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* Both tend to extremize surface area
* Their surface is elastic
* Evaporation when microphysics included (Hawking radiation)
* The evaporation rate is larger for small drops

~ An example:  The similarities between black hole physics and lumps of fluids

~ Early analogies (e.g. the membrane paradigm) Damour ’70, Price & Thorne ’80 ... 

~ Spacetime dimension is the only parameter of vacuum GR!

~ Vacuum general relativity (Rµ� = 0)

How does black hole physics change as the 
dimension D increases?

✧

In what sense black holes are like fluids?✧



Classical General Relativity:

~ Length scale set by black hole size 

~ The classical vacuum theory is scale-invariant

✧

rs ⇠ GM

~ “Hydrodynamic modes”                     don’t fit!� � rs

Fluid dynamics:

~ Long wavelength expansion:

✧

~ Effective theory for fluctuations away from thermodynamic equilibrium

⇥ ! 0, � ! 1

~ The theory has a scale that can for example distinguish between
   small/large liquid droplets

� � �mfp, � � �thermal

We need an additional scale for fluid behavior

~ Scale from cosmological constant : 

~ Widely separated scales arise naturally for higher D black holes in some regimes

� � `cosmo

Large black holes in AdS -> AdS/Fluid correspondence  Bhattacharya et al. 2007



THE BLACK STRING

~ where we observe the emergence
      of fluid behavior for the first time ~



Start with a Schwarzschild
black hole

M

Schwarzschild BH

(Ricci flat)

Extended horizons (D > 4)



Start with a Schwarzschild
black hole

Schwarzschild ⇥IR

ds2 = ds2
Schw + dz2

Take the direct product 
with a flat extra dimension

(Ricci flat)

(still Ricci flat)

BLACK STRING

Extended horizons (D > 4)

M

Schwarzschild BH

z

[black membranes and black branes
with an analogous construction]
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Gregory-Laflamme instability
 Gregory & Laflamme ’94

Instability for

Linearized perturbations: gµ⌫ + ✏hµ⌫
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D=5

(Thorne, MacDonald, Price...)

(membrane paradigm)Rayleigh-Plateau instability

Black holes as fluid droplets
~ Column of fluid held by surface tension ~

� = 2⇡
k

R0

� = 2⇡
k

r0 * If long enough, capillary breakup is energetically
   advantageous
* Perturbations of wavelength longer than circumference
   grow exponentially

Cardoso & Dias ’06

Qualitatively, RP=GL!
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(membrane paradigm)Rayleigh-Plateau instability

Black holes as fluid droplets
~ Column of fluid held by surface tension ~

� = 2⇡
k

R0 * If long enough, capillary breakup is energetically
   advantageous
* Perturbations of wavelength longer than circumference
   grow exponentially

Qualitatively, RP=GL!

Cardoso & Dias ’06 Shi, Brenner & Nagel 1994
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Gregory-Laflamme Time EvolutionRayleigh-Plateau Time Evolution

Lehner & Pretorius 2010

Tjahjadi, Stone & Ottino 1992
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* No intrinsic scale of vacuum gravity: 
  no way to tell small/large black holes

* D>4 black holes: emergence of widely separated scales
           BHs effectively described by a fluid that lives on
           a dynamical worldvolume

* Gravitational duals to confining theories:
  BHs dual to plasma balls, with surface tension

  Large BHs in AdS: fluid lumps of deconfined plasma

  Gregory Laflamme/Rayleigh-Plateau analogy
  becomes a precise duality

Aharony, Minwalla & Wiseman ’05

MC, Dias, Emparan & Klemm ’08

Lahiri & Minwalla ’07

Miyamoto & Maeda ’08

However, the black string is “thin” 



~ where we learn that black holes rotating extremely
fast resemble black strings and black branes ~

On black hole phases
and instabilities



The Origin of Scales
Newtonian vs. Rotational potential competition:

VNewton ⇠ 1

rD�3
Vcentrif ⇠

1

r2

When             the centrifugal potential dominatesD � 6

AH

GM2 J

D = 4

extremal bh

AH

J

D � 6

Kerr regime

Ultraspinning
regime

AH

J

D = 5

Kerr
regime

Ultraspinning
regime

rotating objects tend to pancake



locally resemble a boosted black string

Black rings:   large and thin when ultraspinning

R � r0 R r0

ULTRASPINNING INSTABILITY

pancaked BH

spin up

`k � `?

