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Introduction: Scattering amplitudes at one-loop

@ A generic n-point one-loop amplitude

Q|

M= [ Aty = [ 50 aig

ki ki1
o we split the loop momentum g in a 4-dimensional part ¢ and a
(d — 4)-dimensional part /i

q=q+ji T=q )
e the numerator of the integrand
N(g) = N(q,11*)
e the denominators

Di=(q+pi)* —mi = (q+p)’ —mj—p*
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Introduction: Scattering amplitudes at one-loop
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@ Every one-loop amplitude in d = 4 — 2e¢ can be decomposed as

M, = Liji + E Lijk + E I + g Ii+ R+ O(e)
ijkl ijk ij i
dq
D:D;Dx ...

o the basis of Master Integrals (MIs) ;.. is known

e the computation of the amplitude can be reduced to the problem of
computing the of this decomposition and the rational
part R
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Integrand-level decomposition: OPP

/An dq—Zdtjkl/DDDle ;Uk/DDDk 121// +Z /*+R

ijkl

@ The previous decomposition holds at the integral-level
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Integrand-level decomposition: OPP

/An dq_Zd,,kl/DDDle ; t/k/DDDk lz 1// +Z /*+R

ijkl

@ The previous decomposition holds at the integral-level

@ An analogous decomposition holds at the integrand-level
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

@ ind =4 — 2e dimensions

D:D;DyD\D,, <~ D;D;DiD
m ijkl

s Ailg, 1?) > Dyla: 1) | 3 Ailg, %)
— ‘

D:D;Dy DiD;

N 2 Ai' m 2 Ai' ) z
Ag) = Ma.) _ Y S o ikl (4 1)

e pentagons A, (1%) vanish upon integration
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@ The residues Aj... have a known parametric form in terms of
o residue-dependent four vectors e;, v
@ unknown coefficients fy, d;, c;, b;, a;
Ajim (17) = fo 1
Aja(q, 1) = do + dop® + dap* + (dy + dap)(q-v1)
Ae(g, p?) = o+ er
+ (01 + ch) (g-e3)+ca(g-e3)* +c3(q-e3)’

+ (cateon?) (a-ea) + s (a- ) + o (a- e)?

Aji(g, 1*) = bo +bo p? + bi(q - e2) + ba(g - €2)?
+b3(q - e3) +ba(q-e3)” +bs(q-es) + bo(q - es)’
+b1(q-e2)(qg-e3) +bs(q-e2)(q-ea)
Ai(g) =ao +ai(g-e1) +ai(g-er) +ai(g-er) +ai(g-er)

e the red terms give Master Integrals

o the blu terms determine the rational part

o the other terms (spurious) vanish upon integration

Cortona 2012

Integrand Reduction

T. Peraro (MPI - Miinchen)



Extended decomposition

@ The previous decomposition holds for renormalizable theories
o the rank of the numerator can not be greater that the number »n of
denominators
@ It can be extended to non-renormalizable theories

[P. Mastrolia, E. Mirabella, T. P. (2012)]
e if, for instance, the rank of the numerator is equal n + 1 we get

A 2 2
Ajicem (@ ) = Djrom(a; 1°)
X 2 2 4
Ajike (g, 1°) = Djjke(gs 1) +dys 1 q-vy
A 2 2 4 2 2 2 2 4 4
ANji(gs 1) = Aj(gs 1°) +e31a v+ 300" (-e3)" + ez p” (q-ea)” +c3,12(q-e3)” +¢3,13(q - es)

Ayilg, 1*) = Dj(a, 12) + 12 (bl(g) (q-e)+ bﬁj) (q-e3) +bra(q- 84)) b3 (q-e2)’ +bialg - e3)?
+bis(q - e)’ +bi6(a- ) (- e3) +bir(g - e2) (g es) +big(a-e2) (g e3)” +brolg - e2)(q - es)’
Ai(g, 1) = Ailg, 1*) 4+ as(q-en)? +cr6(a - e2)? + c1,7(q - )’ + c1,8(q - e)? +awg-e)q-e)

+ap(g-e)(q-es) +ap(q-e)(g-e) faiz(g-e)(q-e) +ay p’ +aislq-e3)q-es)

X 2
Ag(g, n") =gy -
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Result for the integrated amplitude

@ A generic integrand can be decomposed as

. Ajjkim Ay Ajjk Ay A
A= 5D, %: DDDD, z/k: DDD: zj: b5, 2D,

iJj m

o the residues A .

