Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Based on: L. Di Pietro, SG JHEP 1202 087; SG, to appear.

May 31 2012

・ロト ・回ト ・ヨト ・ヨト

3

Introduction

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points The set of vacua (moduli space) of a $\mathcal{N} = 2$ gauge theory is a complex manifold and at a generic point in the moduli space the effective low energy theory is abelian. The effective action is encoded in the Seiberg-Witten curve: N. Seiberg, E. Witten '94.

$$y^2 = P(x, \Lambda^{b_1}, u_i, m_i)$$

Breaking softly $\mathcal{N}=2$ SUSY with a mass term for the adjoint

$$\mathcal{W} = \mu \operatorname{Tr} \Phi^2 + \sqrt{2} \tilde{Q}^i \Phi Q_i + m_i \tilde{Q}^i Q_i,$$

イロン 不同と 不同と 不同と

the condensation of magnetically charged objects gives confinement ('t Hooft-Mandelstam mechanism).

Introduction

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points The set of vacua (moduli space) of a $\mathcal{N} = 2$ gauge theory is a complex manifold and at a generic point in the moduli space the effective low energy theory is abelian. The effective action is encoded in the Seiberg-Witten curve: N. Seiberg, E. Witten '94.

$$y^2 = P(x, \Lambda^{b_1}, u_i, m_i)$$

Breaking softly $\mathcal{N}=2$ SUSY with a mass term for the adjoint

$$\mathcal{W} = \mu \operatorname{Tr} \Phi^2 + \sqrt{2} \tilde{Q}^i \Phi Q_i + m_i \tilde{Q}^i Q_i,$$

・ロト ・回ト ・ヨト ・ヨト

the condensation of magnetically charged objects gives confinement ('t Hooft-Mandelstam mechanism).

Softly broken $SU(N_c) \mathcal{N} = 2$ SQCD

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points • At the classical level: The EoMs impose the constraint

$$\Phi \propto \text{Diag}(-m_1,\ldots,-m_r,c,\ldots,c), \quad c = \frac{\sum_{i=1}^r m_i}{N_c - r}$$

There are $N_c - r$ vacua $\forall r \leq min(N_c - 1, N_f)$. The effective theory has r colors and N_f flavors (when all masses m_i are equal).

• At the quantum level: The Seiberg-Witten curve factorizes as P. Argyres, R. Plesser, N. Seiberg '96

$$y^2 = (x+m)^{2r}(x-a)(x-b)Q^2(x), \quad r \le N_f/2.$$

For $r \leq N_f - N_c$ there are $N_c - r$ vacua. For $N_f - N_c < r \leq N_f/2$ there are $2N_c - N_f$ vacua. The pattern of flavor symmetry breaking is $U(N_f) \rightarrow U(r) \times U(N_f - r) \ \forall r.$ G. Carlino, K. Konishi, H. Murayama '00.

Softly broken $SU(N_c) \mathcal{N} = 2$ SQCD

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points • At the classical level: The EoMs impose the constraint

$$\Phi \propto \text{Diag}(-m_1,\ldots,-m_r,c,\ldots,c), \quad c = \frac{\sum_{i=1}^r m_i}{N_c - r}$$

There are $N_c - r$ vacua $\forall r \leq min(N_c - 1, N_f)$. The effective theory has r colors and N_f flavors (when all masses m_i are equal).

• At the quantum level: The Seiberg-Witten curve factorizes as P. Argyres, R. Plesser, N. Seiberg '96.

$$y^2 = (x+m)^{2r}(x-a)(x-b)Q^2(x), \quad r \le N_f/2.$$

For $r \leq N_f - N_c$ there are $N_c - r$ vacua. For $N_f - N_c < r \leq N_f/2$ there are $2N_c - N_f$ vacua. The pattern of flavor symmetry breaking is $U(N_f) \rightarrow U(r) \times U(N_f - r) \ \forall r.$

Softly broken $SU(N_c) \mathcal{N} = 2$ SQCD

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points • At the classical level: The EoMs impose the constraint

$$\Phi \propto \text{Diag}(-m_1,\ldots,-m_r,c,\ldots,c), \quad c = \frac{\sum_{i=1}^r m_i}{N_c - r}$$

There are $N_c - r$ vacua $\forall r \leq min(N_c - 1, N_f)$. The effective theory has r colors and N_f flavors (when all masses m_i are equal).

• At the quantum level: The Seiberg-Witten curve factorizes as P. Argyres, R. Plesser, N. Seiberg '96.

$$y^2 = (x+m)^{2r}(x-a)(x-b)Q^2(x), \quad r \le N_f/2.$$

For $r \leq N_f - N_c$ there are $N_c - r$ vacua. For $N_f - N_c < r \leq N_f/2$ there are $2N_c - N_f$ vacua. The pattern of flavor symmetry breaking is $U(N_f) \rightarrow U(r) \times U(N_f - r) \ \forall r.$ G. Carlino, K. Konishi, H. Murayama '00.