⌦

`?

`k

Locally approximated by a black brane, unstable to 
Gregory-Laflamme modes      Ultraspinning Instability

Thursday, 7 April 2011

locally resemble a
boosted black brane

Ultraspinning black holes

* Ultraspinning regime when

* Length scales �M ⇠ (GM)
1

D�3 �J ⇠ J

M

`J � `M

⌦



aH

j

Figure 2: New proposal for the phase diagram of thermal equilibrium phases in D ≥ 6. As in

ref. [11], the details of the phase connections are unknown and smooth connections (i.e., second order

transitions) are possible instead of swallowtails with cusps (i.e., first order transitions). In phases of

black holes with multiple pinches evolving into multi-black rings (and multi-ring Saturns) it is also

unknown whether intermediate pinched Saturns or pinched multi-rings appear (this depends on how

the different pinches evolve along the phase curve). Other than this, the features in the diagram are

robust. The asymptotic behavior of the curves depends only on the total number of rings and is given

by eq. (2.17).

5 Final remarks

An incorrect assumption about the properties of multi-black rings in thermal equilibrium had

led ref. [11] to conjecture an unduly complicated phase diagram in D ≥ 6. In this paper,

after properly identifying the possible hierarchies between the length scales in the system, we

have concluded that the simplest and most natural completion of the diagram can actually

be realized. An analysis of the exact five-dimensional di-ring solutions confirms in detail the

results obtained by performing a thin-ring approximation.

While in D ≥ 6 we have worked only to leading order in the thin-ring approximation, it

should not be too difficult to estimate the size of subleading corrections in r0/(R(1)−R(2)) by

considering a linearized (Newtonian) approximation to the gravitational interaction between

black objects.

We have only studied configurations with a single angular momentum. But arguments

similar to the ones in this paper can be made for other multi-black hole systems, where

instead of singly-spinning black rings we have doubly-spinning black rings [4], helical black

rings, or blackfolds with horizon topology
∏

i|pi∈odd
Spi × SD−

∑
i pi−2 [5].

9

Towards full phase diagram
D � 6

Emparan Harmark Niarchos Obers & Rodriguez 2007
Emparan Figueras 2010

Ultraspinning
regime

Kerr
regime

Kleihaus, Kunz & Radu 2012
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Rayleigh-Plateau instability causes the crown splash

Robert D. Deegan,1, ∗ Philippe Brunet,2 and Jens Eggers3
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The impact of a drop onto a liquid layer and the subsequent splash has important implications for
diverse physical processes such as air-sea gas transfer, cooling, and combustion. In the crown splash
parameter regime, the splash pattern is highly regular. We focus on this case as a model for the
mechanism that leads to secondary droplets, and thus explain the drop size distribution resulting
from the splash. We show that the mean number of secondary droplets is determined by the most
unstable wavelength of the Rayleigh-Plateau instability. Variations from this mean are governed by
the width of the spectrum. Our results for the crown splash will provide the basis for understanding
more complicated splashes.

The impact of a drop with a thin film of the same liq-
uid produces a spray of secondary droplets that results
from the emission, expansion, and breakup of one or more
sheet-like jets. Splashes are essential to diverse physical
processes and applications such as gas transfer across the
air-sea interface [1], cooling [2], coatings [3], and combus-
tion [4]. The spatial pattern and size distribution of sec-
ondary droplets are in general highly complex [5], varies
qualitatively with experimental conditions [6, 7], and has
yet to be understood [8]. Here we focus on the crown
splash, as exemplified in Edgerton’s iconic photograph
Milk Coronet [9], and show that number of secondary
droplets is governed by the Rayleigh-Plateau instability.
Our results can be extended to study more complicated
splashes such as when there are multiple jets in a single
impact event or the jets are irregular.

Figure 1 shows the end stage of a crown splash in
which the rim of a sheet-like jet breaks into secondary
droplets distributed almost uniformly along its perime-
ter. The name of the splash derives from the the resem-
blance of this final stage to a crown. The events culmi-
nating in a crown splash begin with a smooth cylindrical
sheet-like jet shooting outward and upward. The lead-
ing edge of this jet is pulled by surface tension towards
the sheet [10, 11], and grows in diameter as it entrains
fluid from the sheet. Next, the rim develops a symmetry-
breaking corrugation, and in a much later nonlinear
phase of the original instability, the rim’s crests sharpen
into jets which pinch off to form secondary droplets.

