1/t)$$

with $d_{+} + d_{-} = 0$

[Forde (2007)]

The coefficients of the triangles

• In the asymptotic limit $t \to \infty$

$$\frac{N(q_{\pm})}{\prod_{m \neq i,j,k} D_m} \bigg|_{\text{cut}} = d_{\pm} + \Delta_{ijk} + \mathcal{O}(1/t) \qquad \text{with } d_+ + d_- = 0$$

• the integrand

$$\frac{N(q_{\pm})}{\prod_{m\neq i,j,k} D_m} \bigg|_{\text{cut}} = n_0^{\pm} + n_1^{\pm} t + n_2^{\pm} t^2 + n_3^{\pm} t^3 + \mathcal{O}(1/t)$$

the residue

$$\Delta_{ijk}(q_{+}) = c_0 + c_4 (e_3 \cdot e_4) t + c_5 (e_3 \cdot e_4) t^2 + c_6 (e_3 \cdot e_4) t^3 + \mathcal{O}(1/t)$$

$$\Delta_{ijk}(q_{-}) = c_0 + c_1 (e_3 \cdot e_4) t + c_2 (e_3 \cdot e_4) t^2 + c_3 (e_3 \cdot e_4) t^3 + \mathcal{O}(1/t)$$

by comparison we get

$$c_{1} = \frac{n_{1}^{-}}{(e_{3} \cdot e_{4})}, \quad c_{2} = \frac{n_{2}^{-}}{(e_{3} \cdot e_{4})^{2}}, \quad c_{3} = \frac{n_{3}^{-}}{(e_{3} \cdot e_{4})^{3}}, \quad c_{4} = \frac{n_{1}^{+}}{(e_{3} \cdot e_{4})}, \quad \dots$$
$$c_{0} = \frac{n_{0}^{+} + n_{0}^{-}}{2}$$

T. Peraro (MPI - München)

The coefficients of the bubbles

• The residue of a bubble reads (4-dim for brevity) $\Delta_{ij}(q) = b_0 + b_1 (q \cdot e_2) + b_2 (q \cdot e_2)^2 + b_3 (q \cdot e_3) + b_4 (q \cdot e_3)^2 + b_5 (q \cdot e_4) + b_6 (q \cdot e_4)^2 + b_7 (q \cdot e_2)(q \cdot e_3) + b_8 (q \cdot e_2)(q \cdot e_4)$

• the solutions of a double cut can be parametrized by two variables t, x

$$q_{+} = x e_{1} + (\alpha_{0} + x \alpha_{1})e_{2} + t e_{3} + \frac{\beta_{0} + \beta_{1}x + \beta_{2}x^{2}}{t} e_{4}$$
$$q_{-} = x e_{1} + (\alpha_{0} + x \alpha_{1})e_{2} + \frac{\beta_{0} + \beta_{1}x + \beta_{2}x^{2}}{t} e_{3} + t e_{4}$$

• in the limit $t \to \infty$ uncut denominators are linear in t, hence

- pentagons and boxes vanish as $1/t^3$ and 1/t respectively
- the integrand

$$\begin{aligned} \frac{N(q_{\pm})}{\prod_{m \neq i,j} D_m} \bigg|_{\text{cut}} &= \Delta_{ij} + \sum_k \frac{\Delta_{ijk}}{D_k} + \sum_{kl} \frac{\Delta_{ijkl}}{D_k D_l} + \sum_{klm} \frac{\Delta_{ijklm}}{D_k D_l D_m} \\ &= \Delta_{ij} + \sum_k \frac{\Delta_{ijk}}{D_k} + \mathcal{O}(1/t) \end{aligned}$$

The coefficients of the bubbles

- In the asymptotic limit $t \to \infty$
 - the integrand

$$\frac{N(q_{\pm})}{\prod_{m\neq i,j,k} D_m} \bigg|_{\text{cut}} = n_0^{\pm} + n_1^{\pm} x + n_2^{\pm} x^2 + \left(n_3^{\pm} + n_4^{\pm} x\right) t + n_5^{\pm} t^2 + \mathcal{O}(1/t)$$

the subtraction term

$$\frac{\Delta_{ijk}(q_{\pm})}{D_k} = \tilde{b}_0^{k,\pm} + \tilde{b}_1^{k,\pm} x + \tilde{b}_2^{k,\pm} x^2 + \left(\tilde{b}_3^{k,\pm} + \tilde{b}_4^{k,\pm} x\right)t + \tilde{b}_5^{k,\pm} t^2 + \mathcal{O}(1/t)$$

where $\tilde{b}_i^{k,\pm}$ are known functions of the triangle coefficients • the residue

$$\Delta_{ij}(q_{+}) = b_0 + b_1 (e_1 \cdot e_2) x + b_2 (e_1 \cdot e_2)^2 x^2 + + (b_5 + b_7 (e_1 \cdot e_2) x) (e_3 \cdot e_4) t + b_6 (e_3 \cdot e_4)^2 t^2 + \mathcal{O}(1/t)$$

• by comparison

$$b_0 = n_0^{\pm} - \sum_k \tilde{b}_0^{k,\pm}, \qquad b_1 = \frac{n_1^{\pm}}{e_1 \cdot e_2} - \sum_k \tilde{b}_1^{k,\pm}$$

. . .

