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The goal:

derive the space-time configuration sourced (at gs 6= 0) by a
BPS bound state of D-branes
work in the regime in which the space-time geometry can be
described by classical supergravity:

D-brane bound state→ coherent state

The motivation:

in string theory black holes are constructed by wrapping along
the compact dimensions different types of D-branes
(BPS) black hole entropy is exactly reproduced by counting
D-brane bound states (Strominger-Vafa)

what is the space-time description of black hole microstates?

3 / 19



The fuzzball picture (Mathur et al.)

gs = 0 gs  finite
r�RHor → black hole

r∼RHor → “cap”

D-brane microstate microstate geometry

same charges and mass as the black hole (r � RHor )

the region inside the horizon is replaced by a “smooth cap”
which carries the information on the particular microstate
for generic microstates the size of the cap is ∼ RHor

string effects are relevant at the horizon scale!
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Outline

IIB on R1,4 × S1 × T 4

1 1 charge (1/2 BPS):
D1 or D5 geometries
no macroscopic entropy (S ≈ 0)

2 2 charges (1/4 BPS):
D1-P or D5-P bound states
D1-D5 bound states
macroscopic entropy (S = 2

√
2π
√

n1n5), but vanishing horizon area
in supergravity

3 3 charges (1/8 BPS):
D1-D5-P bound states
macroscopic entropy (S = 2π

√
n1n5np) and non-vanishing horizon

area
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1 charge

Disk amplitudes as sources

When gs 6= 0 D-branes act as sources for closed string fields
Φ = gµν , φ, Bµν , C(p) ⇒

Γ = Γbulk + Γbrane

The space-times fields Φ are determined by the equation

δΓbulk

δΦ
= −δΓbrane

δΦ
≡ 〈VΦ〉disk ≡"!
# 

VΦ· (∗)

VΦ is the vertex operator for the closed field Φ; for example

V (−1,−1)
G = Gµν c ψµ e−ϕ c̄ ψ̄ν e−ϕ̄ ei k ·x + ghosts

where Gµν = gµν , φ, Bµν
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1 charge

D-brane geometry (Di Vecchia, Frau, Lerda, Pesando, Russo, Sciuto)

The geometry sourced by a D1 brane

ds2 = H−3/4(r)(−dt2 + dy2) + H1/4(r)(dx2
i + dz2

a )

H(r) = 1 +
Q1

r2 , Q1 =
(2π)4gs α

′3

V4
n1

is the solution of (∗) with 〈VΦ〉disk computed using D1 boundary
conditions (∂̄Xµ = ∂Xµ if µ = t , y , ∂̄Xµ = −∂Xµ if µ = xi , za)
Expand around flat space Φ = I + δΦ

At linear order in δΦ, (∗) becomes ∇2δΦ = 〈VΦ〉disk ⇒

δΦ(k) =

1
k2

"!
# 

VΦ(k)

· ⇔ δΦ ∼ Q1

r2

In this case 〈VΦ(k)〉disk is k -independent; it only encodes
information on the global charge Q1
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1 charge

In summary

Disk amplitudes directly give the first non-trivial terms in the
asymptotic expansion of the geometry around flat space
The full non-linear solution can be derived by recursively solving
the supergravity e.o.m.’s
(∗) : ∇2δΦ + c3 δΦ2 + c4 δΦ3 + . . . = 〈VΦ〉disk

The higher order terms in this expansion correspond to
world-sheet amplitudes with more than one boundary

VΦ

VΦ

c3

= δΦ
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2 charges

D1-P geometries

BPS bound states of D1 and P charges are given
(semi-classically) by a D1-brane carrying a left-moving wave in the
transverse directions⇒ fi(v) , v = t + y

x i
fi(v)

L=2πn1R

v
0

The world-sheet boundary conditions depend on fi(v)

∂Xµ = Rµ
ν ∂̄X ν + fermions , Rµ

ν =



1 0 0 0
4|ḟ (V )|2 1 −4ḟi(V ) 0
2ḟi(V ) 0 −I 0

0 0 0 −I


µ, ν = (v = t + y ,u = t − y , xi , za)
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2 charges

The disk amplitude is now a non-trivial function of ki , for example

〈VG(k)〉disk,f ≡"!
# 

VG(k)·
f

∼ n1

L

∫ L

0
dv e−i ki f i (v) Gµν Rνµ(v)

The geometry sourced by this is

ds2 = H−3/4dv(−du + K dv + 2Aidxi) + H1/4(dx2
i + dz2

a )

where

H = 1 +
Q1

L

∫ L

0
dv

1
|xi − fi |2

, K =
Q1

L

∫ L

0
dv

|ḟi |2

|xi − fi |2
,

Ai = −Q1

L

∫ L

0
dv

ḟi
|xi − fi |2

The f -dependent harmonic functions H,K ,Ai are encoded in
〈VG(k)〉disk,f
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2 charges