Duality between classical and quantum vacua

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points Both the pattern of flavor symmetry breaking and the counting of vacua $(N_c - r + N_c + r - N_f = 2N_c - N_f)$ suggest the correspondence $r, N_f - r \rightarrow r$ between classical and quantum vacua.

In order to prove this correspondence one needs to determine the SW curve at the classical r vacua.

$$y^2 = P_N^2(x) - 4\Lambda^{2N-N_f}(x+m)^{N_f}.$$

This can be achieved using the relation F. Cachazo, N. Seiberg, E. Witten '03.

$$P_N(x) = x^N e^{-\sum_i \frac{U_i}{x^i}} + \Lambda^{2N-N_f} \frac{(x+m)^{N_f}}{x^N} e^{\sum_i \frac{U_i}{x^i}}, \quad U_i = \frac{\langle \operatorname{Tr} \Phi^i \rangle}{i}$$

イロン イヨン イヨン イヨン

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Superconformal points in $\mathcal{N} = 2$ SQCD

Duality between classical and quantum vacua

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points Both the pattern of flavor symmetry breaking and the counting of vacua $(N_c - r + N_c + r - N_f = 2N_c - N_f)$ suggest the correspondence $r, N_f - r \rightarrow r$ between classical and quantum vacua.

In order to prove this correspondence one needs to determine the SW curve at the classical r vacua.

$$y^2 = P_N^2(x) - 4\Lambda^{2N-N_f}(x+m)^{N_f}$$

This can be achieved using the relation F. Cachazo, N. Seiberg, E. Witten '03.

$$P_N(x) = x^N e^{-\sum_i \frac{U_i}{x^i}} + \Lambda^{2N-N_f} \frac{(x+m)^{N_f}}{x^N} e^{\sum_i \frac{U_i}{x^i}}, \quad U_i = \frac{\langle \operatorname{Tr} \Phi^i \rangle}{i}$$

ヘロン 人間 とくほど くほとう

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Superconformal points in $\mathcal{N} = 2$ SQCD

Duality between classical and quantum vacua

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points Both the pattern of flavor symmetry breaking and the counting of vacua $(N_c - r + N_c + r - N_f = 2N_c - N_f)$ suggest the correspondence $r, N_f - r \rightarrow r$ between classical and quantum vacua.

In order to prove this correspondence one needs to determine the SW curve at the classical r vacua.

$$y^2 = P_N^2(x) - 4\Lambda^{2N-N_f}(x+m)^{N_f}$$

This can be achieved using the relation F. Cachazo, N. Seiberg, E. Witten '03.

$$P_N(x) = x^N e^{-\sum_i \frac{U_i}{x^i}} + \Lambda^{2N-N_f} \frac{(x+m)^{N_f}}{x^N} e^{\sum_i \frac{U_i}{x^i}}, \quad U_i = \frac{\langle \operatorname{Tr} \Phi^i \rangle}{i}$$

ヘロン 人間 とくほど くほとう

Simone Giacomelli Scuola Normale Superiore, INFN Pisa Superconformal points in $\mathcal{N} = 2$ SQCD

The generalized Konishi anomaly

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points **Chiral operators:** Operators which anticommute with $\bar{Q}_{\dot{\alpha}}$ (the lowest components of chiral superfields). Correlation functions of gauge invariant chiral operators can be computed exactly using the **generalized Konishi anomaly**!

F. Cachazo, M. Douglas, N. Seiberg, E. Witten '02.

- 4 回 2 4 三 2 4 三 2 4

$$0 = \left\langle \bar{D}^2 J_{\Phi} \right\rangle = \left\langle \frac{\partial \mathcal{W}}{\partial \Phi} \delta \Phi + \mathcal{A} \right\rangle, \quad \delta \Phi \propto \Phi^n.$$

Considering the transformations

$$\delta \Phi = \frac{1}{z - \Phi}, \ \delta \Phi = \frac{W_{\alpha} W^{\alpha}}{z - \Phi}, \ \delta Q_i = \frac{1}{z - \Phi} Q_i,$$

we can calculate the functions

$$\left\langle \operatorname{Tr} \frac{1}{z-\Phi} \right\rangle, \left\langle \tilde{Q}^{i} \frac{1}{z-\Phi} Q_{i} \right\rangle, R(z) = \frac{-1}{32\pi^{2}} \left\langle \operatorname{Tr} \frac{W_{\alpha}W^{\alpha}}{z-\Phi} \right\rangle.$$

The generalized Konishi anomaly

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points **Chiral operators:** Operators which anticommute with $Q_{\dot{\alpha}}$ (the lowest components of chiral superfields). Correlation functions of gauge invariant chiral operators can be computed exactly using the **generalized Konishi anomaly**!

