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Abstract!
I'll present several programs which I developed along the years which allow to 
compute energy spectra, tunneling amplitudes, animations of Schroedinger wave 
packets in various potentials in one and two dimensions, perturbation theory to high 
orders, Clebsch-Gordan, and more. All very elementary, but useful in introductory QM 
courses to explore the properties of simple quantum systems. I’ll add some comments 
on another kind of programs dealing with fundamental problems in classical 
mechanics, like (not-so)elementary celestial mechanics and synchronization of 
Huygens pendulums. Emphasis is given on programming style and the use of efficient 
algorithms, notably “fast” algorithms such as sparse matrix computations, fast 
transforms, efficient ODE solvers with event capturing. All the programs are available 
on the author’s web site or on the cloud. !
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Introduction!
!
! I have decided to put in the foreground the applications 
relevant to teaching Quantum Mechanics at an introductory level, 
hoping that this will be useful to a few colleagues. Obviously there 
are other examples of numerical and symbolic computations of 
this kind on the market, but this is what I developed in the course 
of many years of teaching introductory QM and I believe that they 
may raise some interest . Several other programs about classical 
mechanics are just outlined in the second part, among these 
Mercury perihelion shift and synchronization of cuckoo clocks.  I 
am indebted to many colleagues for collaboration and inspiration, 
in a special way to G.P. Tecchiolli, C. Destri, F. Di Renzo and G. 
Cicuta.!

1. Quantum Mechanics 
2. Classical Mechanics 
3. Miscellanea 

Sections
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Quantum Mechanics!
!

The main tools in my approach to the problems posed by QM are!
!
• “sparse matrix” techniques!
• fast transforms!
• efficient ODE (ordinary differential equations) solvers. !
!
        All this is implemented in  matlab which is my language of choice both for 
programming simplicity, easy plotting routines, fast prototyping, speed in 
execution, the only shortcoming being the fact that it is not free software. Some 
younger colleagues are suggesting python as a free software alternative since 
many years, but I cannot learn one more language now, after Ftn, C, perl, 
matlab, form, mathematica…  I’ll leave them the pleasure to develop a new suite 
of scientific programs in the new language. The ideas can be exported rater 
easily. !
!
!
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1. Wave function evolution for Schroedinger equation. The most efficient technique I 
know combines Lie-Trotter formula (path-integral in phase space) with the Fast Fourier 
Transform. The program initially computes two vectors which contain the values of  
exp(-½i 𝜏 p2) and exp(-i 𝜏 V(x)) defined on a finite grid in configuration space and in 
momentum space. A single evolution step is given by !

!
!

!
!
where F  is the Fast Fourier Transform (FFT). This operation is then iterated N-times to 
cover the whole time interval required. At every step the probability density    |𝜓(x)|2 
or  |φ(p)|2 or both can be visualized. A nice feature of the Trotter formula is that it 
preserves unitarity and time reversal invariance to machine precision. Also time- 
dependent potentials are feasible in this scheme, with the only overload of 
computing exp(-i 𝜏 V(x,t)) at each step.!
!
Examples are given in ~/MeccanicaQuantistica/WMS, where ~ is Cortona14 on 
dropbox or on the author’s web site. See the code doublewell.m (motion in the potential 
with two degenerate classical minima) and wms2.m (wave packet motion in 2-dim with 
various potential barriers). The same program wms2 can be run in “W” mode where the 
wave equation (no-dispersion) is studied for contrast to dispersive de Broglie waves.  !
Video clips are available on dropbox and my web site. 
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2. Energy spectrum calculation for Hamiltonians in 1-2-3 d.o.f.: !
! ! ! ! ! ! ~/MeccanicaQuantistica/spectra.  
!
One exploits the flexibility of the routine “eigs” which incorporates the ARPACK 
suite. This allows either to use sparse matrices or to directly define the action of 
the Hamiltonian through an external routine; this has the advantage of being 
allowed to use rather big vectors without worrying about memory exhaustion by 
huge matrices - think of a 2-dim wave function sampled on a 128x128 grid: the 
corresponding finite difference Laplacian, if not defined with care, could fill 
16x1284 ≈ 4 GBy of memory. But of course one does not use full matrices and 
eigs does even better. The Laplacian is defined by FFT and it costs nothing more 
than 1282 ln(128)  both in time and memory. Try schr’n’D, with n=1,2,3. Especially 
in higher dimensions the programs let you explore the degeneracy of energy 
levels and its resolution by small perturbations. Notice that the spectral method 
(representing p2 by FFT) allows for high accuracy, which is particularly welcome 
when one explores degenerate spectra like 3-dim potentials with high symmetry 
or even Landau levels. !
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• The same technique is used in the case of Schroedinger equation with a 
magnetic field, ~/MeccanicaQuantistica/spectra/Landau. The particle is confined 
to a toroidal surface with a transverse magnetic field. The algorithm takes into 
account the nature of the wave function which in this case is defined by a section 
of the vector bundle over T2 which is the standard description for gauge 
interaction on  closed surfaces, in particular one has to take into account the 
Dirac monopole quantization condition. The program lets you check the 
degeneracy of Landau levels - given by the integral flux - and also explore the 
breaking of degeneracy for deformations of the magnetic field 1).  The program 
uses an idea introduced 2) in 1991 to adapt the Lie-Trotter formula to the 
magnetic case. Here the accuracy allowed by the spectral method is essential - 
perturbation is first-order for degenerate states! !

