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Abstract

Maraner, P., E. Onofri and G.P. Tecchiolli, Spectral methods in computational quantum mechanics, Journal of
Computational and Applied Mathematics 37 (1991) 209-215.

We review some applications of spectral methods based on Fourier expansions to computational problems in
quantum mechanics and we discuss a single topic in some detail, namely the case of a quantum {(charged)
spinless particle on a Riemannian manifold interacting with a magnetic field (the problem of Landau levels in a
curved configuration space). We study the asymptotic expansion of the ground state around the flat metric and
we give an estimate of the first few coefficients.
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1. Introduction

Spectral methods have gained a good reputation among numerical analysts as a robust
numerical tool for a wide variety of problems in applied mathematics [1]. In this paper we
discuss a certain class of applications initiated by Feit et al. [4] and later pursued by other
authors [3,12]. The paper is divided into two parts. The first part introduces the general idea of
spectral method as applied to quantum mechanics; it is meant to be a rather informal
introduction to the subject, with a guide to the relevant references. In the second part we discuss
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e the While the first viewpoint (Feynman path integral) may be more appealing to physical
ufold : intuition, this second one is more prosaic, but also more flexible ~ it can be applied for instance
' to the Dirac equation ' where a classical description is, to say the least, problematic.

The algorithm which computes the quantum dynamics generated by the Hamiltonian H is
then constructed as a series of partial FFTs hopping from one .%, to another, the wave function
being multiplied by the phase factors exp{ —irh(.%,)} appropriate to the current Lagrangian
subspace. For the simplest case H = h,{ p) + h,(g) the algorithm ? is just given as follows.

la for
Algorithm 1. Iterate N times:
begin
$ — ¥ X exp( —ih,(q))
FFT(¢)
L ey Xexp{—ith(p))
(21) . FFTY(Y)
end
(2.2) A slightly more general Hamiltonian is given by the spinless particle in a magnetic field
) B = v XA (in units such that ¢/c=1):
1 n
+1). H=} +h + AP _El‘é_m...=aA =0. 2.5
o+ n(p) +iale) + Zrd @) 5 i (25)
diti . . . .
Y;tlf?; This is a rather special magnetic potential, the most general case can however be handled
N N?) differently, as we show later. In two degrees of freedom the algorithm reads as follows.
if the
an be Algorithm 2. Iterate N times:
lies in begin _
1ed in ¥ ¢ Xexp{ —ith,(g)}
onian FFT, (¥) _ .
e the - e Xexp{—itp4(4a))
called © . FFL({) _
be of Y g Xexp( —ith{(p))
FFT, (¥)
— i Xexp{ —irp, A~
Yy p{ -1 prA* ()}
(2.3) FFT, ()
end
les in )
otter’s In order of increasing complexity, we may consider the same problem of a splinless particle in
a magnetic field moving on a manifold homeomorphic to R” with a Riemannian metric g. The
Hamiltonian is of the required form if g is diagonal with g, independent of gq;. Precisely this
(2.4) case will be considered in our application in Section 3.
+chine ' See [12] for the one-dimensional case; the code to deal with the three-dimensional Dirac equation has been produced

. in the meanwhile.
“ We assume that FFT overwrites  with its Fourier transform.
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may turn out to be largely inferior. A simple variant of the algorithm, combined with Lanczos’
method, can be dramatically faster, as we explain in the next section, at least in the case of
spectra with well separated eigenvalues.

Where the method is really competitive is in the study of

(i) time dependent dynamics, i.e., H = H{q, p, ); (in this case the system is interacting with
its surroundings and we want to calculate transition rates far from the perturbative regime.)

(ii) barrier penetration (tunnel effect) in a time-dependent regime, which is generally hard to
do outside the WKB approximation,

(iii) random perturbations: study of the quantum dynamics under an external random noise;

(iv) study of resonances (which are hard to detect otherwise).

All these points were explored in [12]. In the case of one degree of freedom, the method is simple
enough to allow for an efficient implementation on low-cost systems and can be used to explore
the basic properties of quantum mechanics in an interactive way *. The strength of the algorithm
lies in the fact that wnitarity of time evolution is preserved to machine accuracy, while other
numerical errors can be reduced as desired, at the price of speed. Also, the momentum-depen-
dent parts of the Hamiltonian are treated much better than in any discretization scheme (finite
differences); as a result one usuvally discovers that it is irrelevant to go below a certain lattice
spacing (a = S/N ). Another fine point is the treatment of boundary conditions. By adopting a
complex fast sine (cosine) transform * one can simulate Dirichlet (Neumann) boundary condi-
tions instead of periodic; this can be useful in order to estimate the finite-size effects on the
results.