F. Cachazo, M. Douglas, N. Seiberg, E. Witten '02.

(1) マン・ション・

$$0 = \left\langle \bar{D}^2 J_{\Phi} \right\rangle = \left\langle \frac{\partial \mathcal{W}}{\partial \Phi} \delta \Phi + \mathcal{A} \right\rangle, \quad \delta \Phi \propto \Phi^n.$$

Considering the transformations

$$\delta \Phi = \frac{1}{z - \Phi}, \ \delta \Phi = \frac{W_{\alpha} W^{\alpha}}{z - \Phi}, \ \delta Q_i = \frac{1}{z - \Phi} Q_i$$

we can calculate the functions

$$\left\langle \operatorname{Tr} \frac{1}{z-\Phi} \right\rangle, \ \left\langle \tilde{Q}^{i} \frac{1}{z-\Phi} Q_{i} \right\rangle, \ R(z) = \frac{-1}{32\pi^{2}} \left\langle \operatorname{Tr} \frac{W_{\alpha}W^{\alpha}}{z-\Phi} \right\rangle.$$

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

$$R(z) = \frac{1}{2} \left(\mu(z-a) - \sqrt{\mu^2(z-a)^2 - 4S\mu} \right), \ a \equiv \frac{\sqrt{2}}{N_c \mu} \langle \tilde{Q}^i Q_i \rangle.$$

This function is single-valued on the $\mathcal{N}=1$ curve:

$$\Sigma : y^2 = \mu^2 (z - a)^2 - 4\mu S.$$

The other generating functions also have poles!

$$\left\langle \tilde{Q}^{i} \frac{1}{z - \Phi} Q_{i} \right\rangle = \frac{\mu N a + N_{f} R(z)}{\sqrt{2}z + m}$$

SUSY vacua are obtained locating N_f poles at $z = -\frac{m}{\sqrt{2}}$. Classical r vacua correspond to configurations with r poles on the first sheet (i.e. $R(z) \rightarrow 0$ for $z \rightarrow \infty$)!

イロト イヨト イヨト イヨト

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

$$R(z) = rac{1}{2} \left(\mu(z-a) - \sqrt{\mu^2(z-a)^2 - 4S\mu}
ight), \ a \equiv rac{\sqrt{2}}{N_c \mu} \langle ilde{Q}^i Q_i
angle.$$

This function is single-valued on the $\mathcal{N}=1$ curve:

$$\Sigma: y^2 = \mu^2 (z-a)^2 - 4\mu S.$$

The other generating functions also have poles!

$$\left\langle \tilde{Q}^{i} \frac{1}{z - \Phi} Q_{i} \right\rangle = \frac{\mu N a + N_{f} R(z)}{\sqrt{2}z + m}$$

SUSY vacua are obtained locating N_f poles at $z = -\frac{m}{\sqrt{2}}$. Classical r vacua correspond to configurations with r poles on the first sheet (i.e. $R(z) \rightarrow 0$ for $z \rightarrow \infty$)!

イロト イヨト イヨト イヨト

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

$$R(z) = \frac{1}{2} \left(\mu(z-a) - \sqrt{\mu^2(z-a)^2 - 4S\mu} \right), \ a \equiv \frac{\sqrt{2}}{N_c \mu} \langle \tilde{Q}^i Q_i \rangle.$$

This function is single-valued on the $\mathcal{N}=1$ curve:

$$\Sigma: y^2 = \mu^2 (z-a)^2 - 4\mu S.$$

The other generating functions also have poles!

$$\left\langle \tilde{Q}^{i} \frac{1}{z - \Phi} Q_{i} \right\rangle = \frac{\mu N a + N_{f} R(z)}{\sqrt{2}z + m}$$

SUSY vacua are obtained locating N_f poles at $z = -\frac{m}{\sqrt{2}}$. Classical r vacua correspond to configurations with r poles on the first sheet (i.e. $R(z) \rightarrow 0$ for $z \rightarrow \infty$)!