Semi-numeric implementation

• The loop momentum on a triple, double or single cut

$$q^{\mu} = \eta^{\mu}_{-1} \frac{1}{t} + \eta^{\mu}_{0} + \eta^{\mu}_{1} t$$

The integrand

$$\frac{N(q)}{D_i D_j \dots}\Big|_{\text{cut}} = \frac{\sum n_k t^k}{(\sum d_{i,k} t^k) (\sum d_{j,k} t^k) \dots}$$

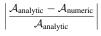
• the coefficients n_k are functions of the vectors η_k^{μ}

$$n_k = n_k(\eta_{-1}, \eta_0, \eta_1)$$

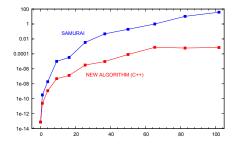
- these functions can be easily obtained from either the analytic expression of the numerator or the tensor structure of the integrand
- the Laurent expansion of the ratio of two rational functions can be computed (analytically or numerically) via polynomial division neglecting the remainder

T. Peraro (MPI - München)

- For a 6-point amplitude of rank 6: $N(q) = \prod_{i=1}^{6} (q \cdot r_i)$
 - we only need to compute 386 coefficients out of 461 (16% less)
 - the reconstruction of the integrand is a couple of digits more accurate than the one of Samurai
- A simple example: $0 \rightarrow 4\gamma$
 - Plotting the relative error



as a function of m^2/s



Summary of one-loop reduction

• The coefficients of the MIs and the rational part of a 1-loop amplitude can be computed with operations at integrand level

Summary of one-loop reduction

- The coefficients of the MIs and the rational part of a 1-loop amplitude can be computed with operations at integrand level
- the traditional OPP approach performs a full reconstruction of the integrand in terms of Pentagons, Boxes, Triangles, Bubbles and Tadpoles
 - the computation of lower point residues requires the knowledge of all the higher point residues
 - at every step in the reduction we must subtract all the higher point residues and solve a system of equations

Summary of one-loop reduction

- The coefficients of the MIs and the rational part of a 1-loop amplitude can be computed with operations at integrand level
- the traditional OPP approach performs a full reconstruction of the integrand in terms of Pentagons, Boxes, Triangles, Bubbles and Tadpoles
 - the computation of lower point residues requires the knowledge of all the higher point residues
 - at every step in the reduction we must subtract all the higher point residues and solve a system of equations
- By exploiting the analytic information about the integrand we can construct a simplified reduction algorithm with
 - no system of equations to be solved
 - no subtraction of pentagons and boxes
 - subtractions of 3-point and 2-point residues are replaced by corrections at coefficient level
 - successfully implemented in C++ and MATHEMATICA

Higher loops

How does this extend to higher loops?

• few papers on the subject

Mastrolia, Ossola (2011), Badger, Frellesvig, Zhang (2012)

Higher loops

How does this extend to higher loops?

few papers on the subject

Mastrolia, Ossola (2011), Badger, Frellesvig, Zhang (2012)

- some elements are common to one-loop
 - the numerator of the integrand can be rewritten as a combination of residues and denominators
 - the residues are polynomials in the components of the loop momenta
 - they can be reconstructed by evaluating the integrand on solutions of multiple cuts

Higher loops

How does this extend to higher loops?

• few papers on the subject

Mastrolia, Ossola (2011), Badger, Frellesvig, Zhang (2012)

- some elements are common to one-loop
 - the numerator of the integrand can be rewritten as a combination of residues and denominators
 - the residues are polynomials in the components of the loop momenta
 - they can be reconstructed by evaluating the integrand on solutions of multiple cuts
- ... but there are important differences
 - a complete basis of master integrals is not known
 - the reduction tells us which MIs we need
 - the form of the residues must be worked out for every different topology

At 2 loops:

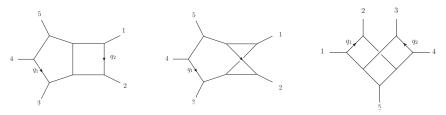
• the decomposition in d = 4 dimensions is

$$\frac{N(q_1, q_2)}{D_1 \dots D_n} = \sum_{i_1, \dots, i_8} \frac{\Delta_{i_1 \dots i_8}}{D_{i_1} \dots D_{i_8}} + \sum_{i_1, \dots, i_7} \frac{\Delta_{i_1 \dots i_7}}{D_{i_1} \dots D_{i_7}} + \dots + \sum_{i_1, i_2} \frac{\Delta_{i_1 i_2}}{D_{i_1} D_{i_2}}$$

- the residues can sit over 8 or less denominators
- their parametric form can be found with several techniques
- the unknown coefficients which appear in this parametrization can be found by evaluating the integrand on solutions of multiple cuts
 - we start from 8-cuts
 - we subtract their residues and proceed with 7-cuts
 - ...

5-point amplitude in $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

G. Ossola, P. Mastrolia, E. Mirabella, T. P. (to be published)



- 5-point amplitude in $\mathcal{N} = 4$ SYM
 - the numerator has rank 1 [Carrasco, Johansson (2011)]
 - can be decomposed in terms of 8-cut and 7-cut residues
 - simple analytic expressions for the coefficients found with a generalization of the Lorentz-expansion technique
- 5-point amplitude in $\mathcal{N} = 8$ SG
 - the numerator has rank 2 [Carrasco, Johansson (2011)]
 - can be decomposed in terms of 8-cut, 7-cut and 6-cut residues
 - performed complete numerical reduction

Scattering amplitudes at the integrand level

- At one-loop, the reduction at the integrand level
 - has been implemented in several codes, some of which publicly available (e.g. Samurai, CutTools, NGluon,...)
 - simplified reduction via Laurent expansion can provide improved stability

• At higher loops

- the first results look promising
- applied to both planar and non-planar diagrams
- analytic techniques such as the Laurent expansion and polynomial division of the integrand can also simplify the computation at two (and more?) loops
- ... work is in progress!