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We study the spectrum of the Schroedinger operator for a particle constrained on a two
dimensional flat torus under the combined action of a transverse magnetic field and a con-
servative force. A numerical method is presented which allows to compute the spectrum
with high accuracy. The method employs a fast Fourier transform to accurately repre-
sent the momentum variables and takes into account the twisted boundary conditions
required by the presence of the magnetic field. An accuracy of twelve digits is attained
even with coarse grids. Landau levels are reproduced in the case of a uniform magnetic
field satisfying Dirac’s condition. A new fine structure of levels within the single Landau
level is formed when the field has a sinusoidal component with period commensurable to
the integer magnetic charge. This fact is interpreted in terms of the peculiar symmetry
ZN × ZN which holds in the unperturbed case.
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1. Introduction

The quantum mechanics of a charged particle living on a two-dimensional flat torus
subject to a uniform magnetic field, orthogonal to the surface, has been solved
years ago1,2,3. The degeneration of the ground state coincides with the flux of the
magnetic field, in units of the elementary flux hc/e (in this paper we shall adopt
units such that ! = e/c = 1). From a mathematical point of view, this is a simple
example of the more general theorem about cohomology groups for hermitian line
bundles4, known in the physical literature as Dirac’s quantization condition: quan-
tum mechanics requires that the flux of the magnetic field across a closed surface be
quantized. This is also known as the Weil-Souriau-Kostant quantization condition.

In general, the problem with a non uniform magnetic field and/or in presence
of a scalar potential cannot be solved analytically. There exists a vast literature
dealing with Landau levels which attracted much attention in the last thirty years.
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We shall not attempt to position the present paper in the physics literature, our
aim being limited to present a simple numerical algorithm which is very accurate
in representing the quantum Hamiltonian: key ingredients are the use of Fourier
transform to represent momentum variables (spectral method) and the due attention
to the constraints posed by differential geometry. The interested reader may find
useful information in the literature5,6.

The algorithm computes the spectrum of the quantum particle on the torus in
presence of both a transverse magnetic field and a scalar potential. If the potential
vanishes and the magnetic field is uniform then the algorithm reproduces the known
spectrum, in terms of eigenvalues and degeneration, to a typical accuracy of twelve
digits. The effect of the potential energy is to split the Landau Levels; this fact
is at the basis of Klauder’s formulation of path integrals in phase space 7 and
our algorithm could be used to explore this approach to quantization theory. Also
the case of a non-uniform magnetic field and the corresponding splitting pattern
of Landau levels can be studied using our algorithm. We consider the case of a
sinusoidal contribution to the magnetic field in Sec. 4. A peculiar fine structure
emerges, which is made visible by the accuracy of the algorithm. This fine-structure
within each Landau level could be dubbed Landau-Mathieu levels and it manifests
itself when the number of oscillations of the perturbed field is commensurate to the
quantized magnetic flux. Finally it will be shown that the degeneracy pattern is
due to the breaking of the discrete symmetry ZN × ZN which holds in the case of
a uniform magnetic field.

2. Model setup

Quantum mechanics on a compact surface, in the presence of a magnetic field trans-
verse to the surface, requires the introduction of either a singular magnetic potential
(Dirac’s string) or a collection of local potentials Aα, one for each local chart of a
given atlas on the surface. The description in terms of local potentials is preferable
for its mathematical rigor8. The implementation of the local description within a
numerical approach should be easily achieved in terms of finite elements methods.
In this paper we take an alternative route, working on a single chart, but imposing
the correct (twisted) boundary conditions to the wave function, as we explain in
the next section.