@ have a known parametric form
@ contain the coefficients of the Mls

@ After integration

) (i b
0 = U
/A )da = Z/DDDle - /DDDk+th/ +Z/ *

ijkl

e several terms vanish (they are called spurious)
e the rational part R is determined by integrals in 2, e.g.

4 2
woo_ 1 w1
/DDDD =6 190 /DDD =300,
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N = N decomposition

N(g, 1) _ Aijkim A Ak Ay Ai
D,...D, Z D;D;DDD,, + Z D;:D;D.D,; + Z D;D;Dy + Z D:D; + Z D;

ijkim ijkl ijk ij

@ The former decomposition can be rewritten as

N(q,p*) = ZAUklm H Dy, +ZA,;/kz H Dy, +ZAijk H Dy,

ijkim htig kel il hti kil ik hetinj k
+ E AI;,'HDh-i- E AiHDh
i bt T

@ the residues Ay . are polynomials in the components of ¢ and 2

@ the coefficients which parametrize the residues can be found by
polynomial fitting

@ an efficient strategy is to evaluate the integrand on solutions of multiple
cuts i.e. on values of ¢ and p? such that some denominators D; vanish
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Integrand reduction and multiple cuts

@ On the solutions of the 5-cut: D; =D; =Dy =D; =D, =0

N(q)

7D = Aijklm
théij7k,l,m h

cut

@ On the solutions of the 4-cut: D; =D; =Dy =D; =0
_ N 3 Aijian
Hh;éu,k,l Dy, m Dy,

@ On the solutions of the 3-cut: D; =D; =Dy =0

= Aju

cut

N Aiin Ay
_N@) g B g B _p
Hh;éi,j,k Dy, DD, i D,

I,m

cut
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Integrand reduction and multiple cuts

@ On the solutions of the 2-cut: D; = D; =0

Lq) _ Z Aijklm o Z Aijkl _ Z Aijk
[1zi; Dn DyDD,, DDy 4~ Dy

klm k.l

y

cut

@ On the solutions of the 1-cut: D; =0

N(q) 72 Aijkim 72 AV 72 A *Zﬂ
[TwiDi oo DDDID, 4= DiDD; 4= DDy 4= D
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Integrand reduction and multiple cuts

@ On the solutions of the 2-cut: D; = D; =0

M _ Z Aijklm o Z Aijkl _ Z Aijk
[1zi; Dn DyDD,, DDy 4~ Dy

klm k.l

y

cut

@ On the solutions of the 1-cut: D; =0

N(q) 72 Aijkim 72 AV 72 A *Zﬂ
[TwiDi oo DDDID, 4= DiDD; 4= DDy 4= D

— A,

cut

@ by sampling the integrand on cut-solutions one can recursively fit the
coefficients of each residue — from the 5-point ones to the 1-point ones —
by solving smaller systems of equations

@ higher-point residues and computed first and then subtracted from the
integrand in order to find the lower-point ones
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Analytic and semi-analytic reduction

By exploiting the analytic information about the integrand we can
construct a simplified reduction procedure where
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Analytic and semi-analytic reduction

By exploiting the analytic information about the integrand we can
construct a simplified reduction procedure where
@ No systems of equations appear

@ The coefficients of the pentagons and the spurious coefficients of
the boxes do not have to be computed

@ No subtraction is needed for the computation of 4 and 3-point
coefficients

@ The computation of 3, 2, and 1-point residues is completely
disentangled from the higher-point ones

@ In the case of 2 and 1-point residues, the subtractions at integrand
level are replaced by corrections to the coefficients

@ The parametric form of this corrections is known as a function of
the 3 and 2-point coefficients

P. Mastrolia, E. Mirabella, T. P. (2012)
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The coefficients of the boxes