- 4 同 6 4 日 6 4 日 6

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

$$R(z) = \frac{1}{2} \left(\mu(z-a) - \sqrt{\mu^2(z-a)^2 - 4S\mu} \right), \ a \equiv \frac{\sqrt{2}}{N_c \mu} \langle \tilde{Q}^i Q_i \rangle.$$

This function is single-valued on the $\mathcal{N}=1$ curve:

$$\Sigma: y^2 = \mu^2 (z-a)^2 - 4\mu S.$$

The other generating functions also have poles!

$$\left\langle \tilde{Q}^{i} \frac{1}{z - \Phi} Q_{i} \right\rangle = \frac{\mu N a + N_{f} R(z)}{\sqrt{2}z + m}$$

SUSY vacua are obtained locating N_f poles at $z = -\frac{m}{\sqrt{2}}$. Classical r vacua correspond to configurations with r poles on the first sheet (i.e. $R(z) \rightarrow 0$ for $z \rightarrow \infty$)!

(4月) イヨト イヨト

Classical vs quantum r vacua

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

- We obtained a non perturbative notion of "classical" r vacua.
- Using the generalized Konishi anomaly we can confirm this correspondence computing the SW curve at the $\mathcal{N}=1$ vacua.

For $m \gg \Lambda$ the gauge group is higgsed to SU(r) by $\langle \Phi \rangle \sim m$. If $r > N_f/2$ it is further broken dynamically at scale Λ to $SU(N_f - r)$.

Confinement is realized by the condensation of magnetic objects in the fundamental rep. of the low energy gauge group.

・ロン ・回と ・ヨン ・ヨン

Classical vs quantum r vacua

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

- We obtained a non perturbative notion of "classical" r vacua.
- Using the generalized Konishi anomaly we can confirm this correspondence computing the SW curve at the $\mathcal{N}=1$ vacua.

For $m \gg \Lambda$ the gauge group is higgsed to SU(r) by $\langle \Phi \rangle \sim m$. If $r > N_f/2$ it is further broken dynamically at scale Λ to $SU(N_f - r)$.

Confinement is realized by the condensation of magnetic objects in the fundamental rep. of the low energy gauge group.

ヘロン 人間 とくほど くほとう

3

Fixed points in SQCD

> Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

We found vacua with N_f massless flavors and SU(r) gauge symmetry ($r \le N_f/2$). The SW curve is $y^2 \approx x^{2r}$.

For $r = N_f/2$ the theory is interacting! Tuning m we find even more singular points (for N_f even): T. Eguchi, K. Hori, K. Ito, S. Yang '96.

$$y^2 \approx x^k, \quad N_f < k \le N + \frac{N_f}{2}.$$

The study of SO(N) or Usp(2N) gauge theories reveals the same structure, as long as $m \neq 0$!

For m = 0 the global symmetry is enhanced from $U(N_f)$ to $Usp(2N_f)$ and $SO(2N_f)$ respectively. In particular, all the r vacua merge in this limit, giving an interacting fixed point.

G. Carlino, K. Konishi, H. Murayama '00;

G. Carlino, K. Konishi, P. Kumar, H. Murayama '01. 《□▶ 《□▶ 《글▶ 《글▶ 글 》

Fixed points in SQCD

> Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points We found vacua with N_f massless flavors and SU(r) gauge symmetry ($r \le N_f/2$). The SW curve is $y^2 \approx x^{2r}$.

For $r = N_f/2$ the theory is interacting! Tuning m we find even more singular points (for N_f even): T. Eguchi, K. Hori, K. Ito, S. Yang '96.

$$y^2 \approx x^k$$
, $N_f < k \le N + \frac{N_f}{2}$.

The study of SO(N) or Usp(2N) gauge theories reveals the same structure, as long as $m \neq 0$!

For m = 0 the global symmetry is enhanced from $U(N_f)$ to $Usp(2N_f)$ and $SO(2N_f)$ respectively. In particular, all the r vacua merge in this limit, giving an interacting fixed point.

G. Carlino, K. Konishi, H. Murayama '00;

G. Carlino, K. Konishi, P. Kumar, H. Murayama '01. 《 □ ▶ 《 □ ▶ 《 글 ▶ 《 글 ▶ 《 글 ▶ 글 》 ♡

Fixed points in SQCD

> Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points We found vacua with N_f massless flavors and SU(r) gauge symmetry ($r \le N_f/2$). The SW curve is $y^2 \approx x^{2r}$.

For $r = N_f/2$ the theory is interacting! Tuning m we find even more singular points (for N_f even): T. Eguchi, K. Hori, K. Ito, S. Yang '96.

$$y^2 pprox x^k$$
, $N_f < k \le N + \frac{N_f}{2}$.

The study of SO(N) or Usp(2N) gauge theories reveals the same structure, as long as $m \neq 0$!

For m = 0 the global symmetry is enhanced from $U(N_f)$ to $Usp(2N_f)$ and $SO(2N_f)$ respectively. In particular, all the r vacua merge in this limit, giving an interacting fixed point.