Due to the high speed and small scale structure of
a splash there are few quantitative time-resolved obser-
vations, and basic questions regarding the origin and
evolution of splashes remain unanswered. Leonardo da
Vinci [12] appears to be the first to recognize the regu-
larity of splashes. Worthington was the first to argue for
a surface-tension-driven instability as the origin of this
behavior [13], yet never tested his ideas quantitatively.
The numerical computations of Rieber & Frohn [14] sup-

port a surface-tension-driven mechanism, whereas those
of Fullana & Zaleski [15] argue against it.

Here we present the first experimental demonstra-
tion that the selection process is governed by a surface-
tension-driven instability. Our experiments identified the
parametric regime for crown splashes and measured the
evolution of these splashes. A 10 cm diameter λ/10 glass
optical flat was placed on the bottom of a 12 x 13 cm
glass-bottomed container. Fluid was added to the con-
tainer until the optical flat was submersed, forming a
film of height h above the optical flat. The orientation
of the container was then adjusted so that the flat lay
parallel to the fluid’s surface to within 3 × 10−4 radi-
ans. The depth of the layer was varied between 150 and
300 µm depending on the fluid in order to maintain a
constant ratio of drop size to layer depth. A single drop
was released from a gravity fed 30 gauge needle at fixed
height above the liquid layer at a rate no faster than
one drop per 10 s, which ensured that the liquid layer
fully relaxed between splashes. Our data on the morphol-
ogy of splashes was obtained with a high speed camera
(Phantom 5.0) viewing the impact from the side. Our

FIG. 1: Crown splash (silicon oil: Re=966, We=874, H∗=0.2).
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FIG. 2: Qualitative character of impact for H∗=0.2. No
splash (black small circles), crown droplets with (green stars)
and without (white squares) microdroplets, and microdroplets
without crown droplets (red diamonds). The solid blue square
indicates the parameter set for all experiments reported here.
A crown splash forms exclusively in the Crown droplets regime.

data for the evolution of the rim was obtained from im-
ages recorded from directly below through the glass sub-
strates with an SLR (Canon 20D) and a single 600 ns,
6 J pulse from a spark flash (Palflash 501, Pulse Photon-
ics Ltd.). The flash was triggered by the drop cutting
a laser sheet focused onto a photodiode. The triggering
event was reproducible to within ±5 µs. The speed of
the drop at impact was measured with the high speed
video camera. The trigger was fed into a delay gener-
ator which fired the flash. By varying the delay time,
the evolution of the impact was recreated from a com-
posite of still images. The virtue of this technique is that
it produces much higher spatial and temporal resolution
than can be achieved with a high speed video camera.
Our measurements of the crown splash were performed
with silicon oil (density ρ = 0.92 g/cm3, surface ten-
sion γ = 21 dynes/cm, dynamic viscosity η=5.2 cP). The
impact speed and drop diameter were kept constant at
U = 326 cm/s and D = 0.155 cm, and the layer depth h
was either 150 or 300 µm.

Crown splashes occur in a limited range of experimen-
tal parameters. The dimensionless parameters for de-
scribing droplet impact in the absence of a surrounding

gas are the Weber number We = ρDU2

γ , the Reynolds

number Re = DU
ν , the Froude number Fr = U2

gD , and the
dimensionless substrate fluid depth H∗ = h/D, where
g is the acceleration due to gravity. Past studies ig-
nored the ambient gas, and gravity on the basis that
the applicable dimensionless numbers are small. We fol-
low this practice here, and hence only report the We,
Re, and H∗. (The recent work of Xu et al. [16] found a
significant influence of the ambient air on drop impact
on a dry solid. We believe the effect of air to be much
weaker in our experiment, since there is no moving con-
tact line.) We measured the phase diagram shown in

Fig. 2 from a large number of experiments with different
fluids, droplet diameters, and impact speeds for a fixed
non-dimensional depth H∗ = 0.2. Crown splashes appear
only in the regime labeled Crown Droplets in Fig. 2. Out-
side of this domain, splashes are more irregular and com-
plicated [5]. Our measurements of the rim evolution cor-
respond to dimensionless numbers Re = 894, We = 722,
and H∗ = 0.1 ± 0.02 or 0.2 ± 0.01.