2.1. Local charts and twisted boundary conditions

Let the torus be identified with the two-dimensional plane R2 modulo the discrete
subgroup of translations generated by x → x + L1, y → y + L2. We cover the torus
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with four charts defined as follows

Cα :

{
0 < x < L1

0 < y < L2

Cβ :

{
δ1 < x < L1 + δ1

0 < y < L2

Cγ :

{
0 < x < L1

δ2 < y < L2 + δ2
Cδ :

{
δ1 < x < L1 + δ1

δ2 < y < L2 + δ2

(1)

In each chart we define a local magnetic potential by

∀i : Ai = (− 1
2By, 1

2Bx) (2)

(remember that in our units e/c = 1). All local potentials are defined in the same
way, but their values are different. Within the overlaps of the local charts we eas-
ily find the transition functions realizing the gauge transformations from one de-
scription to another. For instance, the chart β overlaps α in two distinct regions,
I(1)

αβ = {δ1 < xα = xβ < L1} and I(2)
αβ = {0 < xα < δ1, L1 < xβ < L1 + δ1}. In the

overlap I(1)
αβ the value of the potentials coincide, while in I(2)

αβ we have

Aβ = Aα + (0, 1
2BL1)

= Aα + ∇χαβ

(3)

with χαβ = 1
2BL1y. The other transition functions are determined similarly. For

instance in I(2)
αγ = {0 < yα < δ2, L2 < yγ < L2 + δ2} it holds

Aγ = Aα + (− 1
2BL2, 0)

= Aα + ∇χαγ

(4)

with χαγ = − 1
2BL2x.

Now, to build the Hamiltonian operator, which is formally given by the usual
minimal coupling, one has to establish the transition functions proper to the lo-
cal wave functions. As it is well-known, these are obtained by exponentiating the
transition functions, i.e.

ψβ(x, y) = eiχ(j)
αβψα(x, y) on I(j)

αβ (5)

Now take a sequence of points s1 converging to (L1, y) from the left and a second
sequence s2 converging from the right to the same point. On s1 we have ψα = ψβ →
ψα(L1, y); on s2 we have ψβ → ψα(0, y) exp{ 1

2 i BL1 y}. By continuity of ψβ we get
a condition on ψα namely

ψα(L1, y) = e
1
2 i BL1 y ψα(0, y) . (6)

By a similar argument we find a second condition

ψα(x, L2) = e−
1
2 i BL2 x ψα(x, 0) . (7)

At this point we are allowed to work on a single local chart (let’s choose Cα) and
the Hamiltonian is defined by

H = 1
2 (−i∂x + 1

2B y)2 + 1
2 (−i∂y − 1

2B x)2 + V (x, y) (8)
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on a domain of differentiable functions satisfying Eq.s(6,7) as boundary conditions.
Notice that the b.c. are only consistent if Dirac’s condition is satisfied. To see this,
compute ψ(L1, L2) by applying the b.c. in two different orders:

ψ(L1, L2) = ψ(0, L2) e
1
2 iBL1L2 = ψ(0, 0) e

1
2 iBL1L2 (9)

ψ(L1, L2) = ψ(L1, 0) e−
1
2 iBL1L2 = ψ(0, 0) e−

1
2 iBL1L2 (10)

hence exp{i B L1 L2} = 1. All this is well–known, but it was recalled here to intro-
duce the main idea behind the algorithm we describe in the next section.

3. Numerical Algorithms

A simple code, based on a discrete approximation of partial derivatives, is easily
produced; the twisted boundary conditions Eq.s (6, 7) are implemented without
difficulty. However this method has serious limitations in attaining good accuracies.
A test run with B = 2π, L1 = L2 = 2 performed with a 64×64 grid in configuration
space yields the low energy spectrum (first 20 eigenvalues) with an average error of
1.5%. In particular the first four eigenvalues, which should coincide with π, turn out
to be π × (0.9997, 1.0082, 1.0082, 1.0419). With a finer mesh (128 × 128) the error
improves (0.5%) but the computing time grows considerably (from 25 sec to ≈ 400
sec). This fact encourages to design an algorithm with a better accuracy on partial
derivatives. This is achieved by using a “spectral method” based on the Fourier
transform.