1) E. Onofri, “Splitting Landau levels on the torus by periodic perturbations”, Int.J.Mod.Phys.C, 19 No.11  (2008) 1753. !
2) P. Maraner, E. Onofri, G.P.Tecchiolli, J.Comput.Appl. Math., 37 (1991) 209-219. 
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★ The matlab routine “kron” generates Kronecker products of 
matrices, which allows to build creation/annihilation matrices in any 
dimension starting from the 1-dim bosonic matrices.  With these 
routines one can explore the spectra of Hamiltonians built out of 
bosonic operators:  ~/MeccanicaQuantistica/spectra/a-adag.  

★  ~/MeccanicaQuantistica/tunneling: here you may find programs 
aimed at visualizing the penetration of potential barriers, the 
calculation of the transmission/reflection coefficients also in the case 
of an array of potential barriers Σn V(x - n L).  

★ ~/MeccanicaQuantistica/miscellanea: at the moment  this folder 
contains a routine to calculate Clebsch-Gordan coefficients for the 
sum of 2 or 3 angular momenta. It makes use of “kron” to define the 
matrices  J(1)⨂1 + 1⨂J(2) and J(1)⨂1⨂1 + 1⨂J(2)⨂1 + 1⨂1⨂J(3). 
There is a subtle problem still to be solved: “eigs” does not know 
Wigner’s phase convention…  
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II. Classical Mechanics 
Aside from QM there obviously are other topics in Physics teaching 
which can profit from numerical analysis. Here I just mention a few 
of them which I considered in recent years: 
!

 Celestial mechanics:  planetary motion and the calculation of  
Mercury’s perihelion 
 Celestial mechanics: stability of a Lagrange satellite in L4 position 
between Earth and Moon 3). 
 Continuum mechanics: normal modes of arbitrarily shaped 
membranes. 
 Many-body dynamics: motion of n-point masses constrained as a 
chain (n-pendulum) 

!
!
!
!
!
!
!

 Many-body dynamics: synchronization of  pendulums hanging 
from the same support.  

3) E. Onofri, “Elementary Celestial Mechanics using matlab”, Comp. in Sci. & Engin., 3 (6) 48-53 (2001).!
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Weinberg-Gravitation and Cosmology

My interest in Mercury’s perihelion stems from a portion of Weinberg’s book 
on Gravitation. It is natural to ask oneself: ok, I know how Einstein computed his 
43”/Cy, but how can one compute the 532? In the XIXth century, 30 years of hard 
work using Hamilton-Jacobi perturbation methods were needed to get to the final 
result; without the heroic effort of Newcomb and collaborators Einstein would not 
have found such a strong confirmation of his theory. Today with some patience and 
a standard personal computer the calculation runs for a few minutes. One has to 
download orbital elements for the planets, organize the calculation using matlab’s 
ode113 … et voilà Δ𝜑 ~ 530”/Cy ± 5”. The value is not universal, it depends on 
the epoch in which you do the simulation. 
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Lagrange satellite: ~/MeccanicaClassica/meccanicaceleste/MOON. It was 
proved by Giuseppe Luigi Lagrange that the motion of a satellite at position L4 is 
stable. This is true under the assumption that there are just three bodies at the 
vertices of an equilateral triangle. But what happens if there are other bodies 
around? The problem Sun-Earth-Moon+L4 was considered in Ref.3. Evidence is 
obtained that the perturbing action on the part of the Sun makes the Satellite 
unstable. At the same time the motion of the Moon can be examined, a classical 
problem which was very tough to solve. The program computes the variation in 
time of the Moon’s orbit eccentricity which shows rapid oscillation on the time 
scale of months. Also the famous cycle of ~18 years (Saros) which is relevant for 
the Solar eclipses can be deduced using the program. 

1) E. Onofri, “Elementary Celestial Mechanics using matlab”, Comp. in Sci. & Engin., 3 (6) 48-53 (2001).!

L4
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Last topic: clock synchronization - a classical problem 
studied long ago by Huygens. One can explore the problem 
with matlab, taking into account that both friction and a 
“escapement” mechanism must be implemented *). !
Folder: ~/MeccanicaClassica/pendoli. One can use the 
“events” facility of ODE matlab routines to capture the 
precise instant at which each pendulum reaches the 
maximum amplitude; at that point a tiny impulse is applied 
in such a way to compensate for the energy dissipation by 
friction. The mechanism is quite robust: even if the kick is 
given with a certain probability, synchronization eventually 
sets in.!

*) I was introduced to this kind of problem by my colleague and friend  
Giovanni Cicuta.
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!
You’ll find some documentation in  ~/docs. To get access to the 
routines: go to !

http://www.fis.unipr.it/~enrico.onofri/Cortona14!
or send an email to me asking to be admitted to the dropbox 
repository - the advantage consists in automatic synchronization of 
files which is not the case with the web page. !
!

!
!
!
!
!
!

Conclusions!
No conclusions: the effort is going on to produce useful routines for 
our students … it’s really fun. 

http://www.fis.unipr.it/~enrico.onofri/Cortona14

