
JULY/AUGUST 1999 59

the paint binder but form clusters
around center points. The number of
flakes around a center is distributed
like the Poisson distribution. In this
installment of “Computing Pre-
scriptions,” we give three ways to sam-
ple from the Poisson distribution. We
describe the usual method, a faster
method that uses some preprocessing,
and an even faster method with more
preprocessing. The last two methods
work with any discrete probability dis-
tribution. Depending on how often we
need to generate samples, paying extra
for a deluxe model of sample genera-
tion might be worth it.

The standard method
A typical way to generate samples from
a Poisson distribution is to specify an
integer µ (the mean of the samples will
be µ) and generate random uniformly
distributed numbers, 0 < u < 1, until
the product of all those chosen is less
than e−µ. Here is pseudocode:

mu is given.

u = random

k = 1

while(u > eˆ(-mu))
u = u*random

k = k + 1

endwhile

k has now been selected

from the Poisson distribu-

tion.

This looks somewhat like a Me-
tropolis “rejection” method, but it

isn’t, because we multiply the random
numbers together. However, it is sim-
ilar in that we generate random num-
bers and then “reject” them and gen-
erate more. On the average, it takes µ
iterations of the while loop before
reaching the accepted k. If µ is large
and we needs lots of k’s, this might
mean a long time to wait. We don’t
like that at all. On top of that, µ is an
average waiting time: the actual num-
ber of iterations can be much larger.
So, we’d like to have a way to sample
from this distribution without using
the loop.

Editors: Francis Sullivan, fran@super.org
William J. Thompson, wmjthompson@msn.com

C O M P U T I N G P RES C RI P T I O N S

PAY MENOW OR PAY MELATER
Isabel Beichl and Francis Sullivan

ACOLLEAGUE RECENTLY ASKED FOR A WAY TO SAMPLE

FROM A POISSON DISTRIBUTION TO SIMULATE THE WAY

METALLIC FLAKES CLUSTER IN PAINT (SEE FIGURE 1). THE FLAKES

AREN’T DISTRIBUTED UNIFORMLY AT RANDOM THROUGHOUT

Figure 1. Simulation of metallic paint flake cluster size distributed like Poisson, illus-
trating work by Isabel Beichl and Fern Hunt at NIST.

60 COMPUTING IN SCIENCE& ENGINEERING

A faster method
We can speed things up by doing a little
preprocessing. First, make an array qk of
the probability of choosing k. One way
to do this is to look these values up in a
table; another way is to generate a huge
number of samples and make your own;
another way in the case of the Poisson
distribution is to use the formula

qk = e−µ (µk/k!).

Why this is the same as the pseudocode
is an interesting story for another occa-
sion. Figure 2 shows a bar graph of the
probabilities of choosing various k’s for
a Poisson distribution, but this method
works as long as you can get some array
of probabilities.

Once we have an array of q’s, we
make an array of partial sums where sk
is the sum q1 + … + qk. That is,

s1 = q1
s1 = q1 + q2
s2 = q1 + q2 + q3
…
sn = q1 + … + qn.

Then, to select from this distribution, se-
lect uniformly at random between 0 and
sn and do a binary search into the sn’s. The
binary search’s complexity is only O(log n).
The random number will “hit” one of the
s’s, and the corresponding k is the sample.

The deluxe
method
Our deluxe method
comes from Donald
Knuth’s The Art of
Computer Program-
ming, Vol. 2, and is

called the alias method.1 As in the previ-
ous method, we need a discrete proba-
bility distribution in an array, q, and we
will do some preprocessing. Figure 3a
shows an example. For simplicity, we
suppose that only three states are possi-
ble, with probabilities 0.3, 0.5, and 0.2.
Then we sort the q’s but remember to
keep track of where the sorted values
came from. Figure 3b shows the bars of
Figure 3a after sorting, where loc[i] con-
tains the original location of bar i. So
loc[1] = 3 agrees with the picture where
bar q[3] is now first.