@ The residue of a box reads
Niu(g, 1i*) = do + dop® + dy pi* + (dy + dspi®) (g - vi)

@ d, can be computed via 4-dimensional 4ple cuts [Britto, Cachazo, Feng (2004)]

@ d, can be computed from d-dimensional 4ple cuts in the limit ;> — oo
[S. Badger (2008)]

e the d-dimensional solutions of a quadruple cut are

H \/> H (1)

gy =a"* + OH_E

with a*,v/| | «, (3 fixed by the cut conditions
e the integrand in the asymptotic limit > — oo of the cut-solutions
N(g, /%)

= dap* + O(1)
[Lsijses Pm

cut

@ d,,d,,ds are spurious and do not need to be computed
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The coefficients of the triangles

@ The residue of a triangle reads (4-dim for brevity)
Aijr(q) = coter (q-e3)tca (g-e3)*+es (q-e3)’+ea (q-ea)+es (q-ea)+c (q-es)’
@ the solutions of a triple cut can be parametrized by a variable ¢
q’iza“—l—te‘;—i—%eé’f, q,:a“—i-%e’;—i—tef

@ in the limit t — oo uncut denominators are linear in t, hence
e pentagons vanish as 1/

o boxes are constant but they vanish in the average over g
o the integrand

N(q+) - ljkl z]klm

[Lotiju P |

[Forde (2007)]
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The coefficients of the triangles

@ In the asymptotic limit 7 — oo

N(q=x)

=1 = Ay 1 ith _=
[T s Dn d+ + Ay + O(1/1) withd, +d 0

cut

o the integrand

N(q+)

==L = tnfrrnf A rnf P+ 00/
ILstijx Om

cut

o the residue
Ajje(ge) = co+ca(es-eg)t+cses-eq)” +coles-eq)r +O(1/)1)
Aji(g-) =co+ci(es-es)i+cyes-es) i’ +c3(ez-eq)r’ +O(1/1)

e by comparison we get

n n, ny ni"
Cl = 6‘2 = ——— C = —— C4 =
(e3-e4)’ (e3-e4)?’ (e3-e4)®’ (e3-eq)’
+ —
o = ng +n,
2
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The coefficients of the bubbles

@ The residue of a bubble reads (4-dim for brevity)
Ay(q) =bo+bi(q-e) +b2(q-e2)* +bs(q-e3) +ba(g-es)’ +bs(q-es)
+bs(q-es)’ +br(q-e)(q-es)+bs(q-e)(q-es)
@ the solutions of a double cut can be parametrized by two variables ¢, x

+ Bix + Box?
g+ =xer + (o +xar)es +res + M&

Bo + Bix + Bax?
t

g- =xer + (ao +xar)er + es+1tey

@ in the limit r — oo uncut denominators are linear in t, hence
e pentagons and boxes vanish as 1/7* and 1/¢ respectively
e the integrand

N(q+) _ +Z l]k A Z Ajjteim
Lz Dm B ~ DDy = DyDiDyy

cut

A,
=g+ o)
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The coefficients of the bubbles

@ In the asymptotic limit r — o
@ the integrand

N(q+)
Hm#i,j,k Dm
@ the subtraction term

Aii(q+)
Dy

=ni +nix+ny X+ (nf—f—nfx)t—i—nfrz—i—(’)(]/t)

cut

=bE AP BT+ (E’;i + B’j’ix)t + 05+ 0(1/1)

where b“* are known functions of the triangle coefficients
@ the residue

Aij(qu) = by + by (61 . 62))6 + b (81 . 62)2x2+
n (b5 + by (er - ez)x) (e3-ea) t+ bg (es - ea)’ 7 + O(1/1)

@ by comparison

+
+ Z Tk,E n Z Tk,E
bo =ny — b() 5 b1 = 1 — bl
k
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Semi-numeric implementation

@ The loop momentum on a triple, double or single cut
1
q" =n"y o+
@ The integrand

N(q) Somtt

D,‘Dj <o eat (Z di,k tk) (Z dj7k tk) R

e the coefficients n; are functions of the vectors n}’

ng = nk(777177707771)

e these functions can be easily obtained from either the analytic
expression of the numerator or the tensor structure of the integrand

e the Laurent expansion of the ratio of two rational functions can be
computed (analytically or numerically) via polynomial division
neglecting the remainder
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Stability of the algorithm