From our images, such as the example in Fig. 3, we
extracted the average radius of the rim ro, the radial dis-
tance of the rim from the impact center R, and the root-
mean-square amplitude and peak wavelength of the rim
corrugation. We processed the images to extract the po-
sition of the the inner and outer edge of the rim to within
±6 µm. The average radial position for each edge was
determined from a fit to a circle, and the radius of the rim
ro(t) and the radial position of the rim R(t) were taken as
the half the difference and the average of these radii, re-
spectively. These quantities are plotted in Fig. 4. From
the outer rim data we calculated the power spectrum,
and the continuous wavelet transform c(θk, s), where θk

is the translation variable and s is the scale variable, us-
ing a complex Morlet wavelet. The peak wavelength was
taken to be the maximum of c(s) =

∑

k |c(θk, s)|2.

The peak wavelength shifts to larger values for later
times which corresponds to a coarsening of the corruga-
tion. Furthermore, the corrugation does not grow evenly
at all points on the rim, but rather nucleates at several lo-
cations. These domains grow and merge, consistent with
the growth of the unstable modes from random noise. At
later times the corrugations sharpen and emit droplets.
The number of droplets is set by the ratio of the rim cir-
cumference to the peak wavelength, as demonstrated by
the examples in Fig. 3, and is hence determined by the
instability.

We compared our measurements to a theoretical cal-
culation based on the physical idea that the rim behaves
like a cylinder of fluid subject to surface tension forces,
ignoring the effect of the sheet attached to it. Such a fluid
cylinder is susceptible to the Rayleigh-Plateau instability,

FIG. 3: Crown splash (Re = 894, We = 722, & H∗=0.2) from
below at t = 1.85 ms and t = 3.15 ms after impact showing
the one-to-one correspondence between instability wavelength
and the number of droplets. Yellow arrows define rim radius
ro and rim’s radial distance from the impact center R.

 Deegan, Brunet & Eggers ’08

Crown splash ~ thin black ring instability ?



BLACKFOLDS

~ where the separation of scales is used to describe effectively 
black holes as fluids living in a dynamical worldvolume ~



BLACKFOLDS

• More generally, new black holes as blackfolds
• Black p-brane on curved submanifold of spacetime

• Long-wavelength black hole/brane dynamics
• Analytic tool for huge unexplored class of hi-d black 

holes

Applications (1)

• Black branes
Flexible? Oscillations along worldvolume?

Effective theories for solitonic objects
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Elastic, extrinsic
dynamics

‘Fluid’, intrinsic
dynamics

Xµ(�)
r0(�)

 Emparan, Harmark, Niarchos & Obers ’09

embedding functions

thickness of the horizonr0(�
a)

Xµ(�a)

ua(�a) local boost field

(can vary on 
 scales         )R � r0

Collective variables:

Long wavelength dynamics captured
by an effective worldvolume theory
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BLACKFOLDS

Underlying conservative dynamics:

 Emparan, Harmark, Niarchos & Obers ’09

Quasi-local stress energy tensor of Brown
and York in weak field region

16�GTµ� = Kµ� � hµ�K �
⇣
K̂µ� � hµ�K̂

⌘

Perfect fluid stress tensor

⇥ =
�(n+1)

16�G
(n+ 1) rn0

P = �
�(n+1)

16�G
rn0

rµT
µ� = 0
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n = D � 3� p (at leading order...)

r0 ⌧ r ⌧ R
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BLACKFOLDS

Underlying conservative dynamics:

 Emparan, Harmark, Niarchos & Obers ’09

Tµ�Kµ�
⇥ = 0

Extrinsic dynamics
(elastic deformations)

[Carter’s equation]

balance of forces on the black 
brane worldvolume

DaT
ab = 0

Intrinsic dynamics
(fluid excitations)

fluid equations (with conserved 
particle/string numbers)

[fluid]

rµT
µ� = 0

• More generally, new black holes as blackfolds
• Black p-brane on curved submanifold of spacetime