Comments on D1-P geometries

There is a continuous family of geometries, parametrized by fi(v),
carrying the same global D1 and P charges and preserving the
same supersymmetries (1/4 BPS)
After quantization, these geometries account for the 2-charge
entropy
All bound states carry non-trivial oscillations in the transverse (xi )
directions and therefore break rotational symmetry (unlike the
naive black hole geometry)
For the same reason, all bound states carry local D1 and P
charges along the transverse directions⇒ dipole charges
All these properties are captured by disk amplitudes
The geometries are singular at xi = fi(v) (D1-brane source)
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2 charges

D1-D5 geometries

The metric after a U-duality

ds2
6 = (H(1 + K ))−1/2[−(dt − A)2+ (dy + B)2] + (H(1 + K ))1/2dx2

i

where H,K ,A ≡ Aidxi are the same as before and dA = − ∗4 dB

the term dy + B describes
the fiber of a KK-monopole:
the y cycle vanishes
smoothly at xi = fi(v)

y

x=f(v)

|x|>>f

there is a local KK-monopole charge (dipole charge), that is
U-dual to the local D1 charge along the transverse directions
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2 charges

The D1-D5 twist fields

In a D1-D5 bound state open strings stretched between D1 and
D5 have a non-trivial vev
On the world-sheet this vev can be described perturbatively by the
insertion of twist fields

〈VΦ〉disk =
D1

VΦ +
D5

VΦ +

x

x

VΦ

Vµ

Vµ̄

+
VΦVµ̄ Vµ̄

Vµ

Vµ

+ ...

The twist fields are Vµ = µA e−
ϕ
2 SA ∆ , Vµ̄ = µ̄A e−

ϕ
2 SA ∆̄

with SA spin fields of SO(1,5) acting on t , y , xi

The bilinears µ̄AµB can have non-trivial vev

µ̄AµB = vI (CΓI)[A,B] +
1
3!

vIJK (CΓIJK )(A,B)

parametrized by vI , vIJK
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2 charges

Disk amplitudes with different numbers of twist field insertions
contribute to different orders in the 1/r expansion:
amplitudes with 2n twist fields go like 1/r (2+n)

For example:
the diagram

x

x

VG

Vµ

Vµ̄

∼ GIJ RM
J vIMK

xK

|x |4
contributes to
Ai ,Bi

The vev’s vIJK are identified with the moments of the profile fi ,
for example: vtij ∼ 1

L

∫ L
0 dv ḟi fj

Resumming amplitudes with arbitrary numbers of twist fields
should reproduce the full dependence of H,K ,Ai ,Bi on fi

As before, terms non-linear in H,K ,Ai ,Bi come from amplitudes
with more boundaries
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3 charges

D1-D5-P geometries

How to bind P to D1-D5?

1 P can be carried by D1-D5 strings: vIJK → vIJK (v)

2 P can be carried by D1-D1, D5-D5 strings:

D1-D5 vev vIJK

left-moving wave profiles fD1(v), fD5(v)

1 is the entropically favored configuration
2 is computationally easier (if fD1(v) = fD5(v) ≡ f (v)) :

take the D1-D5 result and substitute

Rµ
ν → Rµ

ν (f )

In the following I will restrict to 2
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3 charges

For example:

x

x

f f

VG (k)

Vµ

Vµ̄

∼
∫ L

0 dv e−i k i fi (v) GIJ RM
J (f ) vIMK kK

The dependence on fi(v) is exact, but only first order in vIJK
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3 charges

Qualitative features of D1-D5-P geometries

We have derived the geometry sourced by a generic 3 charge
bound state up to order 1/r4

All the 10D II supergravity fields are non-trivial, including
Bµν ,C(0),C(4), that vanish in the naive 3-charge black hole
There are new terms that depend on all three charges, and vanish
in every two charge limit:

a term of order 1/r3 (dipole term) in Bµν

a term of order 1/r4 in gij (metric along spatial R4), that makes gij
non conformally flat but conformally hyperkahler

What about the full non-linear solution?
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Conclusions

Conclusions and Outlook

The computation of disk amplitudes, together with the
supergravity equations of motion, provide in principle a systematic
way to derive the geometry sourced by 3 charge bound states
We know:

the large r expansion of the geometry, up to order 1/r4 :
the geometry differs from the naive black hole geometry by
dipole terms
a general exact supergravity ansatz that contains all the fields
excited in the large r solution: it turns out to be equivalent to a 5D
N = 2 supergravity solution with three vector multiplets

We would like to know:

an exact solution of the supergravity ansatz that reduces to the
string amplitude result for large r
is the exact solution smooth and horizonless?
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Conclusions

Further applications

These techniques apply to more general bound states, as far as a
world-sheet description for the bound state constituents is known
(D-branes or fundamental strings):

four charge black hole in 4D (work in progress with F. Morales and
R. Russo)
non-BPS bound states (even if the amplitude computation is
probably harder)

Disk amplitudes could also be used to study dynamical processes
involving black holes:

absorption or emission from a black hole microstate
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