@ For a 6-point amplitude of rank 6: N(q) = [T, (g - r:)

o we only need to compute 386 coefficients out of 461 (16% less)
e the reconstruction of the integrand is a couple of digits more
accurate than the one of Samurai

100

@ A simple example: 0 — 4+ T e

0.01 |

o Plotting the relative error o001 |

10-06 | ./'
A P A . _— NEW ALGORITHM (C++)
Zlanalytic  Znumeric to08 |
-Aana.lylic 1e-10 -

1e-12 |-

as a function of m?/s

1e-14 L
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Summary of one-loop reduction

@ The coefficients of the Mls and the rational part of a 1-loop
amplitude can be computed with operations at integrand level
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Summary of one-loop reduction

@ The coefficients of the Mls and the rational part of a 1-loop
amplitude can be computed with operations at integrand level
@ the traditional OPP approach performs a full reconstruction of the
integrand in terms of Pentagons, Boxes, Triangles, Bubbles and
Tadpoles
e the computation of lower point residues requires the knowledge of

all the higher point residues

e at every step in the reduction we must subtract all the higher point
residues and solve a system of equations

@ By exploiting the analytic information about the integrand we can
construct a simplified reduction algorithm with

@ no system of equations to be solved

@ no subtraction of pentagons and boxes

@ subtractions of 3-point and 2-point residues are replaced by
corrections at coefficient level

o successfully implemented in C++ and MATHEMATICA
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Higher loops

How does this extend to higher loops?

@ few papers on the subject
Mastrolia, Ossola (2011), Badger, Frellesvig, Zhang (2012)
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Higher loops

How does this extend to higher loops?

@ few papers on the subject
Mastrolia, Ossola (2011), Badger, Frellesvig, Zhang (2012)
@ some elements are common to one-loop
e the numerator of the integrand can be rewritten as a combination of
residues and denominators
o the residues are polynomials in the components of the loop
momenta
e they can be reconstructed by evaluating the integrand on solutions
of multiple cuts

@ ...but there are important differences

e a complete basis of master integrals is not known
@ the reduction tells us which Mls we need
o the form of the residues must be worked out for every different

topology
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Integrand reduction at 2 loops

At 2 loops:
@ the decomposition in d = 4 dimensions is

N(q1,q2) AVA AV A i
Dy...D, Z D;, ...D; +,Z_ D; ...D; +'”+ZD,-1D,-2

0150508 015000507 i1,i2

@ the residues can sit over 8 or less denominators

@ their parametric form can be found with several techniques
@ the unknown coefficients which appear in this parametrization can
be found by evaluating the integrand on solutions of multiple cuts
o we start from 8-cuts

@ we subtract their residues and proceed with 7-cuts
o ...
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5-point amplitude in ' =4 SYM and NV = 8 SG

G. Ossola, P. Mastrolia, E. Mirabella, T. P. (to be published)

5 5

3 3

@ 5-point amplitude in ' =4 SYM

o the numerator has rank 1 [Carrasco, Johansson (2011)]

e can be decomposed in terms of 8-cut and 7-cut residues

e simple analytic expressions for the coefficients found with a
generalization of the Lorentz-expansion technique

@ 5-point amplitude in ' = 8 SG
o the numerator has rank 2 [Carrasco, Johansson (2011)]

@ can be decomposed in terms of 8-cut, 7-cut and 6-cut residues
e performed complete numerical reduction
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Summary and conclusions

Scattering amplitudes at the integrand level
@ At one-loop, the reduction at the integrand level
o has been implemented in several codes, some of which publicly
available (e.g. Samurai, CutTools, NGluon,...)
e simplified reduction via Laurent expansion can provide improved
stability
@ At higher loops

o the first results look promising
o applied to both planar and non-planar diagrams
@ analytic techniques such as the Laurent expansion and polynomial

division of the integrand can also simplify the computation at two
(and more?) loops

e ...work is in progress!
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