3.1. The spectral method

A very accurate representation of partial derivatives can be obtained by using
Fourier transform. We use the very efficient encoding FFTW9, which is now included
in Matlab. However, Fourier transform assumes a periodic wave-function, which is
not the case with our problem. The way out is to apply the transformation separately
along x and y; the x transform is applied to the function φ = exp{− 1

2 iB x y}ψ,
which turns out to be periodic in x with period L1. The minimal coupling is then
recovered by realizing that

(−i∂x + 1
2B y)ψ ≡ e

1
2 iBxy(−i∂xφ) + B y ψ . (11)

Now the partial derivative can be computed in x−Fourier space. Similarly φ =
exp{ 1

2 iB x y}ψ is periodic in y with the right period, and we may compute

(−i∂y − 1
2B x)ψ ≡ e−

1
2 iBxy(−i∂yφ) − B xψ . (12)

The idea is used to compute with high accuracy the action of the Hamiltonian on
any function satisfying the twisted b.c.; this is then used as the unique piece of
information needed by the Arnoldi algorithm to get the spectrum. We should also
choose an initial vector as a seed of the Arnoldi algorithm, or else rely on random
initial vector. A function satisfying the boundary conditions can be constructed as
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follows. Choose any ψ0(x, y), e.g. a Gaussian centered in the middle of the rectangle
of sides L1, L2. Let BL1L2 = 2πN ; then the following equation defines a “good”
wave-function:

ψ(x, y) =
∑

n1,n2

(−1)n1 n2 N e
1
2 iBL2 x− 1

2 iBL1 y ψ0 (x + n1L1, y + n2L2)

The series can be truncated if ψ0 is a Gaussian with a width small with respect to
Li.

These are the ingredients which can be used to make a call to Matlab’s routine
eigsa, which provides a very friendly interface to the Arnoldi package Arpack10.
The result is rather spectacular as we report next.

3.2. Test runs and error estimates

We apply the algorithm to a grid n×n, starting with very coarse grids. In Tab.1 we
report the average error and the timings to compute the first 20 eigenvalues with
the same data as before.

Table 1. Relative error and tim-
ings

n Relative Error Time (sec)

8 1.8 × 10−2 0.15
12 5.3 × 10−7 0.35
16 1.0 × 10−13 0.60
24 1.8 × 10−13 1.35
32 2.4 × 10−13 2.85
64 6.0 × 10−13 24.7

As we see, the algorithm reproduces the correct spectrum (including degeneracy)
already at very low n. The relative error saturates around 10−12 which seems to be
inherent to the Arnoldi algorithm as implemented in Matlab (routine eigs).
In Fig. 1 we see a typical spectrum obtained with the algorithm. The degeneracy
of the eigenvalues is within 10−12, obtained with a 32 × 32 grid.

Let us notice that if we plug a value of B which does not respect Dirac’c condi-
tion, the degeneracy is broken; this fact can be interpreted as due to the fact that
there is a spurious singular contribution to the magnetic field at the boundary of
the local chart which breaks the original symmetry.

Another check of accuracy can be performed by adding a potential energy
1
2ω

2(x2 + y2): in this case the spectrum is known in the limit of large L1 and L2 to
be given by E = (n+ + 1

2 )ω+ + (n− + 1
2 )ω−, n± ≥ 0, ω± =

√
ω2 + (B/2)2 ± B/2.

aThe Matlab code can be found at the author’s web site http://www.fis.unipr.it:∼
enrico.onofri.
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Figure 1. The Landau levels with NΦ = 1
2π BL1L2 = 8, in units of the Larmor frequency.

The program reproduces this spectrum with a relative error of 10−13 on a 64 × 64
grid.