G. Carlino, K. Konishi, H. Murayama '00;

G. Carlino, K. Konishi, P. Kumar, H. Murayama '01.

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us analyze the "neighbourhood" of the fixed point in parameter space:

$$y^2 = x^k + \sum_i u_i x^{k-i}, \quad \lambda \approx \frac{y}{x^{N_f/2}} dx.$$

One can determine the scaling dimensions of chiral operators imposing

$$[\lambda] = 1 \ (2[y] = 2 + (N_f - 2)[x]); \ 2[y] = k[x].$$

When the theory has a nonAbelian global symmetry there is another constraint: P. Argyres, M. Douglas, N. Seiberg, E. Witten '96

$$\prod_{i} (x - m_i^2) = x^{N_f} + \sum_{i} c_{2i} x^{N_f - i}; \quad [c_i] = 2i.$$

This condition requires [x] = 2

Simone Giacomelli Scuola Normale Superiore, INFN Pisa

Superconformal points in $\mathcal{N} = 2$ SQCD

・ロト ・回ト ・ヨト

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us analyze the "neighbourhood" of the fixed point in parameter space:

$$y^2 = x^k + \sum_i u_i x^{k-i}, \quad \lambda \approx \frac{y}{x^{N_f/2}} dx.$$

One can determine the scaling dimensions of chiral operators imposing

$$[\lambda] = 1$$
 $(2[y] = 2 + (N_f - 2)[x]);$ $2[y] = k[x].$

When the theory has a nonAbelian global symmetry there is another constraint: P. Argyres, M. Douglas, N. Seiberg, E. Witten '96

$$\prod_{i} (x - m_i^2) = x^{N_f} + \sum_{i} c_{2i} x^{N_f - i}; \quad [c_i] = 2i.$$

This condition requires [x] = 2

Simone Giacomelli Scuola Normale Superiore, INFN Pisa

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us analyze the "neighbourhood" of the fixed point in parameter space:

$$y^2 = x^k + \sum_i u_i x^{k-i}, \quad \lambda \approx \frac{y}{x^{N_f/2}} dx.$$

One can determine the scaling dimensions of chiral operators imposing

$$[\lambda] = 1 \ (2[y] = 2 + (N_f - 2)[x]); \ 2[y] = k[x].$$

When the theory has a nonAbelian global symmetry there is another constraint: P. Argyres, M. Douglas, N. Seiberg, E. Witten '96

$$\prod_{i} (x - m_i^2) = x^{N_f} + \sum_{i} c_{2i} x^{N_f - i}; \quad [c_i] = 2i.$$

This condition requires [x] = 2

Simone Giacomelli Scuola Normale Superiore, INFN Pisa

Superconformal points in $\mathcal{N} = 2$ SQCD

> Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points Let us analyze the "neighbourhood" of the fixed point in parameter space:

$$y^2 = x^k + \sum_i u_i x^{k-i}, \quad \lambda \approx \frac{y}{x^{N_f/2}} dx.$$

One can determine the scaling dimensions of chiral operators imposing

$$[\lambda] = 1 \ (2[y] = 2 + (N_f - 2)[x]); \ 2[y] = k[x].$$

When the theory has a nonAbelian global symmetry there is another constraint: P. Argyres, M. Douglas, N. Seiberg, E. Witten '96.

$$\prod_{i} (x - m_i^2) = x^{N_f} + \sum_{i} c_{2i} x^{N_f - i}; \quad [c_i] = 2i.$$

This condition requires [x] = 1

> Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points Let us analyze the "neighbourhood" of the fixed point in parameter space:

$$y^2 = x^k + \sum_i u_i x^{k-i}, \quad \lambda \approx \frac{y}{x^{N_f/2}} dx.$$

One can determine the scaling dimensions of chiral operators imposing

$$[\lambda] = 1 \ (2[y] = 2 + (N_f - 2)[x]); \ 2[y] = k[x].$$

When the theory has a nonAbelian global symmetry there is another constraint: P. Argyres, M. Douglas, N. Seiberg, E. Witten '96.

$$\prod_{i} (x - m_i^2) = x^{N_f} + \sum_{i} c_{2i} x^{N_f - i}; \quad [c_i] = 2i.$$

This condition requires [x] = 2.

Fixed points in Usp(2N) theory

> Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

A possible solution is to introduce two sectors, with a different scaling of x. D. Gaiotto, N. Seiberg, Y. Tachikawa '10.