A last comment about improving Trotter’s formula. In principle one could reduce the intrinsic
error in Trotter’s formula by several tricks, the simplest one [4] being to symmetrize the formula
(exp A exp B — exp 34 exp B exp 14). Other methods are given in [3]. Whether it is convenient
o improve the formula or rather cut down = depends on how much overhead the improvement
imposes on the algorithm. In our application in the next section it has been possible to
completely symmetrize the formula without adding a single Fourier transform, but this is to be
examined case by case.

3. Landau levels on the computer

Landau levels are the discrete energy levels of a quantum particle of charge ¢ moving on a
plane under the influence of a transversal uniform magnetic field B. The spectrum, identical to
that of a harmonic oscillator with infinite degeneracy, was determined by Landau in 1930. The
degeneracy of the Landau levels is forced by the peculiar realization of Euclidean invariance,
namely a projective representation (the generators of the translation subgroup realize a Heisen-
berg algebra). We show in Fig. 1 the result of the standard spectral method (Algorithm 2); the
accuracy of the method is such that even on a 64 X 64 grid the degeneracy is not broken; we

* The program is available for MSDOS systems with VGA or EGA.
Tecchiolli has developed a version of fast Sine transform based on Rader—Brenner's algorithm which is as efficient
as the corresponding FFT.
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corrections are given by a linear combination of invariants with physical dimension [length] ™ or
higher, built with the Riemann tensor, with B and with their covariant derivatives.
A numerical study of the spectrum via spectral methods is particularly simple if the metric 1s

diagonal:
g=diag[A(g),.... A (a), M) o) T (32)

with 9A,/3g, = -+ =03A,/8g,=0 in which case the Hamiltonian is of the general form ® of
(2.3). We also set B=Y dp, A dg;= —d(2qg, d p;) which is the canonical two-form. The Ham-
iltonian is then given (in suitable units) by

2

n _ a 2 a
= A, Yeie—1] + X, —ix——g. 33
" ng( /9 ( laqf) j(q)( "o, qj) (33)
" In each invariant {generalized) subspace 3£, = {{ =exp{ik - p}¢(q}} it reduces to
3? 2
H, = z( M) —5+wa%—@ﬂ, (3.4

whose eigenvalues E;(k) can be computed either in perturbation theory around the flat metric or
numerically. We shall now describe the results obtained by numerical analysis; we work in four
dimensions (n = 2) which is the lowest nontrivial case. The goal is now to relate the ground state
Eq(k) to the geometrical invariants which can be constructed in terms of the metric and the
symplectic two-form. Since we do not have a complete classification of the invariants of physical
dimension [length]™* we restrict ourselves to the list

Fy=R, F=R?, # =R, R", Fy=R,  RM

pypo

A =V’R, £ =VVB,V'VBY (3.3)

and we try to fit the ground state E,(k) with a linear combination ’

s
By~ X c5. (3.6)

i=0
To determine the six coefficients ¢, through a best fit we need a rather large array { Eo(k'/?) | j =
., M}. In practice we did the fit for M = 100 with several choices of the functional form of
A (q). It is clear that the original spectral method based on the analysis of the signal (2.8) is too
slow and inaccurate. Actually we are looking for small deviations from the standard Landau
spectrum and we need a good accuracy (say 8-digit) to correlate the eigenvalues to the
geometrical invariants. Since we are mainly interested in the ground state, we first of all convert
the algorithm to imaginary time, in such a way to calculate exp{ —tH }1; in the limit  — co the
excited states are filtered out at a rate O(exp{ —8Et}), where E=2 in the flat case. The
systematic error in Trotter’s formula, which is O(+2) for the symmetrized version, can be tamed
by keeping 7 small, at the expense of speed. Another sirategy which avoids Trotter’s intrinsic

® Notice that this is the same class of metrics considered by Gilkey [5] in the study of the heat kernel expansion for a

geneml second-order elliptic operator.
7 Notice that we set the energy scale in such a way that the ground siate energy is zero for the flat metric.
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Fig. 3. Expansion coefficients of the ground state (3.6). The parameter log,(2p) is in abscissa, the last point being
obtained by Romberg extrapolation, Dotted lines give the exact results from Table 1.

- for #, is compatible with zero, a fact which already suggests the value ¢, = - 4. The fitted

coefficients are given in Table 1 together with the recently computed perturbative result [10].
Notice that numerically %, — 3% is very small but not negligible; in the fit we substitute

Table 1

Coefficients tn (3.6) and their values obtained in perturbation theory

c, Fitted Exact Error (%)
0 —(.166668 -1 0.001

1 —0.024305 — v 23.5

2 0.020853 & 0.1

3 -0.031221 —% 0.1

4 —0.041538 -5 0.3

5 0.022143 & 6.3
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