4. Fine Structure of Landau Levels

Having an algorithm which allows for accurate eigenvalue computations is like hav-
ing a microscope with higher resolution power: you can resolve details which would
otherwise be invisible. We started to explore other situations where the spectrum
was not known a priori. The first idea was to perturb the magnetic field by adding
an undulating term

B → B + λ sin(2πνx/L1) + σ sin(4πνx/L1) + . . . (13)

Whatever the physical agent which may produce such a field, nevertheless the
Hamiltonian is mathematically sound. In this case, a structure in Landau levels
is revealed, provided that the number of oscillations is commensurable to the inte-
ger flux NΦ = 1

2π B L1 L2. Notice that boundary conditions adapted to this choice
of gauge fields must be reformulated, along the lines of Sec. 2.1. Figure 2 shows
the splitting of the first Landau level which occurs at ν = 4 for a purely harmonic
perturbation (σ = 0). The pattern is reproduced for other choices of parameters
and it looks numerically very stable and degeneracy within the fine structure levels
is observed numerically at 12 digits precision.(see Fig. 3). There are NΦ states in
the first level; these are subdivided in finer sub-levels if NΦ is a multiple of ν: de-
generacy is given by the greatest common divisor gcd(NΦ, ν), hence it is destroyed
if NΦ and ν are relatively prime, but it is left unchanged if ν is a multiple of NΦ.

We also explored the stability of this phenomenon with respect to deformation
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Figure 2. The fine structure pattern of the first Landau level, ν = 4, NΦ = 16, σ = 0.
The picture below is a blow–up of the portion in the picture above enclosed within the
rectangle .

of the magnetic field, by keeping its periodicity on the torus, e.g. by adding a higher
harmonic contribution (σ )= 0); the pattern of degeneracy stays the same, only the
eigenvalues are shifted (see Fig. 4).
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Figure 3. The fine structure pattern of the first Landau level for ν = 3, NΦ = 24, λ = 1/10,
σ = 0.
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The finite structure energy gap is not uniform, but a regular pattern emerges
looking at sufficiently large NΦ/ν. The evidence is that the gaps are approximately
reproduced by

En+1 − En ∝ sin(nπ/NΦ) , n + ν/2 ≡ 0 mod (2ν) , (14)

at least when the degeneracy pattern {ν, 2ν, 2ν, ..., 2ν, ν} is realised. At this level,
however, the study is still preliminary.
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Figure 4. The gaps in the fine structure of the first Landau level under a periodic defor-
mation of the magnetic field, ν = 4, NΦ = 12, σ is the coupling of the higher harmonic.

5. Symmetry Breaking

The numerical accuracy of degeneracy pattern we found numerically under a pe-
riodic perturbation of the magnetic field call for a simple explanation in terms of
physical symmetry.

We recall that unperturbed Landau levels are understood on the basis of a
discrete symmetry ZNΦ × ZNΦ , the remnant of the classical U(1) × U(1) which is
broken by a quantum anomaly 2 : in the case of Eq. (13) the symmetry is reduced to
Zr × Zr with r = gcd(NΦ, ν). Even if the symmetry group is Abelian, its quantum
representation has a central charge, which forces the degeneration of Landau levels
to be a multiple of r. The same argument applies when the Hamiltonian contains a
potential V (x, y) periodic with period commensurable to NΦ, a fact which can easily
be checked using our algorithm. Since our algorithm preserves the bundle structure
of the gauge field it also preserves exactly the discrete symmetry, which explains the
correct reproduction of the degeneracy pattern. Let us notice that the eigenvalues
themselves, however, are computed correctly only at sufficiently fine grids.
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Concluding remarks

We presented a spectral algorithm which can compute the energy spectrum for a
scalar particle on the 2-D flat torus, subject to a transverse magnetic field and a
potential energy. To realize the algorithm, it is crucial to implement the correct
boundary conditions in a way compatible with adopting a spectral method based
on the Fourier transform. The spectrum is typically obtained to a relative error of
10−12 even on rather coarse meshes. When the field deviates from uniformity in a si-
nusoidal way, we find a fine structure in the splitting of Landau levels with a regular
degeneracy pattern. The problem we considered here originated from the formula-
tion of the Hamiltonian path integral introduced long ago by J.R. Klauder7,11.
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