We then make boxes all of length 1/n,
where n is the total number of q’s avail-
able. We make n boxes all together so
that the total length will be 1. So, for our
example of three bars, we make three
equal-size boxes of length 1/3. In the
first box, we put the smallest (that is, first
after sorting) bar from the q array. This
bar will always fit entirely in a box of size
1/n. This is because the largest the first
bar could be is 1/n, in the case where all
bars are the same size, there being n bars
all adding up to 1. We then fill the rest
of the box, using part of the bar from the
largest bar. By the same reasoning, the
smallest that the largest bar could be is
1/n. This is because, as before, the worst
case is the one where all bars are the
same size, which would make them 1/n.
Thus, no matter how small the first bar
is, the last bar will have enough left to fill

the first box. Figure 4a illustrates mak-
ing the first box from the smallest and
largest bars. The boxes are horizontal to
distinguish them from the bars. For ef-
ficiency, we index this box by the index
of the original location of the bar that
goes at the box’s beginning.

To make the second box, we remove
the first bar (which we’ve already put in
a box) and the part of the last bar that
was used (see Figure 4b). We’re now in
the same position as when we started.
We sort the remaining bars, put the
smallest in box 2, and take part of the
largest bar to fill the rest of the box.
We continue in this way until we’ve put
all the bars into boxes.

We associate two numbers with each
box: a break point p and an alias Y. The
break point is the length of the first bar
in the box. So, in Figure 4a, the break
point for box 1 is p[1] = 0.2 because bar
q[3], the first part of the box, has a length
of 0.2. We know that q[3] is the corre-
sponding bar because we know loc[1] = 3,
this bar’s position before the sorting.

That’s the preprocessing. In the pseu-
docode (see Figure 5), we multiply the
box size by n because it will make gen-
erating an actual sample slightly easier.
It doesn’t change the idea of the
method. Imagine only that there are n
boxes, each of size 1.

Here’s how to generate a sample. We
select a box by choosing an integer be-
tween 1 and n,

u = random, k = �n ∗ u�,

and then find its fractional part

v = mod(u, 1).

C O M P U T I N G P RES C RI P T I O N S

Figure 2. A bar graph of a Poisson distribution, µ = 15.

k

10
,0

00
 ∗

 p
ro

ba
bi

lit
y

of
 g

en
er

at
in

g
k

2,500

2,000

1,500

1,000

500

0
0 40205 2510 3015 35

Figure 3. Bar
graphs of a very
simple discrete
probability distri-
bution: (a) the
original; (b) sorted.

(a) (b)

0.3

q1 q2 q3 q3 q1 q2

0.5

0.2 0.2
0.3

0.5

JULY/AUGUST 1999 61

Choosing k selects a box. We use v to
select either the first bar in the box
or the alias. That is, if v < pk, we use
box number k; otherwise, we use box
Yk. We don’t even need to choose
two random numbers. v is a random
number between 0 and 1, so it is the
same size as the box. This is why we
multiplied the box size by n in the

pseudocode.
Here’s the pseudocode for the sam-

ple generation:
u = random
k = ceil(n*u)
v = mod(n*u, 1)

IF v < p[k] THEN
sample = k

ELSE
sample = Y[k]

ENDIF

Figure 6 shows for our simple example
how, if the random number we select
happens to be 0.9, multiplying by 3 and
taking the ceiling gives �2.7� = 3 so that
box 3 is selected. And within that box, v =

Figure 4. Making boxes from the bars in Figure 3: (a) the first box; (b) the other boxes.

1

0.3 0.3666

(a)

q q1 q2

0.2

0.2 0.1333

0.1333

0.3 0.5

Box 3: Break point p[3] = 0

(b)

q q2

0.3 .0333

0.0333

0.3333

Box 1: Break point p[1] = 0.3

0.3333Box 2: Break point p[2] = 0.3333

3

make pdf[.] /* probability distribution function */

kk = n /* kk = loop counter, n = size of distribution */

[q, loc] = sort(pdf,1,n) /* q is the sorted array, loc are the locations from whence the
new values came, sort the whole array from positions 1 through n*/

ismall = 1; /*array to be sorted goes from q[ismall] to q[ilarge] */
ilarge = n;

WHILE (kk > 0)
ix = loc[ismall] /*index of next box to be filled*/
p[ix] = n*q[ismall] /* break point: length of first part of box = smallest bar*/

/*multiply by n because it will make stabbing easier, box size
consistently n times larger*/

Y[ix] = loc[ilarge] /* original location of bar in latter part of box */
/*the alias */

q[ilarge] = q[ilarge] - (1/n - q[ismall]) /*adjust what’s left in large bar by subtracting
what went into box*/

ismall = ismall + 1
[q,newloc] = sort(q,ismall,ilarge) /*sort only between ismall to ilarge*/

loc[.] = loc[newloc[.]] /*loc[i] = loc[newloc[i]], what is now in location i was previously
in newloc[i], which was previously in loc[newloc[i]]*/

kk = kk – 1
ENDWHILE

Figure 5. Pseudocode for preprocessing in the deluxe method.