 $xy^{2} = [xP_{N}(x) + 2\Lambda^{2N-N_{f}+2} \prod_{i} m_{i}]^{2} - 4\Lambda^{4N-2N_{f}+4} \prod_{i} (x-m_{i}^{2}).$

We find the maximal superconformal point setting (for $m_i = 0$) $xP_N(x) = x^{N+1} + 2\Lambda^{2N-N_f+2}x^{N_f/2} \Longrightarrow y^2 \approx x^{N+N_f/2}.$

The collision of r vacua produces a singular point of the form

 $y^2 \approx x^{N_f}.$

It is equivalent to the maximal superconformal point of $Usp(N_f)$ theory with N_f flavors!

Simone Giacomelli Scuola Normale Superiore, INFN Pisa

Superconformal points in $\mathcal{N} = 2$ SQCD

Fixed points in Usp(2N) theory

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

A possible solution is to introduce two sectors, with a different scaling of x. D. Gaiotto, N. Seiberg, Y. Tachikawa '10.

The SW curve for the *Usp*(2*N*) theory is

$$xy^{2} = [xP_{N}(x) + 2\Lambda^{2N-N_{f}+2}\prod_{i}m_{i}]^{2} - 4\Lambda^{4N-2N_{f}+4}\prod_{i}(x-m_{i}^{2}).$$

We find the maximal superconformal point setting (for $m_i = 0$) $xP_N(x) = x^{N+1} + 2\Lambda^{2N-N_f+2}x^{N_f/2} \Longrightarrow y^2 \approx x^{N+N_f/2}.$

The collision of r vacua produces a singular point of the form

$$y^2 \approx x^{N_f}$$
.

It is equivalent to the maximal superconformal point of $Usp(N_f)$ theory with N_f flavors!

Simone Giacomelli Scuola Normale Superiore, INFN Pisa

Superconformal points in $\mathcal{N} = 2$ SQCD

Fixed points in Usp(2N) theory

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points A possible solution is to introduce two sectors, with a different scaling of x. D. Gaiotto, N. Seiberg, Y. Tachikawa '10.

The SW curve for the Usp(2N) theory is

$$xy^{2} = [xP_{N}(x) + 2\Lambda^{2N-N_{f}+2}\prod_{i}m_{i}]^{2} - 4\Lambda^{4N-2N_{f}+4}\prod_{i}(x-m_{i}^{2}).$$

We find the maximal superconformal point setting (for $m_i = 0$) $xP_N(x) = x^{N+1} + 2\Lambda^{2N-N_f+2}x^{N_f/2} \Longrightarrow y^2 \approx x^{N+N_f/2}.$

The collision of r vacua produces a singular point of the form

$$y^2 \approx x^{N_f}$$
.

It is equivalent to the maximal superconformal point of $Usp(N_f)$ theory with N_f flavors!

Simone Giacomelli Scuola Normale Superiore, INFN Pisa

Superconformal points in $\mathcal{N} = 2$ SQCD

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us rewrite the curve as (for $k = N + N_f/2$)

$$\begin{split} \tilde{y}^2 &= \frac{y^2}{x^{N_f-2}} = \sum_{i=1}^{N_f} c_{2i} x^{1-i} + (x^{k+2-N_f} + \sum_{i=1}^N u_i x^{k+2-N_f-i}) \times \\ & (x^{k+1-N_f} + \sum_{i=1}^N u_i x^{k+1-N_f-i} + 4\Lambda^{2k+2-2N_f}); \quad \lambda = \frac{\tilde{y}}{x} dx. \end{split}$$

Ve now introduce two scales ε_A, ε_B ≪ 1.
In one sector (x ~ ε_A) we impose [x] = 2, so ỹ² ~ ε_A.
In the other sector (x ~ ε_B) we get ỹ² ~ x^{k+2−N_f}.

$$u_i \sim \epsilon_B^i, \quad 1 \le i \le k + 2 - N_f.$$

 $u_{k+1-N_f+i} \sim \epsilon_A^i, \quad i \ge 1.$

イロン イヨン イヨン イヨン

3

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us rewrite the curve as (for
$$k = N + N_f/2$$
)

$$\begin{split} \tilde{y}^2 = & \frac{y^2}{x^{N_f-2}} = \sum_{i=1}^{N_f} c_{2i} x^{1-i} + (x^{k+2-N_f} + \sum_{i=1}^N u_i x^{k+2-N_f-i}) \times \\ & (x^{k+1-N_f} + \sum_{i=1}^N u_i x^{k+1-N_f-i} + 4\Lambda^{2k+2-2N_f}); \quad \lambda = \frac{\tilde{y}}{x} dx. \end{split}$$

We now introduce two scales $\epsilon_A, \epsilon_B \ll 1$.