• Long-wavelength black hole/brane dynamics
• Analytic tool for huge unexplored class of hi-d black 

holes

Applications (1)
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BLACKFOLDS

Underlying conservative dynamics:

 Emparan, Harmark, Niarchos & Obers ’09
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(elastic deformations)

[Carter’s equation]
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brane worldvolume
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(fluid excitations)

fluid equations (with conserved 
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[fluid]
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• More generally, new black holes as blackfolds
• Black p-brane on curved submanifold of spacetime

• Long-wavelength black hole/brane dynamics
• Analytic tool for huge unexplored class of hi-d black 
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Xµ(�)

• Black branes
Flexible? Oscillations along worldvolume?

Effective theories for solitonic objects
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Elastic, extrinsic
dynamics

‘Fluid’, intrinsic
dynamics

r0(�)

*  Blackfold eqns can be derived from Einstein eqns

*  The horizon of the black brane remains regular



⌦

r0

⌦

r0

Black Ring
horizonS1 ⇥ Sn+1

Pancaked Black Hole
horizonSn+3

⌦

⌦

* Straightforward to study properties of ultraspinning MP & BR



Sound waves on a black string/brane
Intrinsic fluctuations �r0 pressure/density fluctuations

* sound waves *

v2s =
dP

d✏
= � 1

n+ 1
< 0

unstable modes: the inhomogeneities tend to grow

�r0 ⇠ e⌦t+ikz

⌦ =
kp
n+ 1

+O
�
k
2
�
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n=7

captures the slope of the
curve near the origin



Camps, Emparan & Haddad ’10

Viscosity corrections to the 
blackfold stress tensor
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Tµ⌫ = p (⌘µ⌫ � (n+ 1)uµu⌫)� 2⌘ �µ⌫ � ⇣✓⇧µ⌫
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order in the derivative expansion

 MC, Camps, Goutéraux & Skenderis ’12
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Conformal origin of the dispersion relation

ds2D = ds2p+2 +A(x) dy2n+1

D̄ = n̄+ p+ 3

ds2D̄ =
1

A(x)

�
ds2p+2 + `2 d⌦2

n̄+1

�

Analytic continuation: d = �n̄

v2s =
1

d� 1
v2s = � 1

n̄+ 1
< 0

Anti-de Sitter Asympt. Flat

D = n+ p+ 3 = d+ 1

Start with AdS/Fluid metric
 Bhattacharyya, Hubeny, Minwalla & Rangamani ’07

Blackfold metric to second 
order in derivatives

 Goutéraux, Smolic, Smolic, Skenderis & Taylor ’11

 Bhattacharyya, Loganayagam, Mandal, Minwalla & Sharma ’08  MC, Camps, Goutéraux & Skenderis ’12

http://inspirehep.net/author/Bhattacharyya%2C%20Sayantani?recid=770567&ln=en
http://inspirehep.net/author/Bhattacharyya%2C%20Sayantani?recid=770567&ln=en


* Hyperbolic system         time evolution numerics

* Holography for asymptotically flat spacetimes



~ Black Rings in anti-de Sitter and de Sitter spaces
MC, Emparan & Rodriguez ’08,

* New stationary black holes
~ New topologies, black helices, etc  Emparan, Harmark, Niarchos & Obers ’09

Armas & Obers ’10

* D-brane probes in thermal backgrounds
Grignani, Harmark, Marini, Obers & Orselli ’10 ’11 ’12

* Hyperbolic system         time evolution numerics

* Charged rotating black holes (electric and dipole)
MC, Emparan & Van Pol ’10~ D>4 Kerr-Newman

Emparan Harmark, Niarchos & Obers ’11~ new instabilities

* Study of dynamics at long wavelengths
~ Instabilities (GL as sound-mode instability)
~ study beyond linear perturbations

Camps, Emparan & Haddad ’10
 MC, Camps, Goutéraux & Skenderis ’12

* Holography for asymptotically flat spacetimes



LESSONS TO TAKE BACK HOME

Richer BH phases & dynamics in higher dimensions✧

(lack of uniquess, non-spherical topology, instabilities...)

Emergence of widely separated scales on BH✧

(horizons well approximated by black strings & membranes)

BH dynamics can be captured by fluid dynamics✧

(effective theories for black holes, non-linear evolution...)