62 COMPUTING IN SCIENCE& ENGINEERING

C O M P U T I N G P RES C RI P T I O N S

2.7mod1 = 0.7, which is greater than the break point, 0.6. So, we
choose the alias for box 3, which is event 2.

S o what do you pay for these? It depends on how big µ is
for the Poisson distribution and how many samples S you

intend to generate. The traditional method for generating
samples from a Poisson requires, on the average, µ random
numbers per sample. So it will use on the average µ ∗ S random
numbers, which could get expensive for large µ and huge S.

The faster method has an initial cost of O(n) for making
partial sums, where n is the number of bars in the bar graph.
Here n can be, on average, around 3µ for the Poisson. To
generate the samples, however, will cost O(S ∗ log n) because
a binary search costs O(log n).

The deluxe method initially will cost O(n log n) for the
first sort. Later sorts really involve only inserting one ele-
ment into the list, which could be done with a heap at a cost
of O(log n) per box.2 For n boxes, this would be another O(n
log n). But, to run one sample now only uses one random
number and is an O(1) operation. S samples cost S random
numbers. So, when it comes right down to it, what would
any of the preprocessing matter if S is equal to a billion?
Whether or not you want to pay the up-front costs will de-
pend on the problem. Sometimes it pays.

References
1. D.E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley,

Reading, Mass., 1998.
2. I. Beichl and F. Sullivan, “ A Heap of Data,” IEEE Computational Science &

Eng., Vol. 3, No. 2, Summer 1996, pp. 11–14.

Isabel Beichl is a mathematician in the Information Technology Labora-
tory at the National Institute of Standards and Technology. Contact her
at NIST, Gaithersburg, MD 20899; isabel@cam.nist.gov.

Francis Sullivan is the associate editor-in-chief of CiSEand director of the
Institute for Defense Analyses’ Center for Computing Sciences. Contact
him at the IDA/Center for Computing Sciences, Bowie, MD 20715;
fran@super.org.

Figure 6. Generating a sample with the deluxe method.

Box 3u = 0.9
3u = 2.7

k = 3
v = .7

q1 q2

q2

q3 q2

q1 q2

q2

q1 q2
0.2 0.1333

0.3 0.0333

0.3333

3

1

2

0.6

[q2 chosen]

0.4

0.9 0.1

1.0∗3

How to Reach
CiSE

Writers
For detailed information on submitting articles, write
for our Editorial Guidelines (mdavis@computer.org),
or access http://computer.org/cse/edguide.htm.

Letters to the Editors
Send letters to

Jenny Ferrero, Lead Editor
IEEE Computational Science & Engineering

10662 Los Vaqueros Circle
Los Alamitos, CA 90720
jferrero@computer.org

Please provide an e-mail address or daytime phone
number with your letter.

On the Web
Access http://computer.org/cse for information about
CiSE.

Subscription Change of Address (IEEE/ CS)
Send change-of-address requests for magazine sub-
scriptions to address.change@ieee.org. Be sure to spec-
ify CiSE.

Membership Change of Address (IEEE/ CS)
Send change-of-address requests for the membership
directory to directory.updates@ computer.org.

Subscription Change of Address (AIP)
Send general subscription and refund inquiries to
subs@aip.org.

Missing or Damaged Copies
If you are missing an issue or you received a damaged
copy, contact membership@computer.org.

Reprints of Articles
For price information or to order reprints, send e-mail
to mdavis@computer.org or fax (714) 821-4010.

Reprint Permission
To obtain permission to reprint an article, contact
William Hagen, IEEE Copyrights and Trademarks
Manager, at whagen@ieee.org.