In one sector (x ~ ε_A) we impose [x] = 2, so ỹ² ~ ε_A.
In the other sector (x ~ ε_B) we get ỹ² ~ x^{k+2−N_f}.

$$u_i \sim \epsilon_B^i, \quad 1 \le i \le k + 2 - N_f.$$
$$u_{k+1-N_f+i} \sim \epsilon_A^i, \quad i \ge 1.$$

・ロト ・回ト ・ヨト ・ヨト

3

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us rewrite the curve as (for $k = N + N_f/2$)

$$\begin{split} \tilde{y}^2 = & \frac{y^2}{x^{N_f-2}} = \sum_{i=1}^{N_f} c_{2i} x^{1-i} + (x^{k+2-N_f} + \sum_{i=1}^N u_i x^{k+2-N_f-i}) \times \\ & (x^{k+1-N_f} + \sum_{i=1}^N u_i x^{k+1-N_f-i} + 4\Lambda^{2k+2-2N_f}); \quad \lambda = \frac{\tilde{y}}{x} dx. \end{split}$$

We now introduce two scales ε_A, ε_B ≪ 1.
In one sector (x ~ ε_A) we impose [x] = 2, so ỹ² ~ ε_A.
In the other sector (x ~ ε_B) we get ỹ² ~ x^{k+2-N_f}.

$$u_i \sim \epsilon_B^i, \quad 1 \le i \le k + 2 - N_f.$$

 $u_{k+1-N_f+i} \sim \epsilon_A^i, \quad i \ge 1.$

イロン イヨン イヨン イヨン

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us rewrite the curve as (for $k = N + N_f/2$)

$$\begin{split} \tilde{y}^2 = & \frac{y^2}{x^{N_f-2}} = \sum_{i=1}^{N_f} c_{2i} x^{1-i} + (x^{k+2-N_f} + \sum_{i=1}^N u_i x^{k+2-N_f-i}) \times \\ & (x^{k+1-N_f} + \sum_{i=1}^N u_i x^{k+1-N_f-i} + 4\Lambda^{2k+2-2N_f}); \quad \lambda = \frac{\tilde{y}}{x} dx. \end{split}$$

We now introduce two scales $\epsilon_A, \epsilon_B \ll 1$.

- In one sector $(x \sim \epsilon_A)$ we impose [x] = 2, so $\tilde{y}^2 \sim \epsilon_A$.
- In the other sector $(x \sim \epsilon_B)$ we get $\tilde{y}^2 \sim x^{k+2-N_f}$.

$$\begin{split} u_i \sim \epsilon_B^i, \quad 1 \leq i \leq k+2-N_f. \\ u_{k+1-N_f+i} \sim \epsilon_A^i, \quad i \geq 1. \end{split}$$

イロト イヨト イヨト イヨト

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Let us rewrite the curve as (for $k = N + N_f/2$)

$$\begin{split} \tilde{y}^2 = & \frac{y^2}{x^{N_f-2}} = \sum_{i=1}^{N_f} c_{2i} x^{1-i} + (x^{k+2-N_f} + \sum_{i=1}^N u_i x^{k+2-N_f-i}) \times \\ & (x^{k+1-N_f} + \sum_{i=1}^N u_i x^{k+1-N_f-i} + 4\Lambda^{2k+2-2N_f}); \quad \lambda = \frac{\tilde{y}}{x} dx. \end{split}$$

We now introduce two scales $\epsilon_A, \epsilon_B \ll 1$.

- In one sector $(x \sim \epsilon_A)$ we impose [x] = 2, so $\tilde{y}^2 \sim \epsilon_A$.
- In the other sector $(x \sim \epsilon_B)$ we get $\tilde{y}^2 \sim x^{k+2-N_f}$.

$$u_i \sim \epsilon_B^i, \quad 1 \le i \le k + 2 - N_f,$$

 $u_{k+1-N_f+i} \sim \epsilon_A^i, \quad i \ge 1.$

イロト イヨト イヨト イヨト

Identifying the two sectors

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

In the B sector
$$(x \sim \epsilon_B)$$
 the curve is

$$\tilde{y}^2 = 4\Lambda^{2k+2-2N_f}(x^{k+2-N_f} + \sum_{i=1}^{k+2-N_f} u_i x^{k+2-N_f-i}) + c_2.$$

This theory has SU(2) flavor symmetry. S. Cecotti, C. Vafa '11. In the A sector $(x \sim \epsilon_A)$ the curve is

$$\tilde{y}^{2} = \sum_{i=1}^{N_{f}} c_{2i} x^{1-i} + \left(\sum_{i=2}^{N_{f}/2+1} \frac{u_{k-N_{f}+i}}{x^{i-2}}\right) \left(\sum_{i=2}^{N_{f}/2+1} \frac{u_{k-N_{f}+i}}{x^{i-1}} + 4\Lambda^{2k+2-2N_{f}}\right)$$

This theory has $SU(2) \times SO(2N_f)$ flavor symmetry. It arises as the 6d $\mathcal{N} = (2,0) D_{N_f}$ theory compactified on a 3 punctured sphere. Y. Tachikawa '09.

