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The goal:
@ derive the space-time configuration sourced (at gs = 0) by a
BPS bound state of D-branes
@ work in the regime in which the space-time geometry can be

described by classical supergravity:
D-brane bound state — coherent state

The motivation:
@ in string theory black holes are constructed by wrapping along
the compact dimensions different types of D-branes

@ (BPS) black hole entropy is exactly reproduced by counting
D-brane bound states (Strominger-Vafa)

@ what is the space-time description of black hole microstates?



The fuzzball picture (Mathur et al.)

9s = 0 g, finite
—_— >
r~Ryor —  “cap”

D-brane microstate microstate geometry

r>Ryor —  black hole

@ same charges and mass as the black hole (r > Rpor)

@ the region inside the horizon is replaced by a “smooth cap”
which carries the information on the particular microstate

@ for generic microstates the size of the cap is ~ Ryor
@ string effects are relevant at the horizon scale!
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IBon R™ x S' x T4

@ 1 charge (1/2 BPS):
o D1 or D5 geometries
@ no macroscopic entropy (S = 0)
© 2 charges (1/4 BPS):
e D1-P or D5-P bound states
e D1-D5 bound states
e macroscopic entropy (S = 2v/27/m s ), but vanishing horizon area
in supergravity
© 3 charges (1/8 BPS):
e D1-D5-P bound states
@ macroscopic entropy (S = 2m,/NNsM,) and non-vanishing horizon
area



Disk amplitudes as sources

@ When gs # 0 D-branes act as sources for closed string fields
¢ = me d)v Buuv C(p) =

I = Touk + Morane

@ The space-times fields ® are determined by the equation

or Ol bran

@ Vi, is the vertex operator for the closed field ¢; for example

VS =G, eyt e P Y e % € F X + ghosts

Whel’e gw, - gp,yg (,bv B}LI/



D-brane geometry (Di Vecchia, Frau, Lerda, Pesando, Russo, Sciuto)

@ The geometry sourced by a D1 brane

ds? = H=3/4(r)(—d? + dy?) + H'/*(r)(ax? + dz?)
o 4 O/S
H(r):1+(321, o :()\ZS’”
is the solution of () with (V4 )4« computed using D1 boundary
conditions (9X* = X" if = t,y, OX* = —0X" if pu = X;, Za)
@ Expand around flat space ® =1+ §o
@ At linear order in 60, (x) becomes V25® = (Vg )aisk =

1
so(k) = —* & 5cb~c:2?

@ In this case (Vo (k))4isk is k-independent; it only encodes
information on the global charge Q;




In summary

@ Disk amplitudes directly give the first non-trivial terms in the
asymptotic expansion of the geometry around flat space

@ The full non-linear solution can be derived by recursively solving
the supergravity e.o.m.s
(*) : V2(5¢+C3 D2 + Cy P34 .. = <V¢>disk

@ The higher order terms in this expansion correspond to
world-sheet amplitudes with more than one boundary
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2 charges

D1-P geometries
@ BPS bound states of D1 and P charges are given

(semi-classically) by a D1-brane carrying a left-moving wave in the
transverse directions = fi(v), v=t+y

v X'
[\ /\ L=27mR
U, \J

@ The world-sheet boundary conditions depend on f;(v)

1 0 0 0

OX* = R* X" + fermions, RY = 4|f( V)P 1 —4f(v) 0
Y v 2fi(V) 0 -1 0

0 0 0 —I

MaV:(V:t+yaU:t—y7XiaZa)



2 charges

@ The disk amplitude is now a non-trivial function of k;, for example

/ n L ik fl
<Vg(k)>disk,f = ~ T1 /OdV e_lk,f (v) GgHv Ru,u(v)

@ The geometry sourced by this is

ds? = H=3/4dv(—du + Kdv + 2A,dx;) + H"/*(dx? + dz2)

Q [t 6P
i} K=
- /d —f|2’ ) Syl

e f
A"‘L/odvrx,-—mz

@ The f-dependent harmonic functions H, K, A; are encoded in
(Vg (K))disk £

where
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Comments on D1-P geometries

@ There is a continuous family of geometries, parametrized by fi(v),
carrying the same global D1 and P charges and preserving the
same supersymmetries (1/4 BPS)