・ロト ・回ト ・ヨト ・ヨト

A SECTOR $\Longleftarrow SU(2) \Longrightarrow$ B SECTOR

Identifying the two sectors

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

In the B sector
$$(x \sim \epsilon_B)$$
 the curve is

$$\tilde{y}^2 = 4\Lambda^{2k+2-2N_f} (x^{k+2-N_f} + \sum_{i=1}^{k+2-N_f} u_i x^{k+2-N_f-i}) + c_2.$$

This theory has
$$SU(2)$$
 flavor symmetry. S. Cecotti, C. Vafa '11.
• In the A sector $(x \sim \epsilon_A)$ the curve is

$$\tilde{y}^{2} = \sum_{i=1}^{N_{f}} c_{2i} x^{1-i} + \left(\sum_{i=2}^{N_{f}/2+1} \frac{u_{k-N_{f}+i}}{x^{i-2}}\right) \left(\sum_{i=2}^{N_{f}/2+1} \frac{u_{k-N_{f}+i}}{x^{i-1}} + 4\Lambda^{2k+2-2N_{f}}\right)$$

This theory has $SU(2) \times SO(2N_f)$ flavor symmetry. It arises as the 6d $\mathcal{N} = (2,0) D_{N_f}$ theory compactified on a 3 punctured sphere. Y. Tachikawa '09.

イロン イヨン イヨン イヨン

2

A SECTOR
$$\Leftarrow SU(2) \Longrightarrow$$
 B SECTOR

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

• For $N_f = 6$ the flavor symmetry of the A sector is enhanced from $SU(2) \times SO(12)$ to E_7 . Y. Tachikawa '09.

- For N_f = 4 the A sector becomes free: it describes four doublets of SU(2) and has SU(2) × SO(8) flavor symmetry.
- For $N_f = 2N$ the B sector becomes free and describes 2 hypermultiplets. The same structure emerges at the fixed point arising from the collision of r vacua.

イロン 不同と 不同と 不同と

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points

• For $N_f = 6$ the flavor symmetry of the A sector is enhanced from $SU(2) \times SO(12)$ to E_7 . Y. Tachikawa '09.

- For N_f = 4 the A sector becomes free: it describes four doublets of SU(2) and has SU(2) × SO(8) flavor symmetry.
 - For $N_f = 2N$ the B sector becomes free and describes 2 hypermultiplets. The same structure emerges at the fixed point arising from the collision of r vacua.

・ロン ・回と ・ヨン・

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points • For $N_f = 6$ the flavor symmetry of the A sector is enhanced from $SU(2) \times SO(12)$ to E_7 . Y. Tachikawa '09.

- For N_f = 4 the A sector becomes free: it describes four doublets of SU(2) and has SU(2) × SO(8) flavor symmetry.
 - For $N_f = 2N$ the B sector becomes free and describes 2 hypermultiplets. The same structure emerges at the fixed point arising from the collision of r vacua.

・ロン ・回と ・ヨン ・ヨン

Superconformal points in $\mathcal{N} = 2$ SQCD

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical and quantum vacua

Interacting fixed points • For $N_f = 6$ the flavor symmetry of the A sector is enhanced from $SU(2) \times SO(12)$ to E_7 . Y. Tachikawa '09.

- For N_f = 4 the A sector becomes free: it describes four doublets of SU(2) and has SU(2) × SO(8) flavor symmetry.
 - For $N_f = 2N$ the B sector becomes free and describes 2 hypermultiplets. The same structure emerges at the fixed point arising from the collision of r vacua.

・ロン ・回と ・ヨン ・ヨン

 $\begin{array}{l} \textbf{Superconformal}\\ \textbf{points in}\\ \mathcal{N}=2 \ \textbf{SQCD} \end{array}$

Simone Giacomelli

Scuola Normale Superiore, INFN Pisa

Classical an quantum vacua

Interacting fixed points

Grazie per l'attenzione!

・ロン ・回と ・ヨン ・ヨン

Э

The A sector

$$\lambda^{2N} = \sum_{k=1}^{N} \lambda^{2N-2k} \phi_{2k}(z); \quad \lambda = xdz.$$

The order of the poles at the punctures are:

$$\{1, 2, \dots, 2; 1\}; \{1, \dots, 2N - 3; N - 1\}.$$

<ロ> <部> <部> <き> <き> <

æ