@ After quantization, these geometries account for the 2-charge
entropy

@ All bound states carry non-trivial oscillations in the transverse (x;)
directions and therefore break rotational symmetry (unlike the
naive black hole geometry)

@ For the same reason, all bound states carry local D1 and P
charges along the transverse directions = dipole charges

@ All these properties are captured by disk amplitudes
@ The geometries are singular at x; = fj(v) (D1-brane source)
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D1-D5 geometries

The metric after a U-duality

\

dsg = (H(1 + K))~2[~(dt — A%+ (dy + B)?] + (H(1 + K))"/2dx?

where H, K, A = A;dx; are the same as before and dA = — x4 dB

@ the term dy + B describes
the fiber of a KK-monopole: (‘
the y cycle vanishes /
smoothly at x; = fi(v)

@ there is a local KK-monopole charge (dipole charge), that is
U-dual to the local D1 charge along the transverse directions
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2 charges

The D1-D5 twist fields

@ In a D1-D5 bound state open strings stretched between D1 and
D5 have a non-trivial vev

@ On the world-sheet this vev can be described perturbatively by the
insertion of twist fields

V¢ dISK‘ ‘ ‘Jrv 7+

@ The twist fields are V,, = ph e 2 SaA, V=it e 2 SsA
with S4 spin fields of SO(1,5) actingon t, y, x;
@ The bilinears ji*1.® can have non-trivial vev

1
iAuB = v (CryABl o a « (CTMKY(AB)

parametrized by v;, vk
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2 charges

@ Disk amplitudes with different numbers of twist field insertions
contribute to different orders in the 1/r expansion:
amplitudes with 2n twist fields go like 1/r2+")

Vi

i « contributes to
e For e.xample. ~ GMRM vy I))((ﬁ A B
the diagram i Bi
Vi
@ The vev’s vk are identified with the moments of the profile f;,
for example: vy ~ 1 [ dv f:

@ Resumming amplitudes with arbitrary numbers of twist fields
should reproduce the full dependence of H, K, A;, B; on f;

@ As before, terms non-linear in H, K, A;, B come from amplitudes
with more boundaries
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D1-D5-P geometries

How to bind P to D1-D5?

@ P can be carried by D1-D5 strings: vk — vk (V)
© P can be carried by D1-D1, D5-D5 strings:
e D1-D5 vev vk

e left-moving wave profiles fpy(v), fps(Vv)

@ is the entropically favored configuration

@ is computationally easier (if fp1(v) = fps(v) = f(v)) :
take the D1-D5 result and substitute

R — RE(f)

In the following | will restrict to 2
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3 charges

@ For example:

Vi
v e T G RM(F) vy KK

Vi

@ The dependence on fi(v) is exact, but only first order in vk
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Qualitative features of D1-D5-P geometries

@ We have derived the geometry sourced by a generic 3 charge
bound state up to order 1/r*

@ All the 10D Il supergravity fields are non-trivial, including
B,.,C® C® that vanish in the naive 3-charge black hole

@ There are new terms that depend on all three charges, and vanish
in every two charge limit:

e aterm of order 1/r3 (dipole term) in B,,,,

e aterm of order 1/r* in gj (metric along spatial R*), that makes g;
non conformally flat but conformally hyperkahler

@ What about the full non-linear solution?
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Conclusions and Outlook

@ The computation of disk amplitudes, together with the
supergravity equations of motion, provide in principle a systematic
way to derive the geometry sourced by 3 charge bound states

@ We know:

e the large r expansion of the geometry, up to order 1/r* :
the geometry differs from the naive black hole geometry by
dipole terms

@ a general exact supergravity ansatz that contains all the fields
excited in the large r solution: it turns out to be equivalent to a 5D
N = 2 supergravity solution with three vector multiplets

@ We would like to know:

@ an exact solution of the supergravity ansatz that reduces to the
string amplitude result for large r
e is the exact solution smooth and horizonless?
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Further applications

@ These techniques apply to more general bound states, as far as a
world-sheet description for the bound state constituents is known
(D-branes or fundamental strings):

e four charge black hole in 4D (work in progress with F. Morales and
R. Russo)

@ non-BPS bound states (even if the amplitude computation is
probably harder)

@ Disk amplitudes could also be used to study dynamical processes
involving black holes:

@ absorption or emission from a black hole microstate
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